首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roads are recognised as having different ecological roles such as barrier, corridor or habitat, but the spatial extent of road effects on plant communities in forests remains unclear. We studied the effect of forest road distance on plant understory diversity at 20 sites in young and adult oak stands in a French lowland forest with a long history of management and road construction. All vascular and bryophyte species were collected at five distances ranging from the road verge to 100 m into the adjacent forest stand. We analysed species composition, individual species response, a priori life-history traits response – life form, habitat preference and dispersal mode – and environmental indicator values in relation to road distance and stand age. Plant composition strongly differed between road verge and forest interior habitats. The main road effect extended less than 5 m into the forest stand. A third habitat was detected at the forest-road edge resulting from the road effect on light and soil conditions, and from edge-specific topography. Non-forest species were almost absent from the forest interior. In contrast, many bryophytes and several vascular plants kept away from the road. We identified a posteriori six species groups that better explained the variability of plant response profiles than a priori life-history traits. Plant response to road distance was also dependent on stand age: some species colonised from the road into the forest interior in young stands following regeneration cutting, while other species displayed the reverse pattern in adult stands once canopy closed above the forest road. Even if the depth of forest road effect measured in lowland managed stands was narrow, building of a new forest road has non-negligible effects on plant population dynamics. Forest managers should take into account the impacts of roads on biodiversity, since the expected intensification of silviculture in response to global changes is set to accentuate the effect of forest roads. We recommend further study on the role of dispersal by vehicles (i.e. agestochory) in road effects.  相似文献   

2.
The ‘road-effect zone’ is a concept developed to describe the impact of road construction on the surrounding area. Although many aspects of the road-effect zone have been investigated, the road-effect zone on soil properties (pH, bulk density, soil moisture, electrical conductivity, organic matter (%), C (%), total N (%), available Na, Ca, Mg, P, and K), light regimes (leaf area index and canopy cover), and a Raunkiaer’s life-form classification of plants remains poorly understood, especially in oriental beech (Fagus orientalis Lipsky) forests. Hence, the main aims of this research were to estimate the extent of the road-effect zone and to identify the main environmental changes due to forest roads. Specifically, we aimed to evaluate road-effects on: (1) the composition of herbaceous species and tree regeneration (up to 100 m distance from the forest road); (2) the light regime; and (3) soil properties, potentially related to changes in ecosystem functions and composition. We observed that forest roads can have significant impacts on soil, stand characteristics, and vegetation composition. The estimated road-effect zone extended up to 30 m from the road edge. Landscape planners should be aware that road-effect zones can potentially influence the ecology and environmental conditions of an area up to 30 m from the road edge.  相似文献   

3.
Gap formation in forests can have impacts on forest ecosystems beyond the physical boundary of the canopy opening. The extent of gap influence may affect responses of many components of forest ecosystems to gap formation on stand and landscape scales. In this study, spatial extent of gap influence on understory plant communities was investigated in and around 0.1 and 0.4 ha harvested canopy gaps in four young Douglas-fir (Psuedotsuga menziesii) dominated stands in western Oregon. In larger gaps, the influence of gap creation on understory plant communities in surrounding forests was minimal. The area showing evidence of gap influence extended a maximum of 2 m beyond the edge of the canopy opening, suggesting that the area affected by gap creation did not differ greatly from the area of physical canopy removal. In smaller gaps, influence of the gap did not extend to the edge of the canopy opening. In fact, the area in which understory vegetation was influenced by gap creation was smaller than the physical canopy opening. Gap influence appears to be limited to areas where ruderal or competitor species are able to replace stress-tolerator species, likely due to elimination or reduction of these species by physical disturbance or competition. The limited gap influence extent exhibited here indicates that gap creation may not have a significant effect on understory plant communities beyond the physical canopy opening. This suggests a limited effectiveness of gaps, especially smaller gaps, as a tool for management of understory plant diversity, and perhaps biodiversity in general, on a larger scale.  相似文献   

4.
Human-induced forest edges are common in many forest landscapes throughout the world. Forest management requires an understanding of their ecological consequences. This study addressed the responses of three ecological groups (non-forest species, secondary forest species and primary forest species) in edge soil seed banks and edge understory vegetation, and explored the relationship between the invasion of non-forest species in edge understory vegetation and the accumulation of their seeds in edge soil seed banks. The soil seed banks and understory vegetation were sampled along transects established at the edges of a continuous subtropical evergreen broad-leaved forest tract (Lithocarpus xylocarpus forest) bordering anthropogenic grasslands and three tropical seasonal rain forest fragments (Shorea wantianshuea forest) bordering fallows. Species composition in both soil seed banks and understory vegetation showed great difference among edge sites. In soil seed banks, the dominance (relative abundance and relative richness) of each ecological group did not change significantly along the edge to interior gradient. In understory vegetation, the invasion of non-forest species concentrated on the first several meters along the edge to interior gradient. The dominance of secondary forest species decreased with distance from the edge, while the dominance of primary forest species increased with distance from the edge. In forest edge zones, the invasion of a majority of non-forest species in understory vegetation lags behind the accumulation of their seeds in soil seed banks. Forest edges do not act as a good barrier for the penetration of non-forest species seeds. The lack of non-forest species in understory vegetation must then be due to conditions that are not appropriate for their establishment. Therefore, to prevent germination and survival of non-forest species further into the forest, management should focus on maintaining interior forest conditions.  相似文献   

5.
6.
在中山市长江库区水源林市级保护区内选择4种不同的林分类型,进行每木检尺和冠层影像拍摄,处理得到林下光照因子和辐射消减因子,分析不同林型对林下光照和辐射消减的影响。结果表明:不同林型对林冠结构和林下光照影响显著,针叶林与针阔混交林的林下光照接近,林冠较差,沟谷季雨林与常绿阔叶林接近,林冠较好;辐射消减在不同林型间差异显著,针叶林和针阔混交林辐射消减较差,常绿阔叶林和沟谷季雨林辐射消减较好;林下光照与辐射消减相关性强,特别是两个林冠结构因子与辐射消减关系密切。在进行林分改造时,建议选择叶片较大较厚,冠幅大而优美的常绿阔叶树种进行更新,天然起源的林分与常绿阔叶林的林冠结构较好,有效维持了森林生态系统稳定。  相似文献   

7.
In order to better understand the structure and composition of forest plant communities, we aimed to predict the abundance of understory herbaceous species locally at the stand level and according to different environments. For this, we seeked to model species distributions of abundance at a regional scale in relationship with the local stand structure (canopy openness) and regional soil resources (soil pH).Floristic inventories, performed in different light and soil conditions located in 1202 records of north eastern France, were used to analyze the combined effect of canopy openness and soil pH on the abundance of 12 common western European forest species: Anemone nemorosa, Deschampsia flexuosa, Festuca altissima, Hedera helix, Lamium galeobdolon, Lonicera periclymenum, Molinia caerulea, Oxalis acetosella, Pteridium aquilinum, Rubus fruticosus, Rubus idaeus, and Vaccinium myrtillus. Ordinal regression models relating species abundance responses to their environment were developed.For most species (eight out of 12), distribution was significantly affected by canopy openness and soil pH. Differences among low-abundance (i.e. cover <25%) and high-abundance (i.e. cover >25%) responses were noted for 11 species along the canopy openness gradient and four species along the pH gradient. The present study quantifies optimal light and soil nutrient requirements for high-abundance responses and quantifies light and soil nutrients tolerance conditions for low-abundance responses. The combination of both factors highlights the pre-eminence of pH conditions occurrence and canopy openness for species abundance.The models developed by this study may be used to define canopy openness thresholds in function of soil characteristics to control the development of species during forest regeneration. The species-specific reactions on local canopy openness along a regional soil gradient illustrate the need for a species-specific management approach.  相似文献   

8.
Coffea arabica shrubs are indigenous to the understorey of the moist evergreen montane rainforest of Ethiopia. Semi-forest coffee is harvested from semi-wild plants in forest fragments where farmers thin the upper canopy and annually slash the undergrowth. This traditional method of coffee cultivation is a driver for preservation of indigenous forest cover, differing from other forms of agriculture and land use which tend to reduce forest cover. Because coffee farmers are primarily interested in optimizing coffee productivity, understanding how coffee yield is maximized is necessary to evaluate how, and to what extent, coffee production can be compatible with forest conservation.Abiotic variables and biotic variables of the canopy were recorded in 26 plots within 20 forest fragments managed as semi-forest coffee systems near Jimma, SW Ethiopia. In each plot, coffee shrub characteristics and coffee yield were recorded for four coffee shrubs. Cluster and indicator species analyses were used to differentiate plant communities of shade trees. A multilevel linear mixed model approach was then used to evaluate the effect of abiotic soil variables, shade tree plant community, canopy and stand variables, coffee density and coffee shrub size variables on coffee yield.Climax species of the rainforest were underrepresented in the canopy. There were three impoverished shade tree communities, which differed in tree species composition but did not exhibit significant differences in abiotic soil variables, and did not directly influence coffee yield. Coffee yield was primarily determined by coffee shrub branchiness and basal diameter. At the stand level a reduced crown closure increased coffee yield. Yield was highest for coffee shrubs in stands with crown closure less than median (49 ± 1%). All stands showed a reduced number of stems and a lower canopy compared to values reported for undisturbed moist evergreen montane rainforests.Traditional coffee cultivation is associated to low tree species diversity and simplified forest structure: few stems, low canopy height and low crown closure. Despite intensive human interference some of the climax species are still present and may escape local extinction if they are tolerated and allowed to regenerate. The restoration of healthy populations of climax species is critical to preserve the biodiversity, regeneration capacity, vitality and ecosystem functions of the Ethiopian coffee forests.  相似文献   

9.
Light is the most common limiting factor in forest plant communities,influencing species composition,stand structure,and stand productivity in closed canopy stands.Stand vertical light structure is relatively simple under a closed canopy because most light is captured by overstory trees.However,wind disturbance events create canopy openings from local to landscape scales that increase understory light intensity and vertical light structural complexity.We studied the effects of an EF-1 tornado on horizontal and vertical(i.e.three-dimensional)light structure within a Quercus stand to determine how light structure changed with increasing disturbance severity.We used a two-tiered method to collect photosynthetic photon flux density at 4.67 m and 1.37 m above the forest floor to construct three-dimensional light structure across a canopy disturbance severity gradient to see if light intensity varied with increasing tornado damage.Results indicate that increased canopy disturbance closer to the tornado track increased light penetration and light structure heterogeneity at lower forest strata.Increased light intensity correlated with increased sapling density that was more randomly distributed across the plot and had shifted light capture higher in the stand structure.Light penetration through the overstory was most strongly correlated with decreased stem density in the two most important tree species(based on relative dominance and relative density)in the stand,Quercus alba L.(r=-0.31)and Ostrya virginiana(Mill.)K.Koch(r=-0.27,p<.01),and indicated that understory light penetration was most affected by these two species.As managers are increasingly interested in patterning silvicultural entries on natural disturbances,they must understand residual stand and light structures that occur after natural disturbance events.By providing spatial light data that quantifies light structure post-disturbance,managers can use these results to improve planning required for long-term management.The study also provides comparisons with anthropogenic disturbances to the midstory that may offer useful comparisons to natural analogs for future silvicultural consideration.  相似文献   

10.
In some areas of the Mediterranean basin where the understory stratum represents a critical fire hazard, managing the canopy cover to control the understory shrubby vegetation is an ecological alternative to the current mechanical management techniques. In this study, we determine the relationship between the overstory basal area and the cover of the understory shrubby vegetation for different dominant canopy species (Pinaceae and Fagaceae species) along a wide altitudinal gradient in the province of Catalonia (Spain). Analyses were conducted using data from the Spanish National Forest Inventory. At the regional scale, when all stands are analysed together, a strong negative relationship between mean shrub cover and site elevation was found. Among the Pinaceae species, we found fairly good relationships between stand basal area and the maximum development of the shrub stratum for species located at intermediate elevations (Pinus nigra, Pinus sylvestris). However, at the extremes of the elevation-climatic gradient (Pinus halepensis and Pinus uncinata stands), stand basal area explained very little of the shrub cover variation probably because microsite and topographic factors override its effect. Among the Fagaceae species, a negative relationship between basal area and the maximum development of the shrub stratum was found in Quercus humilis and Fagus sylvatica dominated stands but not in Quercus ilex. This can be due to the particular canopy structure and management history of Q. ilex stands. In conclusion, our study revealed a marked effect of the tree layer composition and the environment on the relationship between the development of the understory and overstory tree structure. More fine-grained studies are needed to provide forest managers with more detailed information about the relationship between these two forest strata.  相似文献   

11.
We examined patterns of variation in richness, diversity, and composition of understory vascular plant communities in mixedwood boreal forests of varying composition (broadleaf, mixedwood, conifer) in Alberta, Canada, before and for 2 years following variable-retention harvesting (clearcut, 20 and 75% dispersed green tree retention, control). Broadleaf-dominated forests differed from mixedwood or conifer-dominated forests in that they had greater canopy cover, litter depth, soil nitrogen, warmer soils, as well as greater shrub cover, herb and shrub richness and diversity (plot scale). In contrast, conifer, and to a lesser extent mixedwood, forest had greater β diversity than broadleaf forest. Overall, mixedwood and conifer forests were similar to one another, both differed from broadleaf forest. Several species were found to be significant indicators of broadleaf forest but most of these also occurred in the other forest types. Understory composition was related to canopy composition and edaphic conditions. Variable-retention harvesting had little effect on understory cover, richness, or diversity but resulted in reduced richness and β diversity at a larger scale. The clearcut and 20% treatments affected composition in all forest types. Early successional species and those common in disturbed sites were indicators of harvesting while evergreen, shade-tolerant understory herbs were indicators of the control forest and 75% retention harvest. We conclude that it is important to maintain a range of variation in canopy composition of mixedwood forests in order to conserve the associated understory communities. The presence of conifers in these forests has a particularly important influence on understory communities. The threshold for a lifeboat effect of variable-retention harvesting is between 20 and 75% retention. Examination of richness and β diversity at a variety of scales can provide interesting information on effects of harvesting on spatial reorganization and homogenization of understory plant communities.  相似文献   

12.
We studied the effects of line thinning on stand structure, microclimate and understory species diversity of two Cryptomeria japonica D. Don plantations in south-central Japan. In each of two study sites we compared stand structure between the thinned stand and an adjacent unthinned stand and found that line thinning increased the growth rate of residual trees such that stand basal area may recover within 10 years after thinning. In the thinned stand, more open canopy conditions resulted in higher maximum temperatures on the forest floor during the early growing season than in the unthinned stand. The thinned stand had greater understory plant species richness and biomass than the unthinned stand. This study suggested that line thinning could potentially enhance biodiversity while simultaneously increasing tree-growth rates in overstocked Cryptomeria japonica plantations.  相似文献   

13.
The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post-agricultural plantation forests.We studied effects of stand age, forest fragmentation, and soil and canopy conditions on species richness and abundance of four species groups in the understory of post-arable oak plantations in southern Sweden: herbaceous forest specialists, habitat generalists and open-land species, and woody species.The group of forest specialists may approach the richness of continuously forested sites after 60-80 years in non-fragmented plantations, but many forest species were sensitive to habitat fragmentation. Open-land species richness decreased during succession, while the richness of woody species and of generalists remained stable, and was not affected by fragmentation. Abundance of generalists gradually decreased in non-fragmented plantations, probably due to competition from colonizing forest specialists. Soil pH in post-arable stands remained consistently higher than in continuously forested stands, which maintained differences in species composition. The development of a shrub layer seemed to imply a competitive advantage for forest specialists compared to generalist species.For successful recovery of a rich understory, we suggest that post-arable plantations should be established on loamy soils of intermediate to high pH proximate to older forest with source populations, and that a continuous overstory canopy cover of 70-80% is maintained by regular light thinnings and promotion of a shrub layer.  相似文献   

14.
以内蒙古赤峰市阿鲁科尔沁旗沙日温都栎林自然保护区蒙古栎林为主要研究对象,研究不同林分密度对林下草本植物多样性的影响。结果表明,研究区内共有13科、14属、16种草本植物;Simpson指数、Shannon-Wiener指数、Pielou均匀度指数和物种丰富度指数均随着林分密度的增加呈先增大后减小的趋势,当林分密度为750株/hm2时,林下草本植物多样性指数达到最大值;林分密度与Shannon-Wiener多样性指数、Pielou均匀度指数、Simpson多样性指数、物种丰富度指数、树高、胸径均呈极显著负相关,与郁闭度呈极显著正相关,与枝下高不相关。综上所述,最合理的蒙古栎林密度为750株/hm2,该密度下最有利于蒙古栎林及林下草本植物生长发育。  相似文献   

15.
To examine the relationship between forest succession after severe logging forestry practices and the composition of avian communities, we investigated how forest bird composition and guild structure change as a function of structural properties along a successional gradient, including a climax mature forest (>400 years), a rehabilitated mixed forest (50-70 years), and a disturbed Masson pine forest (70 years) of the Dinghushan Nature Reserve, Guangdong Province, China. Of a total of 51 resident species recorded, mixed forests hosted the highest numbers of individuals and species, reflecting the high species richness of both forest and non-forest species. For forest-dependent species, however, mature stands had the highest observed and estimated species richness. Of 6 habitat-use guilds identified, vertical-profile generalists and understory-birds formed the two dominant guilds, accounting for 54.0% and 38.7% of all individuals respectively. The results of canonical correspondence analysis (CCA) clearly showed that most forest-dependent species were associated with high proportions of native canopy cover and the mean density of dead trees and large trees, which are characteristic of old-growth mature forests (horizontal heterogeneity) at stand level. Accordingly, conservation efforts should focus on the specialized requirements of the most habitat-restricted species in the future, especially for understory insectivores (Babblers) and large-tree users in mature subtropical monsoon forests of southern China. Moreover, since regenerating mixed forests are very similar to mature forests in both vegetation structure and bird community composition, we recommend that logging cycles (>50 years) be increased to a minimum of 50 years in southern China, so that a balance between economic and ecological interest can be reestablished.  相似文献   

16.
We investigated factors limiting the recovery of natural forest in former large-scale conifer plantations abandoned after clear-cutting in southwestern Japan. We analyzed forest recovery status (“recovered” sites covered by evergreen broad-leaved trees, and “unrecovered” sites covered by pioneer community or nonvegetated sites) using aerial photographs and field survey. We applied logistic regression analyses to evaluate the effects of topography, construction of harvesting roads, distance from remnant forest, stand condition before clear-cutting, and prior land-use history on forest recovery. Human factors, i.e., land use and clear-cutting age, were found to affect to forest recovery more than environmental factors such as topography. Harvesting roads had the strongest negative impact on forest recovery. Forest recovery after clear-cutting of young sugi plantations also took longer than after clear-cutting of old sugi plantations or evergreen broad-leaved forests. Furthermore, areas formerly utilized as meadows recovered less successfully than those that had been managed as coppices. The influences of these factors were thought to be promoted by the advance reproduction as the regeneration sources for forest recovery. The influence of stand age before logging suggested an effect of thinning, which might alter the abundance of advanced reproduction in the understory. However, distance from remnant forest appeared to be less important. An influence of topography was also detected, but this could be partly explained by the existence of advance reproduction in the understory in certain topographic positions. Thus, our analysis suggests that regeneration sources originating from advanced reproduction in plantations play a significant role for the recovery of natural forest after clear-cutting.  相似文献   

17.
The large-scale conversion of old forests to tree plantations has made it increasingly important to understand how understory vegetation responds to such landscape changes. For instance, in some forest types a reduction in understory richness and cover is thought to result from the development of canopy closure in plantations, although there is a paucity of empirical data demonstrating this relationship. We used a 420-year forest chronosequence as a case study to assess the relationship between stand age, tree canopy cover and understory vascular plant richness and composition in the Siskiyou Mountains of Oregon. The chronosequence consisted of six young managed (age 7–44) and nine older unmanaged (age 90–427) stands. All stands were similar in underlying geology, slope, elevation, and aspect. We found a non-linear relationship between stand age and richness, in which richness was highest in the youngest stands, reached a low in mid-aged stands (∼55 years), then increased in the oldest stands. We also found that percent tree canopy cover was correlated with total understory cover, richness, diversity, and species composition. In general, young stands were characterized by high shrub and graminoid cover and old stands were characterized by an abundant herb layer. Our work suggests that a major component of our study landscape is currently entering the forest stage (canopy closure) characterized by low levels of vascular plant species richness and cover. We use our results to discuss the potential effects of future forest management on understory plants.  相似文献   

18.
以2008年冰雪灾害对森林生态系统的破坏为背景,通过人工去除林冠层保留树干模拟森林的机械损伤,研究粤北小坑流域藜蒴栲群落林下植被的变化.结果表明:(1)试验1.5年后,去除林冠层、林下添加枯枝落叶的处理,林下灌木、草本科、种及乔木幼苗种的数量显著增加(P<0.05);去除林冠层且地表枯落物层保持不变的处理,林下草本科、种数量增加显著,乔木幼苗及灌木科、种差异不显著(P>0.05);林下添加枯枝落叶,林冠层不做处理,林下植被各生活型物种数有所减少,但差异不显著.(2)去除林冠层后,一些阳生种如野桐、山乌桕、山苍子、红紫珠、蕨状苔草、广东蛇葡萄等大量入侵并占据优势地位,林下植被盖度显著提高.(3)去除林冠层在短期内可显著增加林下植被生物多样性,添加枯落物对林下植被生物多样性影响不显著.  相似文献   

19.
结构化森林经营方法在阔叶红松林中的应用   总被引:2,自引:1,他引:1       下载免费PDF全文
介绍了结构化森林经营的基本理论与主要技术,包括数据调查、林分状态特征分析、经营设计以及经营效果评价等,并以东北阔叶红松林经营实践为例,具体介绍了结构化森林经营方法的应用。应用结构化森林经营方法分析表明,经营阔叶红松林林分为次生林状态,经营类型为抚育间伐型,经营迫切性评价等级为比较迫切,经营方向为提高林分的健康水平和顶极树种的优势程度。本次经营调整顶极树种竞争势及树种混交76株,采伐不健康林木122株。经营后效果评价表明:经营强度属于轻度干扰,顶极树种和主要伴生树种红松、杉松、黄波罗、椴树、核桃楸等的优势度较经营前明显上升,林分中健康林木比例明显上升。本次经营达到了经营目标。  相似文献   

20.
We experimentally investigated interacting effects of canopy gaps, understory vegetation and leaf litter on recruitment and mortality of tree seedlings at the community level in a 20-year-old lowland forest in Costa Rica, and tested several predictions based on results of previous studies. We predicted that experimental canopy gaps would greatly enhance tree seedling recruitment, and that leaf litter removal would further enhance recruitment of small-seeded, shade-intolerant seedlings in gaps. We created a large (320–540 m2) gap in the center of 5 out of 10 40 m × 40 m experimental plots, and applied the following treatments bimonthly over a 14-month-period in a factorial, split–split plot design: clipping of understory vegetation (cut, uncut), and leaf litter manipulations (removal, addition, control). As expected, experimental gaps dramatically increased tree seedling recruitment, but gap effects varied among litter treatments. Litter addition reduced recruitment in gaps, but enhanced recruitment under intact canopy. Species composition of recruits also differed markedly between gap treatments: several small-seeded pioneer and long-lived pioneer species recruited almost exclusively in gaps. In contrast, a few medium-to-large-seeded shade-tolerant species recruited predominantly under intact canopy. Leaf litter represents a major barrier for seedling emergence and establishment of small-seeded, shade-intolerant species, but enhances emergence and establishment of large-seeded, shade-tolerant species, possibly through increased humidity and reduced detection by predators. Periodic clipping of the understory vegetation marginally reduced tree seedling mortality, but only in experimental gaps, where understory vegetation cover was greatly enhanced compared to intact canopy conditions. Successful regeneration of commercially valuable long-lived pioneer trees that dominate the forest canopy may require clear-cutting, as well as weeding and site preparation (litter removal) treatments in felling clearings. Management systems that mimic natural canopy gaps (reduced-impact selective logging) could favor the regeneration of shade-tolerant tree species, potentially accelerating convergence to old-growth forest composition. In contrast, systems that produce large canopy openings (clear-cutting) may re-initiate succession, potentially leading to less diverse but perhaps more easily managed “natural plantations” of long-lived pioneer tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号