首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
K. Elena 《Phytoparasitica》2000,28(2):115-120
Vegetative compatibility among 17 isolates ofVerticillium dahliae obtained from watermelon, originating from eight regions of Greece, was investigated using complementation tests between nitrate-nonutilizing(nit) mutants. Among 529 chlorate-resistant sectors obtained, only 107 werenit mutants. These mutants were paired with tester strains (from Greece and other countries) of previously described vegetative compatibility groups (VCGs), and also were paired in many combinations among themselves. All isolates were self-compatible. Sixteen isolates were found to belong to VCG2. Only isolate V75 could not be assigned to a VCG, because the threenit mutants obtained from it showed negative reactions with the tester strains of four VCGs and with complementary mutants from other isolates. Based on this sample, we conclude that the population ofV. dahliae from watermelon in Greece is homogeneous in respect to VCG.  相似文献   

2.
Seventy-nine single-spore isolates of Fusarium udum, the causal agent of wilt disease of pigeonpea, from Kenya, India and Malawi were characterized according to their cultural characteristics, pathogenicity and vegetative compatibility group (VCG). The isolates exhibited high variation in pathogenicity on a wilt-susceptible pigeonpea variety, and in mycelial growth and sporulation on potato dextrose agar medium. The 79 isolates were categorized into two virulence groups, two groups of radial mycelial growth and four groups of sporulation. Radial mycelial growth showed a moderate negative correlation (r = –0.40; P = 0.01) with sporulation. However, mycelial growth and sporulation had no correlation with virulence. Pairings between complementary nitrate non-utilizing (nit) mutants of F. udum generated on chlorate containing minimal medium revealed that all the isolates belonged to a single VCG (VCG 1) with two subgroups, VCG 1 I and VCG 1 II. Vegetative compatibility was independent of cultural characteristics and pathogenicity. This is the first report of vegetative compatibility in F. udum.  相似文献   

3.
In a study of vegetative compatibility in Verticillium dahliae in the Netherlands, a collection of 45 isolates including representatives from woody hosts, several horticultural crops and from the soil of potato fields was examined. In addition an effort was made to compare vegetative compatibility groups (VCGs) from different countries. The results of this study indicate that VCG diversity in V. dahliae in the Netherlands is limited. Only two VCGs were detected: VCG NL-I and VCG NL-II. The former is the predominant VCG for isolates from tree hosts. However, Verticillium wilt in trees can be caused by isolates from both VCGs. It is suggested that the predominance of VCG NL-I in tree hosts is the result of the origin of the tree and the cropping history of its growing site, rather than trees being preferential hosts for isolates from this VCG. Comparison of VCG testers from the Netherlands, from several other European countries and from the USA show that in Europe two major VCGs are present. The first one, including NL-I, is compatible with USA VCG 3 and VCG 4, whereas the second one, including NL-II, is compatible with USA VCG 1 and VCG 2. These groups are not completely separated; in some cases, testers formed heterokaryons with VCG testers from both main groups. Because of the presence of these bridge isolates and because mutants from the same isolate differ in ability to form heterokaryons, it is emphasised that careful selection of isolate testers is an essential step to get a clear picture of VCG diversity.  相似文献   

4.
One hundred and fourteen isolates of Verticillium dahliae obtained from cotton and eggplant in mainland China were successfully assigned to two vegetative compatibility groups (VCGs) except for one self-incompatible isolate. Eleven isolates were strongly compatible with T9, the tester strain of the cotton defoliating pathotype, forming a linear growth of wild type with abundant microsclerotia and dense mycelia between compatible nitrate-nonutilizing mutants. The remaining 102 isolates were grouped into the non-defoliating VCG2, although the strength of the reaction varied; some isolates were strongly compatible with the tester strain while others were only slightly compatible. All VCG1 isolates including T9 showed the same defoliating symptom in greenhouse inoculation tests. This study confirmed the presence of the defoliating pathotype (VCG1) of V. dahliae in mainland China.  相似文献   

5.
Forty-four isolates of Verticillium dahliae obtained from different diseased hosts were tested by vegetative compatibility group (VCG) analysis to investigate their genetic relatedness and correlate the results with four VCGs (1, 2, 3, 4) previously described. Based on complementarity of nit mutants, only three VCGs were identified from the Greek isolates. Seventeen isolates were assigned to VCG 2 (A or B), two to VCG 3 and eight to VCG 4 (A or B). The 17 remaining isolates could not be grouped to any of the three VCGs. All isolates belonging to a distinct VCG complemented strongly with at least one of the two tester strains of that group, or with several strains of the Greek collection belonging to that VCG.  相似文献   

6.
Genetic diversity and phenotypic diversity in Verticillium dahliae populations on cotton were studied among 62 isolates from Spain and 49 isolates from Israel, using vegetative compatibility grouping (VCG), virulence and molecular assays. In Spain, defoliating V. dahliae isolates (D pathotype) belong to VCG1, and non-defoliating isolates (ND) belong to VCG2A (often associated with tomato) and VCG4B (often associated with potato). The D pathotype was not identified in Israel. The ND pathotype in Israel is comprised of VCG2B and VCG4B. Isolates in VCG2B and VCG4B ranged in virulence from weakly virulent to highly virulent. The highly virulent isolates induced either partial defoliation or no defoliation. Virulence characteristics varied with inoculation method and cotton cultivar. Highly virulent isolates from Israel were as virulent as D isolates from Spain under conditions conducive to severe disease. The D pathotype is pathologically and genetically homogeneous, whereas the ND pathotype is heterogeneous with respect to virulence, VCG, and molecular markers based on single-primer RAPD and on PCR primer pairs.  相似文献   

7.
Fusarium crown and root rot, caused by Fusarium oxysporum f.sp. radicis-lycopersici ( Forl ), is one of the most destructive soilborne diseases of tomato in Italy. Chlorate-resistant, nitrate-nonutilizing ( nit ) mutants were used to determine vegetative compatibility among 191 isolates of Forl collected in five geographic regions (Calabria, Emilia-Romagna, Liguria, Sardinia, Sicily) in Italy. The isolates were assigned to five vegetative compatibility groups (VCGs): 65 isolates to VCG 0090; 99 to VCG 0091; 23 to VCG 0092; two to VCG 0093; and two to VCG 0096. The population structure of Forl in Italy is similar to that reported for Israel, and differs from that found in North Atlantic European countries, where VCG 0094 is predominant. The stability of prototrophic heterokaryons originating from hyphal anastomosis between compatible complementary nit mutants was assessed through conidial analysis and mycelial mass transfer. Most monoconidial cultures (84%) recovered from 117 prototrophic heterokaryons were nit mutants, indicating that heterokaryons generally do not proliferate well through conidiation; most of the 177 prototrophic heterokaryons examined were unstable, and only 9% sustained prototrophic growth through the tenth mycelial transfer upon subculturing. The prototrophic growth is proposed to be maintained through restoration of the heterokaryotic state by continual anastomosis between adjacent homokaryotic hyphae. Since heterokaryosis is a prerequisite for parasexual recombination, we speculate that this mechanism is unlikely to play a major role in generating the VCG diversity found among Forl or other strains of F. oxysporum.  相似文献   

8.
 从山西运城、临汾、长治、晋中、大同等地保护地黄瓜灰霉病病株上采集、分离的分属于3个不同菌丝融合群的8个灰葡萄孢菌单孢菌株,经氯酸盐诱导处理,共获得了抗氯酸盐的硝酸盐利用缺陷突变体(nit突变体)59株,其中nit1型38株,nit3型10株,nitM型11株。所有nit突变株分别在PDA斜面转管培养3次(21 d)后,除6株恢复成野生菌株外,其余多数nit突变菌株表现稳定。来源于同一野生菌株的不同类型nit突变体间或同一菌丝融合群不同野生菌株的nit突变体间可产生互补反应而形成异核体,其中以nitM型突变株互补性最好,在利用nit突变体测定灰葡萄孢菌营养体亲和性时应作为标准菌株。来源于不同菌丝融合群的nit突变体间不能产生互补反应。  相似文献   

9.
Katan  & Katan 《Plant pathology》1999,48(4):541-549
The population structure of Fusarium oxysporum f.sp. radicis-lycopersici ( F.o.r.l .), the causal agent of crown and root rot disease in tomato, was studied using the vegetative compatibility grouping approach. Four vegetative compatibility groups (VCGs) were identified among 37 isolates from the UK, the Netherlands, Belgium and France. Three of these VCGs (0090, 0091, 0094) had already been described, whereas VCG 0097 was new. VCG 0094 was dominant in the UK, the Netherlands and Belgium, but not in France. The opposite was true for the cosmopolitan VCG 0091, while the cosmopolitan VCG 0090 was only found in France. Based on hyphal interactions, VCG 0094 was divided into three subgroups, each comprising isolates from at least two countries. One isolate of VCG 0094 did not belong to any of these subgroups, suggesting further variability in this VCG. Isolate FORL-19R from France, previously assigned to VCG 0090 I, was reassigned to VCG 0090 III, a new subgroup of VCG 0090 found in Israel. FORL-19R and additional members of its subgroup manifest cross-VCG compatibility between VCG 0090 and VCG 0092. Along with previous studies, the multiple VCGs and subgroups found among F.o.r.l . in western Europe demonstrate a high level of genetic diversity in this pathogen.  相似文献   

10.
Nitrate-nonutilizing (nit) mutants were used to determine vegetative compatibility among 34 isolates of Verticillium dahliae from cotton, potato, olive, eggplant, chrysanthemum and tomato from 12 sites in Israel. Based on the formation of complementary heterokaryons, 33 isolates were assigned to two vegetative- compatibility groups (VCGs): one VCG contained 15 isolates from cotton, eggplant, chrysanthemum and olive; and the other VCG contained 18 isolates from potato, olive and cotton. The status of an additional isolate from tomato, which was compatible with both VCGs, remained unclear. In a limited pathogenicity test with 10 isolates, two (from tomato and eggplant) were pathogenic on tomato, eggplant and cotton; most isolates from cotton were pathogenic on cotton and eggplant only; and one from cotton was non-pathogenic. Fewer isolates were pathogenic on tomato than on cotton or eggplant. The diversity of vegetative compatibility found in our V. dahliae collection is comparable to that found in studies of American populations.  相似文献   

11.
Forty-three isolates ofVerticillium lecanii from insects, phytopathogenic fungi and other substrates were tested for vegetative compatibility by observing heterokaryon formation among complementary nitrate-nonutilizing (nit) mutants.nit mutants were isolated from 42/43 strains examined. Twenty-one isolates were self-incompatible, and the remaining 21 isolates were divided into 14 vegetative compatibility groups (VCGs): ten containing only a single strain each, and the remaining four containing two to four isolates each. Members of isolates in each of these VCGs all shared the same IGS haplotype. Further, the isolates within a VCG were correlated with one another in part by fragment patterns of mt-LrDNA, -SrDNA, Bt-2 and H4 region, by PCR-RFLP and -SSCP, but not by dsRNA. Two isolates belonging to VL-J2 have high virulence to aphids, whereas strains from VL-J1 lack this character. These findings indicate that two VCGs (VL-J1 and -J2) may originate from two distinct clonal lineages. Alternatively, high VCG diversity and HSI frequency ofV. lecanii might be associated with an array of distinct lineages. These data not only suggest relationships among DNA polymorphisms, virulence, and VCG, but also demonstrate genetic heterogeneity ofV. lecanii. http://www.phytoparasitica.org posting Sept. 30, 2003.  相似文献   

12.
Isolates of Verticillium dahliae were collected from affected trees (Acer spp., Tilia spp. and Robinia spp.) and soils in Belgian ornamental nurseries. Nitrate non-utilizing mutants were produced and vegetative compatibility groups (VCGs) were classified based on complementation tests with reference tester strains. Of the 30 isolates analysed, 12 were classified as VCG2B and 18 as VCG4B following the American classification. In order to distinguish VCG2B from VCG4B, specific polymerase chain reaction primers were designed based on the sequence of a VCG2B-associated Direct Amplification of Minisatellite-region DNA (DAMD) band generated with the core sequence of the phage M13 minisatellite DNA. Using this test, amplification products were generated for all the VCG2B isolates characterized in this study. In contrast, no signal was seen on ethidium–bromide agarose gel for VCG4B isolates. Pathogenicity tests were carried out in a glasshouse on maple-rooted cuttings inoculated with conidial suspensions of V. dahliae belonging to both groups (VCG2B/VCG4B). Some strains proved to be highly aggressive, while others did not. However, these different behaviours were not correlated with the VCGs.  相似文献   

13.
Since 2006, verticillium wilt of olive induced by Verticillium dahliae has caused considerable economic losses in olive orchards in Tunisia. The genetic structure of V. dahliae isolates collected from different olive growing regions was investigated using virulence tests, vegetative compatibility grouping (VCG) and amplified fragment length polymorphism (AFLP) analyses. In total, 42 isolates of V. dahliae from diseased olive trees were tested. Cluster analysis and principal coordinate analysis revealed that geographic origin was the main factor determining the genetic structure of V. dahliae populations and both methods indicated a genetic separation between the central and coastal isolates. Isolates were divided into two major groups: the AFLP‐I group included all isolates from Sidi Bouzid, Kairouan, Kasserine and Sfax (centre of the country) and the AFLP‐II group included isolates from Monastir, Zaghouane, Sousse, Mahdia (coastal region), and two isolates from Sfax. Analysis of the molecular variance (amova ) indicated a significant level of genetic differentiation among (76%) and within (23%) the two populations. Analyses of both the defoliating (D) and non‐defoliating (ND) pathotypes and VCG markers indicated that most of the isolates belong to VCG 2A and 4B/ND pathotype. The disease severity was highly variable among the isolates tested (< 0·05) with no evidence of association between aggressiveness and geographical origin of the isolates. Overall, results of this study revealed a clear association between the genetic diversity of the isolates and their geographic origin, but not between genetic diversity and virulence patterns.  相似文献   

14.
Haploid and amphihaploid Verticillium dahliae isolates were studied using PCR-based molecular markers which: (i) discriminate the defoliating and nondefoliating pathotypes (two primer pairs INTD2f/r and INTND2f/r), and (ii) are species-specific (primer pair 19/22). The results were compared with some known biological and other molecular properties of the isolates. Five discrete sequences of the 19/22 amplicon were found. Sequence 4 was associated with both defoliating isolates from Spain and nondefoliating isolates from Spain and USA; these pathotypes were separated by the primer pairs INTD2f/r and INTND2f/r, but the data showed that the primer espdef01 (derived from the 19/22 amplicon) cannot be used for this purpose. Amplicon sizes and sequences with primers 19/22 divided amphihaploid isolates from crucifers (thought to be interspecific hybrids) into those corresponding to the previously reported α and β groups. The β-group isolates had either sequence 4 or 5 (these two differing by a single base). The distinct amplicon sequence 3 given by the α-group isolates demonstrated that the V. dahliae -like 'parent' of this group was molecularly unlike any haploid isolate yet studied. The overall results are discussed in relation to phytosanitary considerations and the probability of defoliating or crucifer pathotypes arising de novo within Europe, either by selection or by interspecific hybridizations.  相似文献   

15.
北方棉区棉花黄萎病菌RAPD分析   总被引:13,自引:0,他引:13  
以14个黄萎病菌代表菌系为对照,对来自我国北方棉区的34个棉花黄萎病菌菌系进行RAPD分析。选用对所有供试菌系都有扩增条带的14个引物,取其结果中稳定性和多态性均好的65条谱带作类平均法系统聚类分析,建立树状图。将上述48个菌系分为4大类,结果表明北方棉区河北、河南、山东的部分棉田存在黄萎病菌落叶型菌系的危害,而且85.7%的落叶型菌系与对照的美国落叶型菌系T9、V44的亲缘关系比与对照的江苏落叶型菌系V、V991更接近。  相似文献   

16.
Chen Y  Wang JX  Zhou MG  Chen CJ  Yuan SK 《Phytopathology》2007,97(12):1584-1589
ABSTRACT Monoconidial isolates of 33 carbendazim-sensitive isolates and 31 carbendazim-resistant isolates of Fusarium graminearum were selected from three regions of China for vegetative compatibility group (VCG) analysis. A total of 213 and 224 nit mutants were recovered from the 33 sensitive and the 31 resistant isolates, respectively. Of all the nit mutants, the frequency of the different phenotypes was 44.6, 46.5, 5.7, and 3.2% for nit1, nit3, nitM, and nitA, respectively. VCG analysis identified 30 different VCGs among the 33 sensitive- and the 31 carbendazim-resistant isolates, with VCG diversity 0.91 and 0.97, respectively. Both, a carbendazim-sensitive and a -resistant isolate from the same field belonged to the same VCG. In all then, a total of 59 VCGs were identified among the 64 isolates with an overall VCG diversity 0.92. Direct hyphal fusion was observed in six pairs of vegetatively compatible complements, which is evidence of heterokaryon formation. It was hypothesized that carbendazim resistance could not be transferred by hyphal fusion or there is a small chance to be transferred between two compatible isolates. Three stable sexual recombinants of F. graminearum were randomly chosen from each of the three genetic crosses to study their biological properties. There were no significant differences in mycelial linear growth and pathogenicity between recombinants and their parents, but they differ in sporulation ability and capacity to produce perithecia. We concluded that sexual recombination presumably played a role in the development of carbendazim resistance under field conditions.  相似文献   

17.
One hundred and sixteen isolates of Fusarium oxysporum f. sp. lactucae obtained from 85 fields in three crisphead lettuce-producing areas in Nagano Prefecture, Japan were typed for races using differential cultivars Patriot, Banchu Red Fire and Costa Rica No. 4. They were also grouped into vegetative compatibility groups (VCGs) using complementation tests with nitrate non-utilizing (nit) mutants. Two California strains reported as F. oxysporum f. sp. lactucum, a type culture of F. oxysporum f. sp. lactucae, and 28 avirulent isolates of F. oxysporum obtained from crisphead lettuce were included for comparison. Among Nagano isolates, 66 isolates were identified as race 1, and 50 as race 2. Race 1 strains derived from Shiojiri and Komoro cities and race 2 from Kawakami village and Komoro city. All isolates of race 2 were biotin auxotrophs, and the race could be distinguished based on its requirement for biotin on minimal nitrate agar medium (MM). Pathogenic isolates were classified into two VCGs and three heterokaryon self-incompatible isolates. Strong correlations were found between race and VCG. All the race 1 strains were assigned to VCG 1 except self-incompatible isolates, and all the race 2 strains to VCG 2. The 28 avirulent isolates of F. oxysporum were incompatible with VCG 1 and VCG 2. California strains was vegetatively compatible with VCG 1, and they were assigned to race 1. Based on vegetative compatibility, these two races of F. oxysporum f. sp. lactucae may be genetically distinct, and F. oxysporum f. sp. lactucae race 1 is identical to F. oxysporum f. sp. lactucum. Received 7 May 2002/ Accepted in revised form 6 September 2002  相似文献   

18.
Black dot, caused by Colletotrichum coccodes, is a common disease of potato in Turkey, affecting tuber quality and yield. The objectives of the current study were to characterize vegetative compatibility groups (VCGs) of C. coccodes isolates from three regions in Turkey, and to assess the correlation between VCGs and aggressiveness of isolates on potato. A total of 147 C. coccodes isolates were recovered from plants showing typical black dot symptoms on stolons, roots and stems. The frequency of nitrate non‐utilizing (nit) nit1/nit3 and NitM phenotypes were 79% and 21%, respectively. Complementation between nit mutants of the isolates and eight European/Israeli EU/I‐VCG tester isolates was used to characterize the VCGs. Amongst the tested isolates, 33.3% were assigned to EU/I‐VCG6, 21.8% to EU/I‐VCG8, 15.7% to EU/I‐VCG4. EU/I‐VCG1, EU/I‐VCG3, EU/I‐VCG5 and EU/I‐VCG7 were classified at 1.4%, 3.4%, 4.8% and 5.4%, frequency, respectively. No isolate was assigned to EU/I‐VCG2 group, while 21 isolates (14.3%) were not assigned to any of the EU/I‐VCGs. The pathogenicity tests indicated significant differences in aggressiveness of the isolates with respect to sclerotia density on potato tissues. The highest densities of sclerotia on roots and crown were obtained with EU/I‐VCG6 isolates and the lowest with EU/I‐VCG1, EU/I‐VCG3 and EU/I‐VCG5 isolates. The results demonstrate that there is significant VCG diversity among C. coccodes isolates from potato plants in Turkey.  相似文献   

19.
A total of 101Verticillium dahliae isolates were recovered from cotton plants at 57 sites in the Aegean region of Turkey between 2003 and 2004. Isolates were tested for vegetative compatibility by observing heterokaryon formation among complementary nitrate-nonutilizing (nit) mutants. Forty-six isolates were assigned to VCG 1, 12 to VCG 2A, 33 to VCG 2B and four to VCG 4B. The remaining six isolates could not be tested for vegetative compatibility because of their inability to yieldnit mutants. All isolates recovered were tested for pathogenicity on cotton cultivars Acala SJ-1 and Deltapine 15-21 by the stem-injection method. The isolates of VCG 2 and 4B, irrespective of their origin, induced weak to severe symptoms on cotton and were similar to the previously described cotton non-defoliating pathotype. In contrast, all cotton isolates of VCG1 caused severe foliar symptoms, stunting, defoliation and often death. This is the first report on VCG 1 ofV. dahliae in Turkey. http://www.phytoparasitica.org posting May 4, 2007.  相似文献   

20.
Gibberella zeae (anamorph Fusarium graminearum) is the main pathogen causing Fusarium head blight of wheat in Argentina. The objective of this study was to determine the vegetative compatibility groups (VCGs) and mycotoxin production (deoxynivalenol, nivalenol and 3-acetyl deoxynivalenol) by F. graminearum populations isolated from wheat in Argentina. VCGs were determined among 70 strains of F. graminearum isolated from three localities in Argentina, using nitrate non-utilizing (nit) mutants. Out of 367 nit mutants generated, 41% utilized both nitrite and hypoxanthine (nit1), 45% utilized hypoxanthine but not nitrite (nit3), 9% utilized nitrite but not hypoxanthine (NitM) and 5% utilized all the nitrogen sources (crn). The complementations were done by pairing the mutants on nitrate medium. Fifty-five different VCGs were identified and the overall VCG diversity (number of VCGs/number of isolates) averaged over the three locations was 0.78. Forty-eight strains were incompatible with all others, thus each of these strains constituted a unique VCG. Twenty-two strains were compatible with other isolates and were grouped in seven multimembers VCGs. Considering each population separately, the VCG diversity was 0.84, 0.81 and 1.0 for San Antonio de Areco, Alberti and Marcos Juarez, respectively. Toxin analysis revealed that of the 70 strains of F. graminearum tested, only 90% produced deoxynivalenol, 10% were able to produce deoxynivalenol and very low amounts of 3-acetyldeoxynivalenol. No isolate produced nivalenol. The results indicate a high degree of VCG diversity in the F. graminearum populations from wheat in Argentina. This diversity should be considered when screening wheat germplasm for Fusarium head blight resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号