首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine the forage:concentrate ratio that would provide the greatest duodenal flow of unsaturated fatty acids in ewes supplemented with soybean oil and to determine how diets differing in forage content affect flow of conjugated linoleic acid (CLA) and trans-vaccenic acid (18:1(trans-11)). Five mature ewes (66.5 +/- 12.8 kg) fitted with ruminal and duodenal cannulas were used in a 5 x 5 Latin square experiment. Diets were isonitrogenous and included bromegrass hay, cracked corn, corn gluten meal, urea, and limestone. Dietary fat was adjusted to 6% with soybean oil. Five ratios of forage:concentrate (18.4:81.6, 32.2:67.8, 45.8:54.2, 59.4:40.6, and 72.9:27.1) were fed at 1.3% of BW daily in equal allotments at 0630 and 1830. After 14 d, Cr2O3 (2.5 g) was dosed at each feeding for 7 d and ruminal, duodenal, and fecal collections were taken for the next 3 d. Duodenal flow of 18:0 increased linearly (P < 0.01) with dietary forage. Duodenal flow of 18:1(cis-9) and 18:2(cis-9,12) decreased (P < 0.001) but duodenal flow of 18:3(cis-9,12,15) increased (P < 0.01) with increased dietary forage. Biohydrogenation of dietary unsaturated fatty acids increased (P < 0.001) as dietary forage increased, which was concomitant with increased ruminal pH. Duodenal flow of 18:2(cis-9,trans-11) increased linearly (P < 0.01) with increased dietary forage but increased abruptly when forage was fed at 45.8%. Duodenal flow of the trans-10, cis-12 and cis-10, cis-12 CLA isomers decreased as dietary forage increased, but flow tended to increase on the highest-forage diet, resulting in both linear (P < 0.01) and quadratic (P < 0.01) effects. Duodenal flow of 18:1(trans-11) decreased from 8.28 g/d on the 18.4% forage diet to 5.47 g/d on the 59.4% forage diet then increased to 7.29 g/d on the highest-forage diet (quadratic, P < 0.1). Duodenal flow of 18:1(trans-11) was 27- to 69-fold greater than flow of CLA. We conclude that when ewes were fed a 6% crude fat diet duodenal flows of dietary fatty acids changed incrementally as dietary forage was increased, whereas changes in flows of CLA isomers seemed to be more abrupt. Biohydrogenation changes were gradual with diet, suggesting a gradual shift in ruminal microbial populations with increasing forage. Finally, the highest-concentrate diet supported the greatest duodenal flows of dietary unsaturated fatty acids, as well as the highest flow of 18:1(trans-11).  相似文献   

2.
Three Angus steers (410 kg) cannulated in the proximal duodenum were used in a replicated 3 x 3 Latin square to evaluate the effects of dietary lipid level and oil source on ruminal biohydrogenation and conjugated linoleic acid (CLA) outflow. Dietary treatments included: 1) typical corn (TC; 79.2% typical corn), 2) high-oil corn (HOC; 79.2% high-oil corn), and 3) the TC diet with corn oil added to supply an amount of lipid equal to the HOC diet (OIL; 76.9% TC + 2.4% corn oil). Duodenal samples were collected for 4 d following 10-d diet adaptation periods. Data were analyzed with animal, square, period, and treatment in the model and planned, nonorthogonal contrasts were used to test the effects of dietary lipid content (TC vs HOC and OIL) and oil source (HOC vs OIL) on ruminal biohydrogenation. Intake and duodenal flow of total long-chain fatty acids were increased (P < 0.05) by over 63% for diets containing more lipid regardless of oil source. Apparent ruminal dry matter and long chain fatty acid digestibilities were not altered (P > 0.05) by dietary lipid level or oil source. Ruminal biohydrogenation of total and individual 18-carbon unsaturated fatty acids was greater (P < 0.05) for diets with higher lipid content. Biohydrogenation of oleic acid was greater (P < 0.05) for HOC than OIL, but biohydrogenation of linoleic acid was lower (P < 0.05) for HOC than OIL. Duodenal flows of palmitic, stearic, oleic, linoleic, and arachidic acids were more than 30% greater (P < 0.05) for diets containing more lipid. Flow of all trans-octadecenoic acids was greater (P < 0.05) for diets containing more lipid. Corn oil addition increased (P < 0.05) the flow of trans-10 octadecenoic acid and the trans-10, cis-12 isomer of CLA by threefold compared to feeding high-oil corn. Feeding high-oil corn or adding corn oil to typical corn rations increased intake, biohydrogenation, and duodenal flow of unsaturated long-chain fatty acids. Compared with high-oil corn diets, addition of corn oil increased duodenal flow of trans-10, trans-12 and cis-12 isomers of octadecenoic acid and the trans-10, cis-12 isomer of CLA. The amount of cis-9, trans-11 isomer of conjugated linoleic acid flowing to the duodenum was less than 260 mg/d, a value over 20 times lower than flow of trans-11 vaccenic acid indicating the importance of tissue desaturation for enhanced conjugated linoleic acid content of beef.  相似文献   

3.
Eighteen steers were used to evaluate the effect of supplemental corn oil level to steers grazing endophyte-free tall fescue on fatty acid composition of LM, stearoyl CoA desaturase (SCD) activity and expression as well as cellularity in s.c. adipose. Corn oil was supplemented (g/kg of BW) at 0 (none), 0.75 (medium), and 1.5 (high). Cottonseed hulls were used as a carrier for the corn oil and were supplemented according to pasture availability (0.7 to 1% of BW). Steers were finished on a rotationally grazed, tall fescue pasture for 116 d. Fatty acid composition of LM, s.c. adipose, and diet was determined by GLC. Total linoleic acid intake increased linearly (P < 0.01) with corn oil supplementation (90.7, 265.1, and 406.7 g in none, medium, and high, respectively). Oil supplementation linearly reduced (P < 0.05) myristic, palmitic, and linolenic acid percentage in LM and s.c. adipose. Vaccenic acid (C18:1 t11; VA) percentage was 46 and 32% greater (linear, P = 0.02; quadratic, P = 0.01) for medium and high, respectively, than none, regardless of tissue. Effect of oil supplementation on CLA cis-9, trans-11 was affected by type of adipose tissue (P < 0.01). In the LM, CLA cis-9, trans-11 isomer was 25% greater for medium than for none and intermediate for high, whereas CLA cis-9, trans-11 CLA isomer was 48 and 33% greater in s.c. adipose tissue for medium and high than for none, respectively. Corn oil linearly increased (P 0.05) the percentage of total SFA, MUFA, or PUFA but linearly increased (P = 0.03) n-6:n-3 ratio from 2.4 to 2.9 in none and high, respectively. Among tissues, total SFA and MUFA were greater in s.c. adipose than LM, whereas total PUFA, n-6, and n-3 fatty acids and the n-6:n-3 ratio were lower. Trans-10 octadecenoic acid, VA, and CLA trans-10, cis-12 were greater (P < 0.01) in s.c. adipose than in LM. Oil supplementation did not alter (P > 0.05) stearoyl CoA desaturase activity or mRNA expression. Corn oil supplementation to grazing steers reduced the percentages of highly atherogenic fatty acids (myristic and palmitic acids) and increased the percentages of antiatherogenic and anticarcinogenic fatty acids (VA and cis-9, trans-11 CLA).  相似文献   

4.
In this experiment sunflower oil, soybean oil and fish oil were incubated in rumen-fistulated adult ewes (n = 5) to study conjugated linoleic acid (CLA) production in the rumen. The individual oils were incubated in nylon bags in the rumen on perlite carrier (40% oil, 60% carrier) over a period of 2, 4, 6, 8, 10 and 12 h for all treatments. During the incubation of each oil primarily the formation of the cis-9, trans-11 isomer of CLA could be observed. Both sunflower and soybean oils showed similar changes in the rumen. After the incubation of these two vegetable oils the proportion of linoleic acid decreased significantly as the duration of incubation increased in the rumen. These changes were accompanied by a significant increase in the amount of cis-9, trans-11 CLA. However, in the case of sunflower oil the rate of formation of the cis-9, trans-11 CLA isomer was significantly higher after the different incubation times as compared to soybean oil. Much lower amounts of CLA were formed when fish oil was incubated in the rumen. The level of cis-9, trans-11 isomer produced during these treatments was 10% less than the amount obtained with the other two oils of vegetable origin. Besides the cis-9, trans-11 isomer, trans-10, cis-12 CLA could also be detected during the incubation of the different oils in the rumen. However, the level of this isomer was low and did not show consistent differences among the treatments. The results of this experiment indicate that the fatty acid composition of the oils and the duration of incubation collectively determine the amount of CLA produced in the first compartment of the forestomach of ruminants.  相似文献   

5.
Thirty-six Angus x Hereford heifers (365 +/- 60 kg) were used to determine the effects of supplemental dietary lipid sources on fatty acid composition of i.m., perianal (p.a.), and s.c. lipid depots. Lipid was supplied to diets as either corn oil or a rumen-protected conjugated linoleic acid (CLA) salt for two specific treatment periods of either the final 32 or 60 d on feed. Following an initial 56-d feeding period, heifers were fed one of three dietary treatments (DM basis): 1) basal diet containing 88% concentrate and 12% grass hay (CON), 2) basal diet plus 4% corn oil (OIL), or 3) basal diet plus 2% rumen-protected CLA salt (RPCLA) containing 31% CLA. The trans-10, cis-12 CLA concentration was greatest (P < 0.05) for heifers fed RPCLA and OIL diets and least (P < 0.05) for CON, regardless of time on dietary treatment. Heifers fed supplemental RPCLA had greater (P < 0.05) total CLA content than either CON- or OIL-fed heifers. Adipose tissue concentration of trans-11 vaccenic acid (TVA) was less (P < 0.05) for CON than OIL or RPCLA, which did not differ (P > 0.05). Percentages of C18:1 trans-10 were least (P < 0.05) in i.m. lipid compared with p.a. and s.c., which did not differ (P > 0.05). Following 60 d of lipid supplementation, heifers fed OIL and RPCLA had lower (P < 0.05) concentrations of oleic acid and total monounsaturated fatty acids (MUFA) compared with CON. The ratio of cis-9, trans-11 CLA:TVA was higher (P < 0.05) for heifers fed 60 vs. 32 d, but did not differ (P > 0.05) between adipose depots. Feeding OIL increased (P < 0.05) adipose concentration of C18:2 fatty acid, whereas feeding RPCLA increased (P < 0.05) total CLA isomers by 22%. Intramuscular lipid contained the lowest (P < 0.05) percentage of cis-9, trans-11 CLA, total CLA, C18:1 cis-9, C18:1 trans-10, and TVA. Total CLA and cis-9, trans-11 CLA isomers were increased (P < 0.05) in p.a. and s.c. adipose depots, whereas i.m. adipose tissue contained increased (P < 0.05) amounts of total PUFA. Results from this study indicate that short-term lipid supplementation to feedlot cattle can increase adipose tissue CLA concentrations, but only marginally (8.3 to 17.5%). Moreover, observed decreases in oleic acid and total MUFA concentrations of adipose tissues from heifers fed rumen-protected CLA or corn oil suggest that lipid supplementation may decrease delta9 desaturase activity in adipose tissues, which in turn would lower the conversion of TVA to cis-9, trans-11 CLA isomer.  相似文献   

6.
The effects of dietary algal supplementation, a source of docosahexaenoic acid, on the fatty acid profile of rumen lipids in cattle were evaluated, with special emphasis on CLA and trans fatty acids produced by rumen microbes. A diet based on corn silage was fed with supplements containing the following: 1) no algal meal and fed at 2.1 kg of DM/d (control), 2) algal meal and fed at 1.1 kg of DM/d (low algal meal), 3) algal meal and fed at 2.1 kg of DM/d (medium algal meal), and 4) algal meal and fed at 4.2 kg of DM/d (high algal meal). A modified lipid extraction procedure was developed to analyze the lipid changes in rumen fluid. The percentage of stearic acid (18:0) in rumen fluid was decreased by algal meal supplementation (P < 0.001) compared with control and was linearly dependent on the level of algal meal supplementation (P = 0.005). Total trans-18:1 in rumen fluid of cattle fed the control diet was 19% of total fatty acids. Addition of algal meal increased (P < 0.001) total trans-18:1 up to 43%, mostly due to 18:1 trans-10 that increased (P = 0.002) to 29.5% of total rumen fatty acids. This increase in 18:1 trans-10 seems to suggest a change in the rumen microbial population. Vaccenic acid (18:1 trans-11) increased quadratically (P = 0.005) with increasing level of algal meal supplementation in the diets. The total CLA content was low in the control (<0.9%) and increased with dietary algal meal addition, although not significantly; the greatest level was 1.5% with the medium algal meal diet. The increase of rumenic acid (cis-9, trans-11 CLA) was quadratic (P = 0.05) with algal meal supplementation, whereas trans-10, cis-12 CLA increased linearly with increased level of algal meal from 0.08 to 0.13% (P = 0.03). The ratio of trans-11 (cis-9, trans-11 CLA + 18:1 trans-11) to trans-10 (trans-10, cis-12 CLA + 18:1 trans-10) decreased from 2.45 to 0.77, 0.87, and 0.21 for the control, low algal meal, medium algal meal, and high algal meal diets, respectively. The content of docosahexaenoic acid in rumen fluid increased (P = 0.002) from 0.3 to 1.4% of total fatty acids with increasing level of algal meal supplementation in the diets. Our results suggest that algal meal inhibits the reduction of trans-18:1 to 18:0, giving rise to the high trans-18:1 content. In conclusion, algal meal could be used to increase the concentration in rumen contents of trans-18:1 isomers that serve as precursors for CLA biosynthesis in the tissues of ruminants.  相似文献   

7.
Two experiments were conducted to examine the changes in the fatty acid (FA) composition of mixed ruminal microbes (MRM) from sheep fed various levels of dietary forage and soybean oil (SBO). In Experiment 1, diets included five ratios of forage to concentrate. Increased dietary forage did not change MRM concentrations of 18:1(trans-11) and 18:2 (P>0.10), but increased 18:3 (P<0.01) and cis-9, trans-11 conjugated linoleic acid (CLA) (P<0.01). In Experiment 2, SBO was added to the diets at 0%, 3.2%, 6.3%, or 9.4% of dietary DM. Increasing dietary SBO resulted in linear increases (P<0.01) in 18:1(trans-11)and 18:1(cis-9), but linear decreases (P<0.01) in 18:2 of MRM. It was concluded that FA composition of MRM was affected by diet. Additionally, MRM of sheep fed the diet containing 18.4% forage and 9.4% SBO contained the greatest individual and total FA concentrations.  相似文献   

8.
A steer finishing trial was performed to determine the effect of short-term dietary regimens on conjugated linoleic acid (CLA) content of muscle tissues. The experimental design was an incomplete 3 x 2 factorial, with three levels of soybean oil (SBO; 0, 4, and 8% of diet DM) and two levels of forage (20 vs. 40% of diet DM). Forty Angus x Hereford steers averaging 504 +/- 29.0 kg were allotted randomly to one of four treatments for the last 6 wk of the finishing period. Treatments were: 80:20 concentrate:forage control diet (C); 80:20 concentrate:forage + 4% SBO (C4); 60:40 concentrate:forage + 4% SBO (F4); and 60:40 concentrate:forage + 8% SBO (F8). After 42 d on the experimental diets, steers were sacrificed and samples were collected from the chuck, loin, and round muscle groups. Fatty acid (FA; mg/100 mg of FA) composition was determined by gas-liquid chromatography. Data were statistically analyzed with mixed models procedures. The performance and carcass quality model included the effects of SBO and forage. The model for FA composition included the effects of SBO, forage, muscle group, and interactions. Orthogonal contrasts were used to determine linear effects of SBO. There were no differences in growth performance among treatments (P > 0.05). Increasing dietary SBO linearly decreased dressing percent (P = 0.04), and tended to linearly decrease marbling score (P = 0.12) and quality grade (P = 0.08). The only CLA isomer detected in tissue samples was cis-9,trans-11. Addition of SBO to diets linearly increased linoleic acid (18:2n-6; P = 0.04) and tended to linearly increase linolenic acid (18:3n-3; P = 0.10) in muscle tissues. The CLA in lean tissues was decreased (P = 0.005) with SBO-containing diets. These findings suggest that increased PUFA may limit ruminal production of CLA and trans-vaccenic acid (VA) and/or may depress stearoyl-CoA desaturase expression or activity in lean tissues, which in turn limits CLA formation and accretion in tissues. Increasing dietary forage tended to increase 18:0, 18:2n-6, CLA, and 18:3n-3 (P < 0.15), suggesting that increased forage may mitigate toxic effects of PUFA on ruminal biohydrogenation, thereby increasing the pool of CLA and VA available for CLA formation and accretion in tissues. Short-term feeding of elevated SBO and forage levels can alter FA profiles in muscle tissues.  相似文献   

9.
Because of the potential benefits to human health, there is interest in increasing 18:3n-3, 20:5n-3, 22:6n-6, and cis-9,trans-11 CLA in ruminant foods. Four Aberdeen Angus steers (406 ± 8.2 kg of BW) fitted with ruminal and duodenal cannulas were used in a 4 × 4 Latin square experiment with 21-d periods to examine the potential of fish oil (FO) and linseed oil (LO) in the diet to increase ruminal outflow of trans-11 18:1 and total n-3 PUFA in growing cattle. Treatments consisted of a control diet (60:40; forage:concentrate ratio, on a DM basis, respectively) based on maize silage, or the same basal ration containing 30 g/kg of DM of FO, LO, or a mixture (1:1, wt/wt) of FO and LO (LFO). Diets were offered as total mixed rations and fed at a rate of 85 g of DM/(kg of BW(0.75)/d). Oils had no effect (P = 0.52) on DMI. Linseed oil had no effect (P > 0.05) on ruminal pH or VFA concentrations, whereas FO shifted rumen fermentation toward propionate at the expense of acetate. Compared with the control, LO increased (P < 0.05) 18:0, cis 18:1 (Δ9, 12-15), trans 18:1 (Δ4-9, 11-16), trans 18:2, geometric isomers of 9,11, 11,13, and 13,15 CLA, trans-8,cis-10 CLA, trans-10,trans-12 CLA, trans-12,trans-14 CLA, and 18:3n-3 flow at the duodenum. Inclusion of FO in the diet resulted in greater (P < 0.05) flows of cis-9 16:1, trans 16:1 (Δ6-13), cis 18:1 (Δ9, 11, and 13), trans 18:1 (Δ6-15), trans 18:2, 20:5n-3, 22:5n-3, and 22:6n-3, and decreased (P < 0.001) 18:0 at the duodenum relative to the control. For most fatty acids at the duodenum, responses to LFO were intermediate of FO and LO. However, LFO resulted in greater (P = 0.04) flows of total trans 18:1 than LO and increased (P < 0.01) trans-6 16:1 and trans-12 18:1 at the duodenum compared with FO or LO. Biohydrogenation of cis-9 18:1 and 18:2n-6 in the rumen was independent of treatment, but both FO and LO increased (P < 0.001) the extent of 18:3n-3 biohydrogenation compared with the control. Ruminal 18:3n-3 biohydrogenation was greater (P < 0.001) for LO and LFO than FO, whereas biohydrogenation of 20:5n-3 and 22:6n-3 in the rumen was marginally less (P = 0.05) for LFO than FO. In conclusion, LO and FO at 30 g/kg of DM altered the biohydrogenation of unsaturated fatty acids in the rumen, causing an increase in the flow of specific intermediates at the duodenum, but the potential of these oils fed alone or as a mixture to increase n-3 PUFA at the duodenum in cattle appears limited.  相似文献   

10.
Thirty-six Angus x Hereford heifers were used in a 3 x 2 factorial (3 dietary treatments; 2 supplementation times) to examine the effect of dietary lipid supplementation on lipid oxidation, lipid composition, and palatability of ribeye steaks and ground beef. Lipid was supplied in the diets as corn oil or a partially rumen-protected CLA salt for 2 specific treatment periods of the final 32 or 60 d on feed, corresponding to a total time on feed of 89 or 118 d. After an initial 56-d feeding period (basal diet), the heifers were fed 1 of 3 dietary treatments (DM basis): 1) a basal diet containing 88% concentrate and 12% grass hay (CON), 2) the basal diet plus 4% corn oil (OIL), or 3) the basal diet plus 2% partially rumen-protected CLA (RPCLA) containing 31% CLA. Heifers were randomly allotted to dietary treatments at the initiation of the study and fed individually. At 48 h postmortem, the right forequarter of each carcass was fabricated into retail cuts. Steaks (2.54-cm thick) were obtained from the posterior end of the ribeye roll (NAMP 112), and beef trim was ground for all subsequent analyses. Dietary treatment did not affect (P > 0.05) lipid oxidation in ground beef or ribeye steaks. Total trans-octadecenoate fat and trans-10 octadecenoic acid content in ribeye steaks increased (P < 0.05) with RPCLA compared with CON. Total CLA and the cis-9 trans-11 isomer of CLA contents in ribeye steaks were unchanged (P > 0.05) by lipid supplementation. In ground beef, RPCLA supplementation increased (P < 0.05) the amount of trans fat and trans-10 octadecenoic acid compared with CON or OIL; supplementation of RPCLA increased (P < 0.05) the amount of CLA cis-9 trans-11 isomer and total CLA. Lipid supplementation did not alter (P > 0.05) off-flavor ratings in ground beef or ribeye steaks. Supplementation of corn oil increased (P < 0.05) total PUFA content of ribeye steaks compared with CON and RPCLA. Dietary RPCLA supplementation increased the amount of trans fat per serving (85.5 g, broiled) by 110 and 88% in ribeye steak and ground beef, respectively, and CLA cis-9 trans-11 by 58% in ground beef compared with CON. Supplementing OIL or RPCLA resulted in minimal changes in lipid oxidation and sensory attributes of steaks and ground beef.  相似文献   

11.
Feeding sheep concentrate-based diets increases the oleic acid content of their tissues, whereas the cis-9, trans-11 conjugated linoleic acid (CLA) content is increased by feeding forage diets. Both these metabolic transformations could be attributable to increased activity of stearoyl-CoA desaturase (SCD). Therefore, the effect of forage or concentrate feeding regimens on the fatty acid composition of sheep tissues were investigated to determine whether any changes are related to an alteration of SCD mRNA levels. Twenty-four ewe lambs were randomly allotted to one of three dietary treatment groups: 1) dehydrated grass pellets, 2) concentrate diet fed to achieve a growth rate similar to that of the dehydrated grass pellets, and 3) the same concentrate diet approaching ad libitum intake. As expected, animals fed ad libitum concentrates grew at a greater (P = 0.001) rate (280 g/d) than those fed either of the other two diets (180 g/d), which were similar. In samples of liver and the three adipose tissue depots studied, the concentration of oleic acid from sheep fed either level of the concentrate diet was greater (P < 0.001) than from animals fed forage. This was associated with an increase (P < 0.05) in the ratio of SCD to acetyl-CoA carboxylase mRNA in adipose tissue and liver. Compared with concentrate-fed, the forage-fed lambs had increased (P < 0.05) levels of the cis-9, trans-11 isomer of CLA and C18:1, trans-11 in all their tissues, although the levels of SCD mRNA were lower. It therefore seems that the increased oleic acid content of sheep tissues in response to concentrate-rich diets is associated with an increase in SCD gene expression. By contrast, the increased concentration of CLA in animals fed forage-based diets is associated with an increase in substrate (C18:1 trans-11) availability.  相似文献   

12.
One hundred sixty-eight crossbred steers (317.1 +/- 1.0 kg) were used to evaluate the effects of supplemental fat in finishing diets on the fatty acid composition, including the 9,11 isomer of conjugated linoleic acid, of beef. Steers were allotted within three weight blocks to a randomized complete block design with a 3 x 2 + 1 factorial arrangement of dietary treatments. Main effects were level of yellow restaurant grease (RG; 0, 3, and 6%), and level of alfalfa hay (AH; 3.5 and 7%) with an added treatment containing 6% tallow (T) and 7% AH in barley-based diets containing 15% potato by-product and 7% supplement (all dietary levels are on a DM basis) fed for an average of 165 d. Fatty acids of the LM and s.c. fat from four randomly selected steers per pen were quantified using GC after methylation with sodium methoxide. Dietary treatment did not (P > 0.10) affect total fatty acid (FA) content of the LM (143 +/- 5.2 mg/g) or fat (958 +/- 7.9 mg/g). Myristic acid increased linearly (P < 0.01) with increasing RG from 3.1 to 3.7 +/- 0.1 g/100 g of FA in muscle. Stearic acid increased linearly (P < 0.05) as RG increased in the diet, from 11.4 to 12.9 +/- 0.4 g/100 g of FA in LM and from 9.9 to 12.2 +/- 0.3 g/100 g of FA in fat. Compared with T, steers fed 6% RG had more (P < 0.05) oleic acid in LM (42.7 vs. 40.3 +/- 0.5 g/100g FA) and in fat (43.0 vs. 40.9 +/- 0.5 g/100g FA). The cis-9, trans-11 conjugated linoleic acid (CLA) increased quadratically (P < 0.01) with increasing dietary RG in LM from 0.45 to 0.64 to 0.62 +/- 0.03 g/100 g of FA and increased in fat from 0.61 to 0.84 to 0.83 +/- 0.04 g/100 g of FA. Moreover, cis-9, trans-11 CLA was higher (P < 0.05) in fat from steers fed RG compared with T (0.81 vs. 0.69 +/- 0.04 g/100 g of FA), and tended to be higher (P = 0.07) in muscle (0.62 vs. 0.54 +/- 0.03 g/100 g of FA. Feeding yellow restaurant grease increased content of cis-9, trans-11 CLA in beef without an increase total FA content.  相似文献   

13.
Conjugated linoleic acid (CLA), a mixture of isomers of linoleic acid, has many beneficial effects, including decreased tumor growth in animal cancer models. The cis-9, trans-11 isomer of CLA (CLA9,11) can be formed in the rumen as an intermediate in biohydrogenation of linoleic acid. Recent data, however, indicate that tissue desaturation of trans-fatty acids is an important source of CLA9,11 in milk. Our objective was to determine whether supplementing a high-corn diet with soybean oil (SBO; a source of linoleic acid) would increase concentrations of CLA in ruminal contents and tissue lipids. Four ruminally cannulated steers were utilized in a Latin square design with 28-d periods. A control diet (80% cracked corn, 2.0% corn steep liquor, 8.0% ground corn cobs, and 10% supplement [soybean meal, ground shelled corn, minerals, and vitamins]) was supplemented with 2.5, 5.0, or 7.5% (DM basis) SBO. Supplemental SBO did not affect ruminal pH or concentrations of the major VFA. The proportion and amount (mg FA/g DM ruminal contents) of CLA9,11 were not increased by increasing dietary SBO. However, the proportion and amount of the trans-10, cis-12 CLA isomer (CLA10,12) in ruminal contents increased linearly (P < 0.006) as dietary SBO increased. Trans-18:1 isomers in ruminal contents increased linearly (P < 0.02) as dietary SBO increased. The proportion of CLA10,12 was correlated positively (P < 0.001) with proportions of trans-C 18:1 isomers in ruminal contents. Conversely, CLA9,11 was correlated negatively (P < 0.05) with the proportions of trans-18:1 in ruminal contents. The same high-corn diet, supplemented with 0 or 5% SBO, was fed to 20 Angus-Wagyu heifers for 102 d in a randomized complete block design to determine the effect of added SBO on tissue deposition of CLA. Supplemental SBO did not affect feed intake, gain:feed, or carcass quality. Tissue samples were obtained from the hindquarter, loin, forequarter, liver, large and small intestine, and subcutaneous, mesenteric, and perirenal adipose depots. The concentration of CLA9,11 was greatest in subcutaneous adipose tissue but was not affected in any tissue by SBO. Supplementing high-corn diets with SBO does not increase CLA9,11 concentrations in tissues of fattening heifers. Research is needed to identify regulatory factors for pathways of biohydrogenation that lead to increased concentrations of CLA10,12 in ruminal contents when high-oil, high-concentrate diets are fed.  相似文献   

14.
Forty Large White pigs were fed from 30 kg to 103 kg body mass on diets supplemented with 6% of pure high-oleic sunflower oil (HO) or HO plus increasing amounts of partially hydrogenated rape seed oil (HR; 1.85%, 3.70%, 5.55%), containing high levels of delta 6 to delta 11 C 18:1 trans fatty acid isomers. Increasing dietary C 18: trans fatty acids resulted in a linear increase in C 18:1 trans fatty acids and conjugated linoleic acid (cis-9, trans-11 CLA) in backfat (BF) as well as in neutral lipids (NL) and phospholipids (PL) of M. long. dorsi. Thus, the rate of bioconversion of trans vaccenic acid (TVA) into CLA and incorporation of C 18:1 trans and CLA into pig adipose tissue was not limited up to 25 g total C 18:1 trans fatty acids including 3.3 g of TVA per kg feed. BF was higher in C 18:1 trans fatty acids and CLA than M. long. dorsi NL and PL. In BF and NL the sum of saturated fatty acids (SFA) increased with increasing dietary amounts of HR, while in PL SFA were reduced. Thus, according to their physical properties, C 18:1 trans fatty acids partly replaced SFA in PL. Firmness of backfat was also significantly increased (P < 0.05) with increasing amounts of HR in feed.  相似文献   

15.
Two experiments were conducted to determine the effectiveness of a rumen-protected CLA (pCLA) supplement and the impact of feeding this pCLA on carcass characteristics and tissue fatty acid composition of lambs. In Exp. 1, a CLA-80 preparation (80% pure CLA; contained similar proportions of cis-9, trans-11, and trans-10, cis-12 CLA), protected against rumen degradation, was fed to sheep, and the proportion of CLA reaching the duodenum was determined. A 3 x 3 Latin square design was used with 3 diets (1.4 kg of concentrate-based control diet, the same control diet plus 22 g of CLA-80, or the same control diet plus 110 g of pCLA/d), 3 feeding periods, and 3 rumen and duodenally cannulated sheep (Mule x Charolais males, 10 mo of age, BW 55.3 +/- 1.8 kg). After 7 d of feeding, sheep were ruminally infused with chromium EDTA and Yb acetate for 7 d, after which samples of duodenal digesta were collected every 6 h for 48 h to determine the quantity of CLA reaching the small intestine each day. The amounts of CLA cis-9, trans-11 and trans-10, cis-12, and combined isomers, flowing through the duodenum each day were greater (P = 0.01) in sheep fed pCLA. Approximately 65% of the pCLA avoided rumen biohydrogenation, with the ratio of the 2 main isomers remaining similar. In Exp. 2, 36 Mule x Charolais ewe lambs (approximately 13-wk old, average initial BW 29.3 kg) were fed 3 levels of the pCLA or Megalac, which were fed to provide an equivalent energy content at each pCLA level. Lambs were randomly assigned to 1 of 7 treatment groups, which were fed for 10 wk to achieve a growth rate of 180 g/d. Treatments included the basal diet and the basal diet plus 25, 50, or 100 g of pCLA/kg of diet or the equivalent amount of Megalac. In liver (P < 0.001) and all adipose tissue depots studied, the proportions of both CLA isomers increased (P = 0.02) with the amount of pCLA fed but were not altered with increasing of Megalac. Although there was no effect of treatment on cis-9, trans-11 CLA content, accumulation (P < 0.001) in the LM with increasing of pCLA supplementation was observed for the trans-10, cis-12 isomer. Although tissues had been enriched with CLA, there was no evidence of a reduction in adipose tissue or an increase in muscle mass in these sheep. However, an effect of pCLA on tissue fatty acid composition was consistent with an inhibition of stearoyl-CoA desaturase.  相似文献   

16.
17.
Background: The positive influence of replacing dietary starch with sugar on milk fat production has been proposed to be partially attributed to the inhibition of the rumen trans-10 biohydrogenation pathway. However,whether and how sucrose inhibits the rumen trans-10 biohydrogenation pathway remains elusive.Results: A batch in vitro incubation system was used to evaluate effects of replacing cornstarch in a high-concentrate diet(forage to concentrate ratio = 40:60) with 0(control), 3, 6 and 9 % of sucrose on rumen fermentation pattern, fatty acid(FA) biohydrogenation pathways and bacterial populations relating to trans-11 to trans-10 biohydrogenation pathways. Replacing dietary cornstarch with sucrose did not alter rumen p H or concentrations of total volatile fatty acids(VFA) in comparison with the control but significantly influenced the profiles of individual VFA. The molar proportions of butyrate and valerate were linearly increased, while that of acetate was quadratically decreased and those of propionate, isobutyrate and isovalerate were linearly decreased with increasing concentrations of sucrose in the diet. Furthermore, replacing cornstarch with sucrose led to a linear decrease in C18:1 trans-10, linear increases in the proportions of C18:1 trans-11, C18:2n-6 and the ratio of trans-11 to trans-10, and linear decreases in biohydrogenation of C18:2n-6 and C18:3n-3. The abundance of Butyrivibrio fibrisolvens, a butyrate and CLA cis-9,trans-11 producer, was increased with the increasing inclusion of sucrose in the diet, while the population of Megasphaera elsdenii, a CLA trans-10, cis-12 producer, was significantly decreased by all levels of sucrose replacements.Conclusions: These results indicate that replacing starch in a high-concentrate diet with sucrose increased butyrate production and inhibited the rumen trans-10 biohydrogenation pathway, which was at least partially due to increased abundance of Butyrivibrio fibrisolvens and decreased abundance of Megasphaera elsdenii.  相似文献   

18.
The aim of the present study was to investigate the influence of feeding rumen-protected CLA during the early growing period on physical and chemical beef properties in young Simmental heifers. A total of 36 heifers (5 mo old; initial BW 185 ± 21 kg) were fed 250 g of different rumen-protected fats daily for 16 wk in 1 of 3 treatment groups: 250 g of a CLA-free control fat; 100 g of a CLA fat containing 2.4% of cis-9,trans-11 CLA and 2.1% of trans-10,cis-12 CLA and 150 g control fat; or 250 g of the CLA fat. Heifer growth performance variables as well as carcass weight, classification (conformation and fatness), and weights of organs and fat depots were not affected (P > 0.05) by CLA supplementation. Concentration of trans-10,cis-12 CLA in tissues (LM and subcutaneous fat) was dose-dependently increased (P < 0.01) by CLA supplementation, whereas that of cis-9,trans-11 CLA in these tissues did not differ (P > 0.05) between groups. The ratio of SFA to MUFA was increased (P < 0.01) in tissues of CLA-fed heifers compared with control heifers. Concentration of α-tocopherol in LM was greater (P = 0.01) in heifers of the 2 CLA groups than in control heifers. Other quality characteristics such as drip loss during storage, cooking loss, intramuscular fat content, and color variables in LM did not differ (P > 0.05) between groups. In conclusion, the present study demonstrates that feeding rumen-protected CLA during the early growing period changes tissue fatty acid composition but does not influence beef quality variables. Performance variables and carcass traits in young heifers, unlike in pigs and laboratory animals, are not influenced by CLA feeding.  相似文献   

19.
Xu CX  Oh YK  Lee HG  Kim TG  Li ZH  Yin JL  Jin YC  Jin H  Kim YJ  Kim KH  Yeo JM  Choi YJ 《Journal of animal science》2008,86(11):3033-3044
The present study was conducted to examine the effects of different plant oils or plant oil mixtures and high-temperature, microtime processing (HTMT) on the CLA content in Hanwoo steers. Experiment 1, consisting of 3 in vitro trials, was conducted to determine how the biohydrogenation of C18 fatty acids and CLA production were affected by fat sources (tallow, soybean oil, linseed oil, or mixtures of soybean oil and linseed oil) or HTMT treatment in the rumen fluid. The results showed that HTMT was capable of protecting unsaturated fatty acids from biohydrogenation by ruminal bacteria. The HTMT-treated diet containing 4% linseed oil (LU) and a supplement containing 2% linseed oil and 1% soybean oil treated with HTMT + 1% soybean oil (L(2)S(1)U+S(1)) produced an increased quantity of trans-11 C18:1 and cis-9, trans-11 CLA, and a reduced quantity of trans-10, cis-12 CLA. Based on these results, in vivo studies (Exp. 2) were conducted with LU and L(2)S(1)U+S(1). These 2 treatments increased the content of cis-9, trans-11 CLA in LM compared with the control diet. The content of trans-10, cis-12 CLA in subcutaneous fat was also increased in the L(2)S(1)U+S(1) treatment compared with other treatments. The subcutaneous fat thickness in the LU treatment was decreased compared with the L(2)S(1)U+S(1) treatment. The LU treatment significantly decreased fatty acid synthase expression but simultaneously increased leptin expression. In this report, we showed that diets containing LU and L(2)S(1)U+S(1) were capable of increasing CLA in the intramuscular fat of beef.  相似文献   

20.
Our objective was to determine effects of dietary high-oleate (Oleate; 76% 18:1) or high-linoleate (Linoleate; 78% 18:2) safflower seeds on fatty acids in muscle and adipose tissue of feedlot lambs. White-faced ewe lambs (n = 36) were fed a beet pulp, oat hay, and soybean meal basal diet (Control), blocked by BW, and allotted randomly to dietary treatments. Cracked safflower seeds were used in isocaloric and isonitrogenous replacement of beet pulp, oat hay, and soybean meal so that Oleate and Linoleate diets contained 5.0% additional fat. Fatty acids were determined in semitendinosus, longissimus dorsi (longissimus), and adipose tissue from the tail head (tailhead adipose tissue), adjacent to the 12th rib (s.c. adipose tissue), and kidney and pelvic fat (KPH adipose tissue) depots. Fatty acid data were analyzed within muscle and adipose tissue as a split-block design. Single degree of freedom orthogonal contrasts were used to compare treatment effects. Average daily gain, feed efficiency, and carcass characteristics did not differ (P = 0.15 to 0.96) across dietary treatments. Adipose tissue saturated fatty acids were greater (P = 0.04) for Controls but were not different (P = 0.36) in muscle. Trans-vaccenic acid (18:1(trans-11)) increased (P < 0.0001) with safflower supplementation and was greater (P < 0.0001) in Linoleate than in Oleate for both tissue types. Linoleate lamb had greater (P < 0.0001) PUFA than Oleate lamb in muscle and adipose tissue. Conjugated linoleic acids (CLA; cis-9, trans-11 and trans-10, cis-12) were greater (P < 0.0001) in muscle and adipose tissue of lambs fed safflower seeds. Lambs fed Linoleate had greater (P < 0.0001) CLA in adipose tissue and muscle than lambs fed Oleate. Saturated fatty acids were greater (P < 0.0001) in s.c. adipose tissue than in tailhead adipose tissue. Mono- and polyunsaturated fatty acids were greater (P < 0.0001) in tailhead adipose tissue than in s.c. adipose tissue. Weight percentages of 18:1(trans-11) ranked tailhead adipose tissue = KPH adipose tissue > s.c. adipose tissue and semitendinosus > longissimus, whereas CLA ranked tailhead adipose tissue > s.c. adipose tissue > KPH adipose tissue and semitendinosus > longissimus. Feeding mono- and polyunsaturated fatty acids increased tissue 18:1(trans-11) and CLA, which is a favorable change in regard to current human dietary guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号