首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
前期不同水分状况对土壤氧化亚氮排放的影响   总被引:2,自引:0,他引:2  
王连峰  蔡祖聪 《土壤学报》2009,46(5):802-808
田间采集的新鲜土壤样品分别在室温下风干(土样D)和淹水(土样S)保存110d后,将二者的含水量分别调至20%、40%、60%、80%、100%持水量(WHC,Water Holding Capacity),在25℃下培育138h,设置不通和通入10%(v/v)乙炔的处理。结果显示,在20%~80%WHC下培育时,土样S的氧化亚氮(N2O)排放量为土样D的2.48倍~6.36倍(p<0.01),而在100%WHC水分含量下培育时,土样S的N2O排放量仅为土样D的19%(p<0.01),通入乙炔不但未使土样D的N2O排放量增加,反而显著减少。通入乙炔的处理,培养结束后硝态氮的含量增加。随培育水分含量的升高,土样S和土样D的二氧化碳排放量增大。供试土样可能存在异养硝化作用。前期水分的差异显著影响土壤N2O排放量,故在田间测定土壤N2O排放量时,要考虑土壤前期水分的差异。  相似文献   

2.
中国农业氧化亚氮的排放和减缓对策   总被引:3,自引:0,他引:3  
  相似文献   

3.
影响氧化亚氮形成与排放的土壤因素   总被引:59,自引:0,他引:59  
土壤中N2O形成、散发与地球温室效应有密切关系。土壤中N2O是通过硝化和反硝化过程形成的。由于硝化和反硝化过程中均产生N2O,故凡影响这两个过程的因素都会对N2O的形成发生作用。土壤通气状况、土壤水分含量、土壤氮素状况与氮肥施用、土壤pH、土壤有机物含量与组成、土壤质地结构及耕作利用等土壤因素都会影响N2O的形成与排放。  相似文献   

4.
杨玲  聂三安  钟俊杰  盛浩  余展 《土壤通报》2023,31(6):1484-1492
茶园土壤是重要的N2O排放源,了解茶园土壤N2O排放因素,为减排措施提供一定的理论依据。基于全球田间原位监测和室内培养试验的茶园土壤文献数据进行荟萃分析(Meta analysis),量化茶园土壤N2O年排放量,分析主要影响因素。全球茶园土壤田间原位监测结果表明平均N2O-N年排放量为16.82 kg hm−2(95%置信区间(CI):12.99 ~ 21.27 kg hm−2),而室内培养试验结果表明N2O-N排放速度为0.04 mg kg−1 d−1(CI:0.02 ~ 0.07 mg kg−1 d−1)。茶园土壤N2O平均直接排放系数(EFd)为2.25%,高于IPCC的建议值(1%)。方差分解分析(VPA)发现施氮量对茶园土壤N2O排放的总解释量最大,贡献值为49.71%。施缓控释肥、生物炭和石灰材料分别可以减少茶园土壤35%、52%和55%的N2O排放。上述结果表明,茶园土壤N2O排放量大,施肥量是主控因子,通过改良施肥措施可有效减少N2O排放。  相似文献   

5.
水肥管理对稻田土壤甲烷和氧化亚氮排放的影响   总被引:9,自引:0,他引:9  
就稻田水肥管理以甲烷和氧化亚氮排放的影响研究进行了综述,文章分析表明,甲烷和氧化亚氮的排放条件存在明显的反位关系,即有利于甲烷排放的水分条件往往不利于氧化亚氮的排放,稻田温室气体的排放与水分管理的历史有明显的关系,不同的肥料施用对甲烷和氧化亚氮排放影响的机制不同。因此,要真正有效地控制温室气体的排放必须首先弄清甲烷和氧化亚氮在不同条件下的排放关系。  相似文献   

6.
盐碱地土壤:氧化亚氮和二氧化碳排放的潜在来源?   总被引:2,自引:1,他引:1  
Increasing salt-affected agricultural land due to low precipitation,high surface evaporation,irrigation with saline water,and poor cultural practices has triggered the interest to understand the influence of salt on nitrous oxide(N_2O) and carbon dioxide(CO_2)emissions from soil.Three soils with varying electrical conductivity of saturated paste extract(EC_e)(0.44-7.20 dS m~(-1)) and sodium adsorption ratio of saturated paste extract(SARe)(1.0-27.7),two saline-sodic soils(S2 and S3) and a non-saline,non-sodic soil(S1),were incubated at moisture levels of 40%,60%,and 80%water-filled pore space(WFPS) for 30 d,with or without nitrogen(N)fertilizer addition(urea at 525 μg g~(-1) soil).Evolving CO_2 and N2 O were estimated by analyzing the collected gas samples during the incubation period.Across all moisture and N levels,the cumulative N_2O emissions increased significantly by 39.8%and 42.4%in S2 and S3,respectively,compared to S1.The cumulative CO_2 emission from the three soils did not differ significantly as a result of the complex interactions of salinity and sodicity.Moisture had no significant effect on N_2O emissions,but cumulative CO_2 emissions increased significantly with an increase in moisture.Addition of N significantly increased cumulative N_2O and CO_2 emissions.These showed that saline-sodic soils can be a significant contributor of N_2O to the environment compared to non-saline,non-sodic soils.The application of N fertilizer,irrigation,and precipitation may potentially increase greenhouse gas(N2O and CO_2) releases from saline-sodic soils.  相似文献   

7.
氧化亚氮(N2O)是主要温室气体之一,土壤是N2O的重要排放源,其排放主要受N2O产生和还原的功能微生物影响.土壤团聚体是由原生颗粒(砂、粉、黏粒)、胶结物质和孔隙组成的土壤基本结构单元.土壤不同粒径团聚体之间因基质和孔隙差异形成特殊独立的微生境被视为N2O的生物化学反应器.在不同的微生境中,N2O产生和还原的功能微生...  相似文献   

8.
丛枝菌根真菌调控土壤氧化亚氮排放的机制   总被引:1,自引:1,他引:1  
氮素是陆地生态系统初级生产力的主要限制因子,自Haber-Bosch反应以来,氮肥的生产和施用极大地提高了粮食产量.然而过量施用氮肥导致氮肥利用率低,并造成了严重的环境污染,包括氮沉降、硝态氮淋洗以及N2O排放等.微生物直接参与土壤氮素循环,固氮微生物、氨氧化和反硝化微生物分别在土壤固氮、铵态氮转化和硝态氮转化过程中起...  相似文献   

9.
The forest ecosystem plays a pivotal role in contributing greenhouse gases to the atmosphere.In order to characterize the temporal pattern of nitrous oxide(N_2O) emissions and identify the key factors affecting N_2O emissions from a Masson pine forest in a hilly red-soil region in subtropical central China,we measured the N_2O emissions in Jinjing of Hunan Province using the static chambergas chromatographic method for 3 years(2010-2012) and analyzed the relationships between the N_2O fluxes and the environmental variables.Our results revealed that the N_2O fluxes over the 3 years varied from-36.0 to 296.7 μg N m~(-2) h~(-1),averaging 18.4±5.6 μg N m~(-2) h~(-1)(n=3).The average annual N_2O emissions were estimated to be 1.6±0.3 kg N ha~(-1) year~(-1).The N_2O fluxes exhibited clear intra-annual(seasonal) variations as they were higher in summers and lower in winters.Compared with other forest observations in the subtropics,N_2O emissions at our site were relatively high,possibly due to the high local dry/wet N deposition,and were mostly sensitive to variations in precipitation and soil ammonium N content.In this work,a multiple linear regression model was developed to determine the influence of environmental factors on N_2O emissions,in which a category predictor of "Season" was intentionally used to account for the seasonal variation of the N_2O fluxes.Such a model explained almost 40%of the total variation in daily N_2O emissions from the Masson pine forest soil studied(P0.001).  相似文献   

10.
氧化亚氮(N2O)是主要温室气体之一,土壤是N2O的重要排放源,其排放主要受N2O产生和还原的功能微生物影响。土壤团聚体是由原生颗粒(砂、粉、黏粒)、胶结物质和孔隙组成的土壤基本结构单元。土壤不同粒径团聚体之间因基质和孔隙差异形成特殊独立的微生境被视为N2O的生物化学反应器。在不同的微生境中,N2O产生和还原的功能微生物分布不同,因而土壤不同粒径团聚体N2O排放可能存在差异。目前在不同生态系统土壤全土N2O排放特征的报道较多,而对于不同粒径土壤团聚体N2O排放相对贡献尚不清楚、功能微生物分布还未知、N2O产生和还原热区尚未明确。本文综述了近年来国内外关于土壤团聚体对N2O产生和排放机制的研究,总结了土壤团聚体性状特征对N2O产生和还原的影响,阐述了不同粒径土壤团聚体对N2O排放影响的微生物学机制,进一步明确了今后需加强土壤团聚体N2O产生和还原的热区、环境因子阈值范围的确定、系列功能基因(酶)整体性的研究,以期为N2O模拟排放模型优化提供参考,为土壤N2O减排提供理论依据。  相似文献   

11.
Soil salinization may negatively affect microbial processes related to carbon dioxide(CO_2) and nitrous oxide(N_2O) emissions. A short-term laboratory incubation experiment was conducted to investigate the effects of soil electrical conductivity(EC) and moisture content on CO_2 and N_2O emissions from sulfate-based natural saline soils. Three separate 100-m long transects were established along the salinity gradient on a salt-affected agricultural field at Mooreton, North Dakota, USA. Surface soils were collected from four equally spaced sampling positions within each transect, at the depths of 0–15 and 15–30 cm. In the laboratory, artificial soil cores were formed combining soils from both the depths in each transect, and incubated at 60% and 90% water-filled pore space(WFPS) at 25?C. The measured depth-weighted EC of the saturated paste extract(EC_e) across the sampling positions ranged from 0.43 to 4.65 dS m~(-1). Potential nitrogen(N) mineralization rate and CO_2 emissions decreased with increasing soil EC_e, but the relative decline in soil CO_2 emissions with increasing ECe was smaller at 60% WFPS than at 90% WFPS. At 60% WFPS, soil N_2O emissions decreased from 133 μg N_2O-N kg~(-1) soil at EC_e 0.50 dS m~(-1) to 72 μg N_2O-N kg~(-1) soil at EC_e = 4.65 dS m~(-1). In contrast, at 90% WFPS,soil N_2O emissions increased from 262 μg N_2O-N kg~(-1) soil at EC_e = 0.81 dS m~(-1) to 849 μg N_2O-N kg~(-1) soil at EC_e = 4.65 dS m~(-1), suggesting that N_2O emissions were linked to both soil ECe and moisture content. Therefore, spatial variability in soil EC_e and pattern of rainfall over the season need to be considered when up-scaling N_2O and CO_2 emissions from field to landscape scales.  相似文献   

12.
Abstract. A field study was conducted to assess the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), applied at a rate of 1 kg ha−1, on nitrous oxide (N2O) emissions, forage production and N extraction from a grassland soil after cattle slurry applications in autumn and spring. Nitrous oxide emissions were measured daily or weekly using the closed chamber technique. DMPP efficiency after slurry application was lower in spring (16.7 °C mean soil temperature) than in autumn (11.4 °C mean soil temperature). Thus, DMPP was able to maintain soil mineral N in the ammonium form for 22 days and reduce cumulative N2O emissions by 69% in autumn, while in spring its effect on soil mineral N lasted for 7–14 days, reducing cumulative N2O losses by 48%. Furthermore, application of DMPP after slurry did not decrease biomass yield or N uptake.  相似文献   

13.
Nitrous oxide (N2O) fluxes from an apple orchard soil in the semiarid Loess Plateau of China were measured using static chambers from September 2007 to September 2008. In this study, three sites were selected at distance of 2.5 m (D 2.5), 1.5 m (D 1.5), and 0.5 m (D 0.5) from the apple tree row. Nitrous oxide fluxes followed seasonal pattern, with high N2O emission rates occurring in the hot-humid summer and low rates in the cold-dry winter. Pulses of N2O emissions occurred after nitrogen fertilizer application, summer rainfall events, and during freeze-thaw cycles. Annual average N2O emission rates were the highest at D 0.5 site (48.2 ± 39.9 μg N2O m−2 h−1), the lowest at D 2.5 site (31.9 ± 18.2 μg N2O m−2 h−1), and intermediate at D1.5 site (36.8 ± 32.2 μg N2O m−2 h−1), suggesting that N2O emissions from the apple orchard soil increased when the chamber location was closer to the apple tree row. This may be due to the fertilization close to roots in hot and humid season. Over one third (37.1%) of the annual N2O emission occurred in the summer. Annual N2O emissions from the apple orchard soil averaged to 3.22 kg N2O ha−1 year−1. Annual emission factor of the apple orchard from the applied fertilizer (uncorrected for background emission) was 0.658%. This value was nearly a half (53%) of the default value provided by the Intergovernmental Panel on Climate Change for the application of synthetic fertilizers to cropland (1.25%). Therefore, the amount of N2O emissions from the semiarid apple orchard soil could be largely overestimated if no regional-specific factor is used.  相似文献   

14.
Nitrous oxide emissions under different soil and land management conditions   总被引:4,自引:0,他引:4  
Nitrous oxide (N2O) emissions of three different soils – a rendzina on cryoturbed soil, a hydromorphic leached brown soil and a superficial soil on a calcareous plateau – were measured using the chamber method. Each site included four types of land management: bare soil, seeded unfertilized soil, a suboptimally fertilized rapeseed crop and an overfertilized rapeseed crop. Fluxes varied from –1g to 100g N2O-nitrogen ha–1 day–1. The highest rates of N2O emissions were measured during spring on the hydromorphic leached brown soil which had been fertilized with nitrogen (N); the total emissions during a 5-month period exceeded 3500gNha–1. Significant fluxes were also observed during the summer. Very marked effects of soil type and management were observed. Two factors – the soil hydraulic behaviour and the ability of the microbial population to reduce N2O – appear to be essential in determining emissions of N2O by soils. In fact, the hydromorphic leached brown soil showed the highest emissions, despite having the lowest denitrification potential because of its water-filled pore space and low N2O reductase activity. Soil management also appears to affect both soil nitrate content and N2O emissions. Received: 4 April 1997  相似文献   

15.
Urea fertilizer‐induced N2O emissions from soils might be reduced by the addition of urease and nitrification inhibitors. Here, we investigated the effect of urea granule (2–3 mm) added with a new urease inhibitor, a nitrification inhibitor, and with a combined urease inhibitor and nitrification inhibitor on N2O emissions. For comparison, the urea granules supplied with or without inhibitors were also used to prepare corresponding supergranules. The pot experiments without vegetation were conducted with a loess soil at (20 ± 2)°C and 67% water‐filled pore space. Urea was added at a dose of 86 kg N ha–1 by surface application, by soil mixing of prills (<1 mm) and granules, and by point‐placement of supergranules (10 mm) at 5 cm soil depth. A second experiment was conducted with spring wheat grown for 70 d in a greenhouse. The second experiment included the application of urea prills and granules mixed with soil, the point‐placement of supergranules and the addition of the urease inhibitor, and the combined urease plus nitrification inhibitors at 88 kg N ha–1. In both experiments, maximum emissions of N2O appeared within 2 weeks after fertilization. In the pot experiments, N2O emissions after surface application of urea were less (0.45% to 0.48% of total fertilization) than from the application followed by mixing of the soil (0.54% to 1.14%). The N2O emissions from the point‐placed‐supergranule treatment amounted to 0.64% of total fertilization. In the pot experiment, the addition of the combined urease plus nitrification inhibitors, nitrification inhibitor, and urease inhibitor reduced N2O emissions by 79% to 87%, 81% to 83%, and 15% to 46%, respectively, at any size of urea application. Also, the N2O emissions from the surface application of the urease‐inhibitor treatment exceeded those of the granules mixed with soil and the point‐placed‐supergranule treatments receiving no inhibitors by 32% to 40%. In the wheat growth experiment, the N2O losses were generally smaller, ranging from 0.16% to 0.27% of the total fertilization, than in the pot experiment, and the application of the urease inhibitor and the combined urease plus nitrification inhibitors decreased N2O emissions by 23% to 59%. The point‐placed urea supergranule without inhibitors delayed N2O emissions up to 7 weeks but resulted in slightly higher emissions than application of the urease inhibitor and the urease plus nitrification inhibitors under cropped conditions. Our results imply that the application of urea fertilizer added with the combined urease and nitrification inhibitors can substantially reduce N2O emissions.  相似文献   

16.
Little information is available on the effects of urease inhibitor, N-(n-butyl)thiophosphoric triamide (NBPT), and nitrification inhibitor, dicyandiamide (DCD), on nitrous oxide (N2O) emissions from fluvo-aquic soil in the North China Plain. A field experiment was conducted at the Fengqiu State Key Agro-Ecological Experimental Station, Henan Province, China, to study the influence of urea added with NBPT, DCD, and combination of both NBPT and DCD on N2O emissions during the maize growing season in 2009. Two peaks of N2O fluxes occurred during the maize growing season: the small one following irrigation and the big one after nitrogen (N) fertilizer application. There was a significant positive relationship between ln [N2O flux] and soil moisture during the maize growing season excluding the 11-day datasets after N fertilizer application, indicating that N2O flux was affected by soil moisture. Mean N2O flux was the highest in the control with urea alone, while the application of urea together with NBPT, DCD, and NBPT + DCD significantly lowered the mean N2O flux. Total N2O emission in the NBPT + DCD, DCD, NBPT, and urea alone treatments during the experimental period was 0.41, 0.47, 0.48, and 0.77 kg N2O–N ha−1, respectively. Application of urea with NBPT, DCD, and NBPT + DCD reduced N2O emission by 37.7%, 39.0%, and 46.8%, respectively, over urea alone. Based on our findings, the combination of DCD and NBPT together with urea may reduce N2O emission and improve the maize yield from fluvo-aquic soil in the North China Plain.  相似文献   

17.
追氮方式对夏玉米土壤N2O和NH3排放的影响   总被引:5,自引:2,他引:5  
【目的】研究氮肥与硝化抑制剂撒施及条施覆土三种追施氮肥方式下土壤N2O和NH3排放规律、 O2浓度及土壤NH4+-N、 NO2--N和NO3--N的时空动态,揭示追氮方式对两种重要环境气体排放的影响及机制。【方法】试验设置3个处理: 1)农民习惯追氮方式撒施(BC); 2)撒施添加10%的硝化抑制剂(BC+DCD); 3) 条施后覆土(Band)。 3个处理均在施肥后均匀灌水20 mm。在夏玉米十叶期追施氮肥后的15天(2014年7月23日至8月8日)进行田间原位连续动态观测,并在玉米成熟期测定产量及吸氮量。采用静态箱-气相色谱法测定土壤N2O排放量,土壤气体平衡管-气相色谱法测定土壤N2O浓度,PVC管-通气法测定土壤NH3挥发,土壤气体平衡管-泵吸式O2浓度测定仪测定土壤O2浓度。【结果】农民习惯追氮方式N2O排放量为N 395 g/hm2,NH3挥发损失为N 22.9 kg/hm2,同时还导致土壤在一定程度上积累了NO2--N。与习惯追氮方式相比,添加硝化抑制剂显著减少N2O排放89.4%,使NH3挥发略有增加,未造成土壤NO2--N的累积。条施覆土使土壤N2O排放量显著增加将近1倍,但使NH3挥发显著减少69.4%,同时造成施肥后土壤局部高NO2--N累积。条施覆土的施肥条带上土壤NO2--N含量与N2O排放通量呈显著正相关。土壤气体的O2和N2O浓度受土壤含水量控制,当土壤WFPS大于60%时,020 cm土层中的O2浓度明显降低,而N2O浓度增加,土壤N2O浓度和土壤O2浓度间呈极显著负相关。各处理地上部产量及总吸氮量差异不显著。【结论】土壤NO2--N的累积与铵态氮肥施肥方式密切相关,NO2--N的累积能够促进土壤N2O的排放,且在条施覆土时达到显著水平(P0.05)。追氮方式对N2O和NH3两种气体的排放存在某种程度的此消彼长,添加硝化抑制剂在减少N2O排放的同时会增加NH3挥发,条施覆土在显著减少NH3挥发的同时会显著增加土壤N2O排放。在条施覆土基础上添加硝化抑制剂,有可能同时降低N2O排放和NH3挥发损失,此推论值得进一步研究。  相似文献   

18.
In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N2O)emissions.The application of nitrification inhibitors has been reported as an effective management practice for potentially reducing N loss from the soil-plant system and improving N use efficiency(NUE).The aim of this study was to determine the effect of the co-application of nitrapyrin(a nitrification inhibitor,NI)and urea in a tropical Andosol on the behavior of N and the emissions of N2O from autotrophic and heterotrophic nitrification.A greenhouse experiment was performed using a soil(pH 5.9,organic matter content 78 g kg-1,and N 5.6 g kg-1)sown with Cynodon nlemfuensis at 60%water-filled pore space to quantify total N2O emissions,N2O derived from fertilizer,soil ammonium(NH4+)and nitrate(NO3-),and NUE.The study included treatments that received deionized water only(control,NI).No significant differences were observed in soil NH4+content between the UR and UR+NI treatments,probably because of soil mineralization and NO3-produced by heterotrophic nitrification,which is not effectively inhibited by nitrapyrin.After 56 d,N2O emissions in UR(0.51±0.12 mg N2O-N concluded that the soil organic N mineralization and heterotrophic nitrification are the main processes of NH4+and NO3-production.Additionally,it was found that N2O emissions were partially a consequence of the direct oxidation of the soil's organic N via heterotrophic nitrification coupled to denitrification.Finally,the results suggest that nitrapyrin would likely exert significant mitigation on N2O emissions only if a substantial N surplus exists in soils with high organic matter content.  相似文献   

19.
夜间增温对免耕农田土壤氮矿化与硝化速率的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了农田土壤氮矿化速率和硝化速率对长期夜间增温和免耕的响应特征。试验设置4种处理:常温+翻耕(CK)、夜间增温+翻耕(W)、常温+免耕(NT)、夜间增温+免耕(WNT)。与对照相比,W处理下土壤中碱解氮和铵态氮明显增加,其中1~2月增幅分别为26%~28%和82%~133%,且土壤氮矿化速率和硝化速率均显著高于CK处理。NT处理下,土壤碱解氮和铵态氮的季节均值分别提高了15%和41%;土壤氮总矿化速率显著高于CK和W处理,硝化速率则显著低于CK和W处理。WNT处理下的土壤氮矿化速率显著高于NT处理,而硝化速率则显著低于CK和W处理,可见,在夜间增温条件下,采取免耕措施将有利于土壤有机氮的矿化过程,降低了土壤硝化速率,从而减小了土壤氮素损失的风险。  相似文献   

20.
This research studied the effect of biochar addition before upland rice planting, followed by sugarcane cropping, on soil fertility (nitrogen mineralization, β-glucosidase and urease activities), and mitigating greenhouse gases emission at sugarcane harvest. An incubation experiment was designed utilizing soil samples taken from a sugarcane field at final harvest with treatments, (i) Control, with no biochar or fertilizer application to upland rice (ii) CF, with fertilizer application at recommended rates; (iii) BC1, with biochar addition at the rate of 3.125?Mg ha?1 + CF; (iv) BC2, with biochar addition at the rate of 6.25?Mg ha?1 + CF. Results showed that, at the last sampling dates, soil enzyme activities of the biochar treatments were significantly greater than those of the control treatment. The lowest cumulative carbon dioxide and nitrous oxide emission was observed in the BC2 treatment. Thus, the BC2 treatment could increase both soil fertility and mitigate global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号