首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
不同林龄樟子松叶片养分含量及其再吸收效率   总被引:28,自引:0,他引:28  
树木叶片的养分再吸收效率能够反映树木对养分保存、利用以及对养分贫瘠环境的适应能力。以科尔沁沙地东南缘章古台地区樟子松人工林为研究对象,分析了11、20、29、45年生树木叶片的基本特征、养分含量及其再吸收效率。结果表明:叶片衰老后其质量和面积明显减少;叶片凋落前的平均养分含量没有表现出随樟子松年龄增加而出现有规律的变化;凋落叶片中的N、P、K、Mg含量表现出随年龄增加而增加的趋势,而Ca的趋势与之相反;11年生和20年生的樟子松叶片N、P、K的再吸收效率相似,都显著高于29年生和45年生樟子松(P<0.05),而樟子松叶片对Mg的再吸收效率表现出随年龄增大而显著降低,Ca随叶片的衰老而不断累积,再吸收效率表现为负值,20年生的樟子松叶片Ca再吸收效率最大,11年生和45年生最低。樟子松叶片的N、P、K、Mg养分再吸收效率随年龄增加而降低的趋势表明,随年龄增加樟子松对贫瘠养分生境的适应能力逐渐降低,反映了樟子松养分保存方面的衰退特征。  相似文献   

2.
Niinemets U  Tamm U 《Tree physiology》2005,25(8):1001-1014
Extensive variation in fractional resorption of mineral elements from plant leaves is still not fully understood. In multi-species forest stands, species leaf fall phenology and leaf constitution may significantly modify the timing of nutrient return to the soil and overall plant nutrient loss. We studied leaf fall and nutrient loss kinetics, and leaf composition in three natural, temperate, deciduous broadleaf forest stands to determine the role of timing of leaf abscission and nutrient immobilization in cell walls on nutrient resorption efficiency of senescing leaves. Nitrogen (N), phosphorus and potassium contents decreased continuously in attached leaves after peak physiological activity during mid-season. Changes in nutrient contents of attached leaves were paralleled by decreases in nutrient contents in freshly fallen leaf litter. In different species and for different nutrients, resorption of nutrients from senescing leaves proceeded with different kinetics. The maximum nutrient resorption efficiency (the fraction of specific nutrient resorbed from the leaves at the end of leaf fall) did not depend on the mid-seasonal nutrient concentration. Species with earlier leaf fall resorbed leaf nutrients at a faster rate, partly compensating for the earlier leaf fall. Nevertheless, the litter-mass weighted mean nutrient contents in leaf litter were still larger in species with earlier leaf fall, demonstrating an inherent trade-off between early leaf fall and efficient nutrient resorption. This trade-off was most important for N. Losses of the non-mobile nutrients calcium and magnesium were unaffected by the timing of leaf fall. There was large variation in the maximum N resorption efficiency among species. Correlations among leaf chemical variables suggested that the maximum N resorption efficiency decreased with the increasing fraction of cell walls in the leaves, possibly due to a greater fraction of N occluded in cell wall matrix. We conclude that species leaf fall phenology and leaf chemistry modify the timing and quantities of plant nutrient losses, and that more diverse forest stands supporting a spectrum of species with different phenologies and leaf types produce litter with more variable chemical characteristics than monotypic stands.  相似文献   

3.
Leaf exchange is an abrupt phenological event that drastically modifies the morphology and physiology of the aerial portion of the plant. We examined if water and osmolyte differences between old leaves and new organs trigger leaf exchange, and whether the differences are closely linked to the resource resorption process in senescing leaves. We monitored concentrations of osmolyte, water, non-structural carbohydrate, nitrogen and potassium in senescing leaves and in emerging new leaves and inflorescences of a Mediterranean leaf exchanger (Cistus laurifolius L.) growing in NE Spain. Old leaves rehydrated markedly during most of the senescence process, which co-occurred with the extension of new shoots, suggesting the lack of a clear-cut switch in water supply from old to new organs. The accumulation of osmolytes in the early stage of leaf senescence might account for this rehydration. Osmolyte dynamics in old leaves depended largely on the progression of resource resorption from senescing organs but were mostly unrelated to water content during late senescence. We conclude that dehydration of old leaves is not a prerequisite for the triggering of leaf exchange. The finding that most nutrients and carbohydrates accumulated in new organs before senescing leaves massively exported resources, and the absence of relevant differences between the dynamics of old leaves at the base of inflorescences and those at the base of vegetative shoots, indicate that the nutrient and carbohydrate demands of new organs do not trigger leaf exchange.  相似文献   

4.
Changes in respiration rate, chemical content and chemical concentration were measured in leaves of field-grown Populus tremuloides Michx. and Quercus rubra L. trees throughout the growing season and autumnal senescence. Chlorophyll, soluble sugar, N, P, K and Mg contents and concentrations all declined during leaf senescence, whereas Ca content and concentration increased. Leaf dry mass per area declined 24 and 35% in P. tremuloides and Q. rubra, respectively, during senescence. In leaves of both species, respiration rates peaked during leaf expansion in the spring and then declined, as a result of reduced cytochrome-mediated respiration, to reach relatively constant rates by midsummer. In senescing P. tremuloides leaves, respiration rates remained relatively constant until mid-October and then declined rapidly. In senescing Q. rubra leaves, respiration rates increased in late September, as a result of the appearance of residual respiration that could not be reduced by respiratory inhibitors, and then declined quickly in early November. No changes in alternative pathway respiratory activity were observed in leaves of either species during senescence until late autumn when rates declined. Because respiration rates were correlated with both leaf sugar and nitrogen content during leaf senescence, we conclude that respiration rates were maintained or increased during leaf senescence to supply energy for degradation and mobilization of chemical constituents.  相似文献   

5.
  • ? The resorption of nutrients (mainly N and P) from senescing leaves may be a key component of adaptive mechanisms that conserve scarce nutrients. Resorption may be expressed in two ways as resorption efficiency (RE) which is the ratio of the resorbed amounts of nutrient losses during leaf senescence in relation to its prior amount deposited in leaves and resorption proficiency (RP) is the level to which nutrient concentration per unit leaf mass is reduced in senescent leaves.
  • ? There is still much debate whether or not different life-forms (i.e. deciduous and evergreen species) show different foliar resorption patterns. Two sympatric species, namely Quercus petraea (Mattuschka) Liebl. subsp. iberica (Steven ex Bieb.) Krassiln. (deciduous) and Arbutus andrachne L. (evergreen) along an elevational gradient were compared with each other to determine whether or not nitrogen and phosphorus resorption efficiency and proficiency varies along the elevational gradient and which leaf parameters were as related to RE and RP.
  • ? NRE was found to be rather low in Q. petraea subsp. iberica compared to other deciduous species. Similarly, PRE in A. andrachne was rather low compared to other evergreen species. Mean residence time (MRT) measures how long a unit of nitrogen (MRTN) and phosphorus (MRTP) is present in the plant. MRTN and MRTP were found to be considerably higher in A. andrachne compared to Q. petraea subsp. iberica. In both species, the foliar N/P ratio was below 14 along the elevational gradient and, according to this threshold value, N-limitation occurred in the study area. Although both species in the present study show incomplete resorption deciduous species was more proficient as compared to evergreen one due to low N and P concentrations in senescent leaves. Based on the significant correlations (p < 0.05 and 0.01) between MRT and foliar resorption, it can be concluded that MRT could interfere with the mechanisms controlling nutrient resorption.
  •   相似文献   

    6.
    Prunus domestica L. has green leaves, whereas Prunus cerasifera Ehrh. var. atropurpurea has red leaves due to the presence of mesophyll anthocyanins. We compared morphological and photosynthetic characteristics of leaves of these species, which were sampled from shoots grafted in pairs on P. domestica rootstocks, each pair comprising one shoot of each species. Two hypotheses were tested: (1) anthocyanins protect red leaves against photoinhibition; and (2) red leaves display shade characteristics because of light attenuation by anthocyanins. Parameters were measured seasonally, during a period of increasing water stress, which caused a similar drop in shoot water potential in each species. As judged by predawn measurements of maximum PSII yield, chronic photoinhibition did not develop in either species and, despite the anthocyanic screen, the red leaves of P. cerasifera displayed lower light-adapted PSII yields and higher non-photochemical quenching than the green leaves of P. domestica. Thus, it appears that, in this system, anthocyanins afford little photoprotection. As predicted by the shade acclimation hypothesis, red leaves were thinner and had a lower stomatal frequency, area- based CO2 assimilation rate, apparent carboxylation efficiency and chlorophyll a:b ratio than green leaves. However, red leaves were similar to green leaves in conductivity to water vapor diffusion, dry-mass-based chlorophyll concentrations and carotenoid:chlorophyll ratios. The data for red leaves indicate adaptations to a green-depleted, red-enriched shade, rather than a neutral or canopy-like shade. Thus, green light attenuation by anthocyanins may impose a limitation on leaf thickness. Moreover, the selective depletion of light at wavelengths that are preferentially absorbed by PSII and chlorophyll b may lead to adjustments in chlorophyll pigment ratios to compensate for the uneven spectral distribution of internal light. The apparent photosynthetic cost associated with lost photons and reduced leaf thickness, and the absence of a photoprotective advantage, suggest that there are other, yet to be identified, benefits for permanently anthocyanic leaves of P. cerasifera.  相似文献   

    7.
    Grassi G  Bagnaresi U 《Tree physiology》2001,21(12-13):959-967
    The role of morphological versus physiological foliar plasticity in the capacity for, and mechanisms of, photosynthetic acclimation was assessed in Picea abies (L.) Karst. and Abies alba Mill. saplings in a forest gap-understory light gradient (relative irradiance, RI, ranging from 0.02 to 0.32). The species investigated showed a similar foliar morphological plasticity along the light gradient, at both the needle level (through alteration in leaf dry mass per area) and the shoot level (through alteration in the silhouette area ratio, e.g., shoot silhouette to projected needle area ratio). In both species chlorophyll (Chl) concentration on a mass basis decreased at increasing RI, but was independent of RI when expressed on an area basis. In contrast, leaf N concentration on a mass basis was independent of RI, but was positively influenced by RI when expressed on an area basis. The parameters describing photosynthetic performance at low light (dark respiration rate, apparent quantum yield and light compensation point) suggest that Abies alba was better suited to maintain a positive carbon balance in shaded conditions. By contrast, parameters describing biochemical capacity at high light (maximum electron transport rate, Jmax and maximum ribulose-1,5-biphosphate carboxylation capacity, Vcmax) indicate that only Picea abies was capable of acclimating physiologically to high photosynthetic photon flux densities (PPFDs) by increasing nitrogen partitioning to Rubisco and Vcmax/mass by increasing RI. These results support the hypothesis that interspecific differences in nitrogen partitioning within the photosynthetic apparatus may provide a mechanistic basis for species separation along a light gradient. The differences in photosynthetic plasticity observed are likely to influence regeneration patterns and habitat breadth of the species investigated. The limited ability of Abies alba saplings to exploit high-light conditions may be a competitive disadvantage in large canopy gaps and thus limit recruitment of this species to small gaps.  相似文献   

    8.
    Oksanen E 《Tree physiology》2003,23(9):603-614
    Physiological responses of 4-year-old potted saplings of an O3-tolerant clone of Betula pendula Roth to short-term ozone (O3) exposure (one growing season) were compared with those of 6-year-old open-soil-grown trees of the same clone fumigated with O3 for six growing seasons. In the 2001 growing season, both groups of plants were exposed to ambient (control) and 1.6x ambient (elevated) O3 concentration under similar microclimatic conditions in a free air O3 exposure facility. Growth, net photosynthesis, stomatal conductance, stomatal density, visible foliar injury, starch and nutrient concentrations, bud formation and differences in O3 responses between lower, middle and upper sections of the canopy were determined. The potted saplings were unaffected by elevated O3 concentration, whereas the open-soil-grown trees showed a 3-38% reduction in shoot growth, a 22% reduction in number of overwintering buds, a 26-65% decrease in autumnal net photosynthesis, 30% and 20-23% reductions in starch and nitrogen concentrations of senescing leaves, respectively, and disturbances in stomatal conductance. The greater O3 sensitivity of open-soil-grown trees compared with potted saplings was a result of senescence-related physiological factors. First, a lower net photosynthesis to stomatal conductance ratio in open-soil-grown trees at the end of the season promoted O3 uptake and decreased photosynthetic gain, leading to the onset of visible foliar injuries. Second, decreased carbohydrate reserves may have resulted in deleterious carry-over effects arising from the reduced formation of over-wintering buds. Finally, the leaf-level O3 load was higher for open-soil-grown trees than for potted saplings because of slower leaf senescence in the trees. Thus, O3 sensitivity in European white birch increases with increasing exposure time and tree size.  相似文献   

    9.
    Koike T  Kitao M  Maruyama Y  Mori S  Lei TT 《Tree physiology》2001,21(12-13):951-958
    Photosynthetic acclimation of deciduous broad-leaved tree species was studied along a vertical gradient within the canopy of a multi-species deciduous forest in northern Japan. We investigated variations in (1) local light regime and CO2 concentration ([CO2]), and (2) morphological (area, thickness and area per mass), biochemical (nitrogen and chlorophyll concentrations) and physiological (light-saturated photosynthetic rate) attributes of leaves of seven major species on three occasions (June, August and October). We studied early successional species, alder (Alnus hirsuta (Spach) Rupr.) and birch (Betula platyphylla var. japonica (Miq.) Hara); gap phase species, walnut (Juglans ailanthifolia Carrière) and ash (Fraxinus mandshurica var. japonica Rupr.); mid-successional species, basswood (Tilia japonica (Miq.) Simonk.) and elm (Ulmus davidiana var. japonica (Rehd.) Nakai); and the late-successional species, maple (Acer mono Bunge). All but maple initiated leaf unfolding from the lower part of the crown. The [CO2] within the vertical profile ranged from 320-350 ppm in the upper canopy to 405-560 ppm near the ground. The lowest and highest ambient [CO2] occurred during the day and during the night, respectively. This trend was observed consistently during the summer, but not when trees were leafless. Chlorophyll concentration was positively related to maximum photosynthetic rate within, but not among, species. Leaf senescence started from the inner part of the crown in alder and birch, but started either in the outer or top portion of the canopy of ash, basswood and maple. Chlorophyll (Chl) to nitrogen ratio in leaves increased with decreasing photon flux density. However, Chl b concentration in all species remained stable until the beginning of leaf senescence. Maximum photosynthetic rates observed in sun leaves of early successional species, gap phase or mid-successional species, and late successional species were 12.5-14.8 micromol m(-2) s(-1), 4.1-7.8 micromol m(-2) s(-1) and 3.1 micromol m(-2) s(-1), respectively.  相似文献   

    10.
    Saplings of 19 valuable rain forest timber species representative of three successional status groups (early secondary, late secondary and climax) were grown in a polyhouse to examine their responses to three light intensity/quality treatments and nitrogen supply. Solar radiation was modified using painted polyethylene sheet to mimic natural light environments across a rain forest vertical column as follows: 1. Transparent plastic, 80% of full sunlight, R:FR = 0.95, 2. Blue shade, 14% of full sunlight, R:FR = 0.69; 3. Green shade, 7% of full sunlight, R:FR = 0.50. Transparent plastic conditions promoted an increase in stem height and diameter (i.e., growth), leaf thickness and gas exchange per unit leaf area. Additional nitrogen availability enhanced growth and specific leaf area (i.e., leaves were thinner), particularly in the full sun environment and on early secondary and late secondary successional species, but did not influence photosynthetic rate. Successional status of the species did not affect photosynthetic rate although early secondary successional species grew faster and had fewer branches than species of the other successional groups. We recommend that for a successful mixed stand the high-light requiring species should be planted first, with increased nitrogen supply, and the shade tolerant species should be introduced later with no extra nitrogen supply required.  相似文献   

    11.
    We developed a functional–structural plant model for Fagus crenata saplings and calculated annual photosynthetic gains to determine the influences of foliar phenology and shoot inclination on the carbon economy of saplings. The model regenerated the three-dimensional shoot structure and spatial and temporal display of leaves; we calculated the hourly light interception of each leaf with a detailed light model that allowed us to estimate hourly leaf photosynthetic gain taking leaf age into account. To evaluate the importance of simultaneous foliar phenology and slanting shoots in beech saplings, we calculated the photosynthetic budgets for saplings with contrasting foliar phenologies and shoot inclinations. In our simulations, we distinguished between simultaneous and successive foliar phenologies, upright and slanting shoot inclinations, and environments with and without a vertical gradient in light intensity. Other model parameters (including photosynthesis vs. light curve, leaf size, and leaf shape) were obtained directly from live beech saplings. With no vertical gradient in light intensity, modeled saplings with simultaneous foliar phenology and slanting shoots (as in live beech) had larger annual photosynthetic gains than saplings with other combinations of traits. Hence, simultaneous foliar phenology and slanting shoots are efficient ways to display leaves in the shaded forest understory light regime where beech saplings thrive. In the presence of vertical light gradients, which can occur in canopy gaps, saplings with upright shoots had larger annual photosynthetic gains than counterparts with slanting shoots. Although mean daily photosynthetic gains of saplings with successive foliar phenology were elevated by exposing leaves to strong light when young and productive, the annual photosynthetic budget of these saplings was reduced (compared to saplings with simultaneous foliar phenology) by their relatively short leaf lifespan. Overall, our results suggest that slanting shoots with simultaneous foliar phenology are particularly successful in shaded environments, where beech often dominates, because they appear to maximize the annual carbon budget by avoiding self-shading and extending leaf lifespans.  相似文献   

    12.
    The changes in photosynthetic rates, light environment and foliar nutrient concentrations following thinning were examined in an 8-year-old Eucalyptus nitens (Deane and Maiden) Maiden plantation. The objectives of the study were to: (1) determine the extent to which maximum photosynthetic rates (Amax) of E. nitens are affected by stand thinning; (2) relate the spatial pattern of Amax within the crown to the changes in light environment caused by thinning; and (3) establish if the responses of Amax to thinning are driven by changes in area-based foliar nitrogen (Na) or phosphorus (Pa) concentrations. Photosynthetic rates measured under saturating light availability increased throughout the crown after thinning. The greatest increases were observed in the lower and middle crown zones. Photosynthetic rate was positively related to foliar N concentration. Thinning increased Na and Pa because of a significant decrease in specific leaf area (SLA) after thinning. Changes in photosynthetic rates, SLA and foliar nutrient distributions with thinning were well correlated with changes in incident solar irradiance throughout the tree crown.  相似文献   

    13.
    Seasonal ecophysiology, leaf structure and nitrogen were measured in saplings of early (Populus grandidentata Michx. and Prunus serotina J.F. Ehrh.), middle (Fraxinus americana L. and Carya tomentosa Nutt.) and late (Acer rubrum L. and Cornus florida L.) successional tree species during severe drought on adjacent open and understory sites in central Pennsylvania, USA. Area-based net photosynthesis (A) and leaf conductance to water vapor diffusion (g(wv)) varied by site and species and were highest in open growing plants and early successional species at both the open and understory sites. In response to the period of maximum drought, both sunfleck and sun leaves of the early successional species exhibited smaller decreases in A than leaves of the other species. Shaded understory leaves of all species were more susceptible to drought than sun leaves and had negative midday A values during the middle and later growing season. Shaded understory leaves also displayed a reduced photosynthetic light response during the peak drought period. Sun leaves were thicker and had a greater mass per area (LMA) and nitrogen (N) content than shaded leaves, and early and middle successional species had higher N contents and concentrations than late successional species. In both sunfleck and sun leaves, seasonal A was positively related to predawn leaf Psi, g(wv), LMA and N, and was negatively related to vapor pressure deficit, midday leaf Psi and internal CO(2). Although a significant amount of plasticity occurred in all species for most gas exchange and leaf structural parameters, middle successional species exhibited the largest degree of phenotypic plasticity between open and understory plants.  相似文献   

    14.
    南亚热带4个不同演替阶段树种苗木环境适应性研究   总被引:6,自引:0,他引:6  
    杨小波 《林业科学》2002,38(1):56-60
    本文用净光合作用速率为指标从生态位宽度、重叠和理论生态位中心与现实生态位中心的偏离程度等方面来探讨不同演替阶段森林群落的优势树种苗木对环境适应性的问题 ,并采用同位素技术研究了光环境与苗木光合产物的输出和分配的关系。研究结果表明 ,森林演替先锋树种马尾松的苗木对土壤含水量变化 (变旱 )和全日照的光环境的适应性最强 ;演替后期种黄果厚壳桂对土壤含水量的变化的适应性最差 ;演替过渡种藜蒴对pH值的变化适应性最强 ,演替后期种黄果厚壳桂的适应性最差 ;生态位宽度与生态位中心偏离值都表现出演替过渡种藜蒴和荷木对矿物质浓度梯度变化适应性最强 ,这与它们苗木有较发达的根系相关密切 ,从而反映了森林演替过渡种比先锋树种和演替后期种有较强的对矿物质营养浓度等条件变化适应性。 4个树种苗木的生态位重叠度都较高 ,说明在森林演替过程中 ,各阶段的树种对资源的竞争是比较激烈的。同时光合产物输出与分配规律的研究结果还表明了 ,弱光对森林演替先锋树种马尾松的光合产物的输出与分配是不利的 ,而全日照的光环境却不利于森林演替过渡种和演替后期种苗木的光合产物的输出与分配  相似文献   

    15.
    The fate of chloroplast DNA (cpDNA) during plastid development and conversion between various plastid types is still not very well understood. This is especially true for the cpDNA found in plastids of naturally senescing leaves. Here, we describe changes in plastid nucleoid structure accompanied with cpDNA degradation occurring during natural senescence of the free-growing deciduous woody species Acer pseudoplatanus L. Natural senescence was investigated using three types of senescing leaves: green (G), yellow-green (YG) and yellow (Y). The extent of senescence was evaluated at the level of photosynthetic pigment degradation, accumulation of starch and plastid ultrastructure. Determination of cpDNA amount was carried out by in planta visualization with 4,6-diamidino-2-phenylindole, by Southern hybridization, and by dot-blot using an rbcL gene probe. During natural senescence, plastid nucleoids undergo structural rearrangements accompanied by an almost complete loss of cpDNA. Furthermore, senescence-associated protein components exhibiting strong binding to an ~10kbp rbcL-containg cpDNA fragment were identified. This interaction might be important for rbcL expression and Rubisco degradation during the course of natural senescence in trees.  相似文献   

    16.
    Internal nutrient recycling through retranslocation (resorption) is important for meeting the nutrient demands of new tissue production in trees. We conducted a comparative study of nutrient retranslocation from leaves of five tree species from three genera grown in plantation forests for commercial or environmental purposes in southern Australia--Acacia mearnsii De Wild., Eucalyptus globulus Labill., E. fraxinoides H. Deane & Maiden, E. grandis W. Hill ex Maiden and Pinus radiata D. Don. Significant amounts of nitrogen, phosphorus and potassium were retranslocated during three phases of leaf life. In the first phase, retranslocation occurred from young leaves beginning 6 months after leaf initiation, even when leaves were physiologically most active. In the second phase, retranslocation occurred from mature green leaves during their second year, and in the third phase, retranslocation occurred during senescence before leaf fall. Nutrient retranslocation occurred mainly in response to new shoot production. The pattern of retranslocation was remarkably similar in the leaves of all study species (and in the phyllodes of Casuarina glauca Sieber ex Spreng.), despite their diverse genetics, leaf forms and growth rates. There was no net retranslocation of calcium in any of the species. The amounts of nutrients at the start of each pre-retranslocation phase had a strong positive relationship with the amounts subsequently retranslocated, and all species fitted a common relationship. The percentage reduction in concentration or content (retranslocation efficiency) at a particular growth phase is subject to many variables, even within a species, and is therefore not a meaningful measure of interspecific variation. It is proposed that the pattern of retranslocation and its governing factors are similar among species in the absence of interspecies competition for growth and crown structure which occurs in mixed species stands.  相似文献   

    17.

    The leaves and leaf litter of Cryptomeria japonica D. Don was collected from April 1994 to March 1995 to describe the seasonal changes in nutrient concentrations in leaves and leaf litter. Nitrogen (N), phosphorus (P) and potassium (K) concentrations were in the order new leaves > old leaves > leaf litter, whereas calcium (Ca) concentration was in the order leaf litter > old leaves > new leaves during the whole year. N, P and K concentrations were at their highest during the new leaf growth phase, and then decreased as a result of the diluting effect and translocation, whereas Ca increased with time. Magnesium did not show any clear seasonal trend compared with other nutrients. N resorption efficiency was lower than P resorption efficiency. There were two nutrient resorption peaks, which could be attributed to high nutrient translocation to new leaves in the spring and to translocation from old leaves before senescence in the autumn. A significant correlation between N and P resorption was observed.  相似文献   

    18.
    【目的】从叶片衰老角度研究檫木叶片叶色、色素和营养元素的变化规律,为秋色叶观赏树种檫木的选育以及栽培提供理论依据。【方法】以栽植于同一环境条件下的3年生檫木为试验材料,从檫木叶片停止生长到脱落,分5个时期对叶片的叶色值、色素含量和营养元素含量进行观测和分析。【结果】观测前期与观测后期,檫木叶片叶色值、色素含量和营养元素含量存在极显著差异;叶片进入衰老阶段后,叶绿素含量和类胡萝卜素含量呈下降趋势,而花色素苷含量逐渐上升;N、P、K含量在叶片衰老阶段逐渐下降。由典型相关分析可知,叶色a*值与叶绿素含量具有显著负相关,与花色素苷含量呈显著正相关;花色素苷含量与N含量成反比,类胡萝卜素含量与P含量成正比;N元素再利用效率的载荷值符号与N含量载荷值的符号相反,而P元素再利用效率的载荷值符号与P含量载荷值的符号相同;檫木叶片衰老分为3个阶段,第1阶段从9月中下旬到10月上旬,为叶片衰老准备期;第2阶段从10月中下旬到11月上旬,为叶片缓慢衰老期;第3阶段从11月中下旬到叶片脱落,为叶片衰老末期。【结论】檫木叶色最佳观赏期是从10月中下旬到11月上旬的叶片缓慢衰老期;从叶片衰老准备期到叶片衰老末期,叶绿素和类胡萝卜素被分解,花色素苷合成;N、P、K 3种营养元素逐渐被转移,其中N含量越高,N元素再利用效率就越低;与之相反,P含量越高,P元素再利用效率就越高。  相似文献   

    19.
    Classifying plant functional types by a general and quantitative technique is important for sustainable forest management. Here, the time series of diurnal net photosynthetic rate and other related external and internal factors of 11 tree species in a young mixed broadleaf and coniferous Korean pine forest in Northeast China were recorded during the growing season. All time series data were analyzed by a newly proposed model, by which the relative importance of external environmental factors and internal factors on leaf photosynthetic rate among tree species was evaluated. The analysis showed that this method can be useful to identify environmentally sensitive tree species and to quantitatively classify plant functional types. Photosynthetic rate in most pioneer tree species is less sensitive to variation in environmental conditions than in late successional species. The photosynthetic rate of all 11 tree species was mainly determined by their internal factors. The results may also have implications for tree species selection in forest plantations and forest restoration.  相似文献   

    20.
    Saplings of one half-sib family of birch, Betula pendula Roth, were exposed to three ozone concentrations (non-filtered air (NF); non-filtered air + 10-20 nmol O(3) mol(-1) (NF+); non-filtered air + 40-60 nmol O(3) mol(-1) (NF++)) in open-top chambers during two growing seasons from 1997 to 1998. Shed leaves were collected regularly during both growing seasons and, in 1998, the dry mass (DM) and nitrogen (N) concentrations ([N]) of the shed leaves were measured to quantify the total amount of N lost through litter fall. Dry mass and [N] were also determined in mid-August for attached, mature and non-senescent leaves, in order to estimate autumnal leaf N resorption efficiency and proportional leaf DM decrease. Net photosynthetic capacity was measured during August and September 1998, in a population of leaves that emerged in mid-July. Photosynthesis declined with increasing leaf age in the NF++ treatment, whereas it remained high throughout the measurement period in the NF and NF+ treatments. In both years, leaves abscised prematurely in the NF++ treatment, whereas this effect was only significant in 1998 in the NF+ treatment. There was a strong linear relationship between proportional leaf shedding and daylight ozone exposure above a threshold of 40 nmol mol(-1) (daylight AOT40) during the growing season. The resorption of N was significantly impaired by ozone, and the smaller autumnal decrease in leaf DM in elevated ozone concentrations suggested that the bulk resorption of leaf DM was also inhibited. Nitrogen resorption efficiencies were 81, 73 and 63% and leaf mass decreases were 45, 36 and 30% in the NF, NF+ and NF++ treatments, respectively. Compared with the NF treatment, total N loss through litter fall was increased by 16 and 122% in the NF+ and NF++ treatments, respectively. We conclude that ozone impaired N resorption from birch leaves before abscission, causing a substantial increase in whole-tree N loss through litter fall.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号