首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
泰山几种林分枯落物和土壤水文效应研究   总被引:5,自引:0,他引:5  
利用森林水文作用过程分割研究法,对泰山5种林分枯落物和土壤的水文效应进行了研究。结果表明:5种林分枯落物饱和持水量在122~588mm之间;土壤总孔隙度在385%~609%之间;30cm厚的土壤饱和持水量在1155~1527mm之间,都具有一定的涵养水源能力。以上几个评价涵养水源功能的指标都以阔叶林(麻栎林和竹林)和胡枝子灌木林明显大于针叶林(侧柏和油松)。尤其是灌木林,在涵养水源方面有非常显著和独特的作用。  相似文献   

2.
选取麦积山风景区5种典型林分为研究对象,对林下枯落物层水文效应进行研究。结果表明:就蓄积量而言,油松林枯落物最大,为9.65 t·hm~(-2);白皮松林最小,为5.31 t·hm~(-2)。在所有的蓄积量中,占比最多的是白皮松林未分解层,比例接近50%;油松+锐齿栎林所占比例最小,为35.452%;半分解层油松+锐齿栎林比例最大,为64.48%;锐齿栎最小,为51.85%。未分解层和半分解层最大拦蓄率和有效拦蓄率均表现为锐齿栎最大,白皮松最大拦蓄率和有效拦蓄率最小;油松群落最大拦蓄率和有效拦蓄量最大。将这些枯落物浸泡在水中,刚开始2 h内,它们的持水量都得到了显著上升,2 h后持水量明显下降;浸泡6 h以后,未分解层枯落物的持水量最高;连续将半分解层枯落物在水中一直浸泡12 h后,半分解层枯落物的蓄积水量达到最大值;这些枯落物最初浸泡1 h内,枯落物半分解层的吸水率比其他枯落物的吸水率要高,连续浸泡达到6 h时,这5种林分枯落物吸水率数值图最终几乎完全重合。  相似文献   

3.
冀北山地不同树种组成桦木林枯落物及土壤水文效应   总被引:1,自引:0,他引:1  
为弄清不同树种组成的林分对林地枯落物及土壤持水能力的影响,采用浸泡法和双环法对冀北山地5种不同树种组成的桦木林进行研究,结果表明:1林地枯落物半分解层储量均大于未分解层,总储量变化范围为12.85~20.87t/hm~2,白桦纯林储量最大,阔叶混交林最小;2枯落物最大持水量变化范围为73.27~106.99t/hm~2,有效拦蓄量变化范围为59.22~81.86t/hm~2,均为杨桦混交林最大、落桦混交林最小;3枯落物持水量与浸泡时间呈对数关系,随时间推移逐渐增大,而吸水速率与浸泡时间呈指数关系,随浸泡时间推移而逐渐下降;4土壤容重是油松白桦林最大、杨桦混交林最小,总孔隙度是杨桦混交林最大(60.66%)、阔叶混交林次之(59.31%)、油松白桦林最小(45.43%),土壤最大持水量和有效持水量均是杨桦混交林最大、阔叶混交林次之、油松白桦林最小;5土壤入渗速率和入渗时间呈明显幂函数关系。综合来看,杨桦混交林和阔叶混交林枯落物和土壤持水能力较强。  相似文献   

4.
广州七种园林植物枯落物的水文效应   总被引:1,自引:0,他引:1  
文章分析了广州7种园林植物枯落物的水文效应。结果表明:(1)7种园林植物枯落物最大持水量的大小顺序为:白兰(278.43mm)〉羊蹄甲(278.03mm)〉潺槁树(210.58mm)〉小叶榕(198.64mm)〉塞楝(166.97mm)〉腊肠树(132.52mm)〉印度橡胶榕(128.31mm),其吸水速率的大小顺序亦同;(2)枯落物的最大持水率、最大拦蓄率和有效拦蓄率的大小顺序均为白兰〉羊蹄甲,潺槁树,小叶榕〉塞楝〉印度橡胶榕,腊肠树;(3)枯落物持水量随浸水时间的增长而增加,吸水速率随之而减少。  相似文献   

5.
研究华北落叶松林、山杨-白桦林、华北落叶松-白桦林、油松-华北落叶松林、白桦林5种类型防护林的枯落物和土壤水文效应。研究方法为浸泡法和环刀法。结果表明:1)枯落物蓄积量范围为11.26~17.75 t/hm2,山杨-白桦林最大,油松-华北落叶松林次之,白桦林最小,华北落叶松林、油松-华北落叶松林未分解层蓄积量大于半分解层,山杨-白桦林、白桦林、华北落叶松-白桦林规律相反。2)枯落物最大持水量为31.27~51.75 t/hm2,有效拦蓄量为23.69~27.70 t/hm2,均表现为山杨-白桦林最大,华北落叶松林最小,持水量(率)、拦蓄量(率)半分解层均大于未分解层。枯落物持水量和持水率与浸泡时间分别呈对数函数和指数函数。3)土壤容重为1.18~1.23 g/cm3,总孔隙度为43.75%~58.47%。土壤有效持水量为64.71~131.09 t/hm2,山杨-白桦林最大,白桦林次之,华北落叶松林最小,土壤入渗速率与入渗时间呈幂函数关系。4) 5种林分水源涵养能力大小排序为山...  相似文献   

6.
冀北山地落叶松林枯落物层水文效应研究   总被引:1,自引:0,他引:1  
采用样方法对冀北山地落叶松林的枯落物层进行了调查,并对其水文效应进行了研究。结果表明:(1)冀北山地落叶松林枯落物厚度为3.6~4.2cm,生物量的变化范围为8.41~11.46t·hm~(-2),阴坡枯落物的积累量较大。(2)枯落物最大持水量20.8~29.1t·hm~(-2),最大持水率284%~346%;对枯落物的持水量与浸水时间进行回归分析,符合Q=aln(t)+b的对数关系;枯落物在前0.25h内的吸水速率最大,6h左右速率明显降低。(3)枯落物的半分解层拦蓄能力高于未分解层,以样地C(海拔1180~1310m,西北坡,坡度25-30°)的枯落物拦蓄能力最强。  相似文献   

7.
从森林枯落物的蓄水量、雨水截留量、阻延径流流速、改善土壤结构、减沙减流作用5个方面,叙述了森林枯落物的水文功能,提出森林经营中,应采取措施,促进林分森林枯落物的积累。  相似文献   

8.
滦河上游水源涵养林枯落物层水文效应研究   总被引:1,自引:0,他引:1  
为探讨森林枯落物水文过程及规律,对滦河上游3种不同类型林分枯落物及其结构进行了调查,并对其水文效应进行了探讨。结果表明:1油松纯林的枯落物生物量为12.03t/hm2,最大持水量为19.4t/hm2,有效拦蓄量为23.52t/hm2;落叶松纯林的枯落物生物量为9.51t/hm2,最大持水量为11.9t/hm2,有效拦蓄量为17.03t/hm2;落叶松白桦混交林的枯落物生物量为5.54t/hm2,最大持水量为13.0t/hm2,有效拦蓄量为13.7t/hm2。2半分解层枯落物浸泡8h已基本达到饱和,而未分解层需浸泡10h,持水量与浸泡时间的关系式为Q=alnt+b;枯落物在浸水的前0.5h内吸水速率最大,4h左右时吸水速率明显减缓。  相似文献   

9.
通过对北京山地4个不同海拔侧柏人工林枯落物层水文效应进行研究,结果表明:北京山地侧柏人工林枯落物总储量在11.35~25.06t.hm-2之间,最大持水量在13.39~53.55t·hm-2之间,有效拦蓄能力在11.39~39.63t·hm-2之间,最大持水率在123.32%~217.85%之间,枯落物持水量与浸泡时间呈明显对数关系,枯落物吸水速率与浸泡时间呈明显幂函数关系。综合来看,海拔为758.55m的侧柏人工林枯落物涵养水源能力最好。  相似文献   

10.
目的 探究林龄对华北落叶松林枯落物水文效应的影响。 方法 于2017年6月在宁夏六盘山香水河小流域选择4种林龄阶段(16、25、34、43a)的华北落叶松人工林样地,调查林分结构和测量林下枯落物蓄积量、厚度、持水量等指标,分析不同林龄华北落叶松枯落物层持水能力差异。 结果 研究表明:(1)华北落叶松枯落物厚度介于4.5~6.0 cm,总蓄积量在29.08~33.21 t·hm-2,且半分解层蓄积量高于未分解层蓄积量,4种林龄枯落物厚度与蓄积量均表现为成熟林>近熟林>中龄林>幼龄林。(2)各龄林枯落物最大持水量介于79.47~110.05 t·hm-2,成熟林最大;最大持水率变动在273.32%~341.27%,中龄林最大。(3)各龄林枯落物持水量、吸水速率与浸水时间动态变化均类似,枯落物持水过程表现为浸水0.5 h内吸水速率最大,4 h之后吸水速率趋于平缓,10 h后枯落物持水量基本饱和,持水量与浸水时间均呈明显对数关系(R2>0.92)。(4)各龄林枯落物有效拦蓄量在43.64~70.52 t·hm-2之间,成熟林拦蓄能力最强。 结论 综合分析4种林龄枯落物水文效应,成熟林枯落物层水文功能最强。  相似文献   

11.
指出了森林枯落物是森林生态系统的重要组成部分,枯落物层是森林拦蓄降水的重要环节。为了调查景谷县森林枯落物水文作用,选取了具有代表性的6个大样区和18个标准样地进行调查取样,结果表明:(1)景谷县3种植被类型中枯落物蓄积量最大的是季雨林,最小的是暖性针叶林,常绿阔叶林和李雨林林下枯落物半分解层所占比例要比未分解层大,而暖性针叶林林下枯落物未分解层所占比例要比半分解层大;(2)景谷县3种植被类型中,常绿阔叶林枯落物自然含水率最高,季雨林最小,暖性针叶林介于二者中间;(3)自然状态下,阔叶林枯落物的最大持水率大于针叶林,但由于针叶林枯落物数量较多,不易分解糜烂,因此仍有很强的拦蓄能力,3种植被类型中,暖性针叶林的拦蓄能力是最强的。  相似文献   

12.
北京九龙山不同立地土壤蓄水量及水分有效性的研究*   总被引:12,自引:1,他引:12       下载免费PDF全文
对九龙山不同立地土壤蓄水量和土壤水分有效性研究结果表明:阴坡中下部的人工油松林、中上部的灌木林和裸地,以及阳坡中下部的人工侧柏林、中上部的灌木林和裸地的土壤有效涵蓄量分别为:149.63、133.49、102.49、99.93、95.92、70.78mm;土壤的饱和蓄水量变化范围在1605.86~2353.66t/hm2之间。土壤水分只有7、8两月处在易效水阶段,其它时间均属难效水范围,即使雨季的土壤有效水分也难以达到田间持水量,春旱时期土壤水分接近或低于土壤凋萎含水量。  相似文献   

13.
北京九龙山不同植被土壤水分特征的研究*   总被引:21,自引:2,他引:21       下载免费PDF全文
通过实测的土壤水分特征曲线,分析了不同植被的土壤持水性。结果表明:土壤吸力与土壤含水量之间存在着显著的幂函数关系,它们的数学模型为:θ=aSb;土壤的持水性由好到差依次为:阴坡灌木、阴坡裸地、阴坡油松、阳坡灌木林地的土壤持优于乔木林地,所有林地的表层土壤(0-20cm)的持水性均优于下层土壤(20-60cm);回归分析结果表明,在相同的立土地条件下,影响土壤中、低吸力段持水性的主要因子为土壤容重、  相似文献   

14.
在西江中上游肇庆市德庆三叉顶市级自然保护区,对人工次生林不同坡向的凋落物水文效应进行了研究,结果如下:(1)凋落物持水率与浸泡时间存在对数曲线关系,而凋落物吸水速率与浸泡时间呈指数函数关系;不同森林类型凋落物持水率和吸水速率随时间的动态变化规律基本相似;(2)不同坡向林分凋落物最大持水率的大小顺序为:东南坡(172.3...  相似文献   

15.
鼎湖山3种不同演替阶段森林凋落物的持水特性   总被引:4,自引:0,他引:4  
研究鼎湖山自然保护区内处于演替前期的马尾松针叶林(PF)、处于演替中期的马尾松针阔混交林(MF)和处于演替顶极阶段的季风常绿阔叶林(M EBF)3种群落的凋落物及其不同分解层的现存量、持水量、持水速率和持水率.结果表明:凋落物现存量表现为PF(21.96 t·hm-2)>MF(14.59 t·hm-2)>MEBF(10.40 t·hm-2),顶极群落MEBF凋落物现存量最小;3种群落凋落物最大持水量为13.68 ~ 50.10 t·hm-2,持水深表现为PF(5.0mm)>MF(2.8 mm)>MEBF(1.4 mm);PF凋落物已分解层持水量占凋落物持水总量比重大(44.3%),而MEBF已分解层的贡献仅为16.7%;凋落物及其各分解层的持水量均随浸水时间呈对数关系增加,其截持水过程主要发生在0.5~2 h内,0.5h内平均持水速率表现为PF(4.35 mm·h-1) >MF(2.22 mm·h-1) >MEBF(1.19 mm·h-1),均随浸水时间的增加按幂函数方程降低;凋落物最大持水率表现为PF(306.3%)>MF(289.0%)>MEBF(239.3%),且伴随PF→MF→MEBF的演替,半分解层及已分解层凋落物的持水率即持水能力明显降低;演替早期PF凋落物具有较高的降水截留能力,尤其是其凋落物的已分解层,而后期MEBF凋落物未分解层对整体截留能力贡献大.  相似文献   

16.
祁连山森林土壤的水文生态效应   总被引:1,自引:0,他引:1  
祁连山水源涵养林受立地水热条件的影响和自然、历史干扰,多世代演替共存,分布占祁连山3个垂直气候带,主要由湿性灌丛林、青海云杉林、祁连圆柏林、干性灌丛林4种类型组成,6个林型即湿性灌丛林、藓类青海云杉林、灌木青海云杉林、草类青海云杉林、祁连圆柏林、干性灌丛林。调查研究表明,各类森林枯落物(层)的现存量,组成成分、持水率、持水量等均不相同。森林土壤矿质层的主要物理性质因森林类型而不同,并均随着土壤的深度呈某种规律性的变异。森林土壤的持水量主要受土壤孔隙度的影响。在祁连山林区,森林土壤的持水量较非林地(牧坡草地)土壤为高,在各森林类型中青海云杉林和灌丛林的持水量,较祁连圆柏林为高。  相似文献   

17.
不同间伐强度天然次生林凋落物性质的研究   总被引:1,自引:0,他引:1  
对近40年生以柞树为主的天然次生林采取不同抚育间伐措施后,定位研究林分凋落物的性质。结果表明:凋落物量每年从10月份开始增大,到12月末达到高峰,全年各个时期,凋落量最大的基本为弱度间伐区。枯枝落叶年凋落量和贮量以弱度间伐区最大,强度间伐区最小。凋落物总量的分解转化率以强度间伐区最高,对照区最小。研究认为,对天然次生林中的幼林采取适度抚育间伐可改善林地凋落物状况,有利于林地的养分供给。  相似文献   

18.
A preliminary study of the hydrological effects of forest litter and soils in the Simianshan Mountains was carried out. Results indicate that the annual accumulation of different forest litters is about 6.80–20.21 t/hm2 and the maximum water carrying capacity ranges from 1.8 to 4.6 mm. Among them the water carrying abilities of the litter of Lithocarpus glabra and natural deciduous forests are larger than that of Pinus massoniana. A power function relationship exists between the accumulated water-carrying volume and time. An investigation of the physical properties shows that forest soils, to a depth of 1 m, have a powerful water-carrying ability, varying from 7.84 to 18.87 mm. Non-linear regression analysis shows that the soil infiltration rate is significantly correlated with time. __________ Translated from Journal of Beijing Forestry University, 2005, 27(1): 33–37 [译自: 北京林业大学学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号