共查询到20条相似文献,搜索用时 15 毫秒
1.
The solution phase forms of Cu, Mn, Ni, and Zn in digested sewage sludge and a soil/sludge mixture were investigated. Gel filtration chromatographic analysis indicated that Cu and possibly Ni were maintained in solution by association with a soluble, high molecular weight organic fraction; Mn solubility was due to the presence of unbound inorganic species and soluble Zn was distributed equally between the two forms. Speciation of the metals in the solution phase of the soil/sludge mixture generally reflected that of the sludge. However, the total amount of soluble Mn in the soil/sludge mixture was approximately 25 times greater than in the sludge and was attributed to heavy metal induced release of indigenous soil Mn. Increases in the quantities of soluble Ni and Zn in both the sludge and the soil/sludge mixture following equilibration with 40 mg L ?1 NTA were due to conversion of solid phase forms to soluble metal-NTA complexes. The preferential complexation of NTA with Cu already present in soluble organic forms resulted in a change in speciation without a corresponding increase in solubility. The importance of changes in speciation with regard to potential metal mobility and bioavailability within sludge-amended soil is discussed. 相似文献
2.
Journal of Soils and Sediments - The aim of the research was to determine the potential of dissolved humic substances extracted from leonardite to mobilize Cu and Pb from multi-metal contaminated... 相似文献
3.
Purpose Acidic soils exhibit high trace element availability compared to neutral pH soils, and thus, when trace metals are added (e.g.
due to sewage sludge application), measures should be taken to reduce their mobility. In this experiment, we tested two such
methods, liming and zeolite addition. The aim was to measure the availability, in ryegrass ( Lolium perenne L.), of heavy metals (Cu and Zn) added to soil with sewage sludge in both acidic and limed soil. 相似文献
4.
This work describes simultaneous determination of Zn, Cd, Pb and Cu in soil extract by d. c. anodic stripping voltammetry at the hanging mercury drop electrode. Soil samples were taken from six different areas characterized by different degrees of heavy metal pollution. The metals were extracted from the soil samples using 0.5 M HCI. The base electrolyte for ASV was 0.2 M acetic buffer at pH 5.0. These results are compared with those obtained by using atomic absorption spectrophotometric method. The accuracy and precision of the presented method are satisfactory (relative standard deviation is 3.5 to 11%). Iron, Al and Ti contained in the extract in the concentration of 1120, 5400, and 480 µg g ?1, respectively, do not present measurement difficulties.[/p] 相似文献
5.
Purpose The main objective of this study was to evaluate the potential of a counter-current leaching process (CCLP) on 14 cycles with leachate treatment at the pilot scale for Pb, Cu, Sb, and Zn removal from the soil of a Canadian small-arms shooting range. Materials and methods The metal concentrations in the contaminated soil were 904?±?112 mg Cu kg –1, 8,550?±?940 mg Pb kg –1, 370?±?26 mg Sb kg –1, and 169?±?14 mg Zn kg –1. The CCLP includes three acid leaching steps (0.125 M H 2SO 4?+?4 M NaCl, pulp density (PD)?=?10 %, t?=?1 h, T?=?20 °C, total volume?=?20 L). The leachate treatment was performed using metal precipitation with a 5-M NaOH solution. The treated effluent was reused for the next metal leaching steps. Results and discussion The average metal removal yields were 80.9?±?2.3 % of Cu, 94.5?±?0.7 % of Pb, 51.1?±?4.8 % of Sb, and 43.9?±?3.9 % of Zn. Compared to a conventional leaching process, the CCLP allows a significant economy of water (24,500 L water per ton of soil), sulfuric acid (133 L H 2SO 4 t –1), NaCl (6,310 kg NaCl t –1), and NaOH (225 kg NaOH t –1). This corresponds to 82 %, 65 %, 90 %, and 75 % of reduction, respectively. The Toxicity Characteristic Leaching Procedure test, which was applied on the remediated soil, demonstrated a large decrease of the lead availability (0.8 mg Pb L –1) in comparison to the untreated soil (142 mg Pb L –1). The estimated total cost of this soil remediation process is 267 US$ t –1. Conclusions The CCLP process allows high removal yields for Pb and Cu and a significant reduction in water and chemical consumption. Further work should examine the extraction of Sb from small-arms shooting range. 相似文献
6.
PurposeThe presence of high copper (Cu) and cadmium (Cd) contamination in soils around mining areas has raised serious health concerns. Improving hydroxyapatite (HAP) adsorption capacity for Cu and Cd is important if its application potential in heavily contaminated soils is to expand.Materials and methodsThe micro/nanostructured HAP (mnHAP) was synthesized using a template-induced method to improve the HAP immobilization of Cu and Cd in contaminated soils. Commercial and synthetic HAPs were evaluated as amendments in Cu and Cd remediation tests with 1.5 and 3.0 % addition level for 90 days, and soils without HAP materials (0.0 %) were designated as the controls; each treatment was repeated three times. The materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption, and scanning electron microscopy (SEM)-energy-dispersive spectra (EDS) and then quantitatively determined the Cu and Cd contents by inductively coupled plasma (ICP) and inductively coupled plasma mass spectrometry (ICP-MS).Results and discussionThe mnHAP was more effective in immobilizing Cu and Cd than the two commercial HAPs. After treatment with mnHAP at the 3.0 % addition level for 90 days, the contaminated soils showed 55.2 and 84.8 % reductions in Cu and Cd concentrations in the toxicity characteristic leaching procedure (TCLP) leaching procedure, respectively. The experimental data indicated that the enhanced Cu and Cd immobilization by mnHAP was due to the increases of surface area and the improvement of structure and newly introduced carboxylate groups on its surface.ConclusionsThese findings show that regulating the structure and surface properties of HAP can enhance Cu and Cd immobilization in soils. 相似文献
7.
PurposeVanadium (V) contamination in soil can cause diverse damage to soil ecosystem and has attracted research interests in exploring soil V stabilization methods, but only a few materials were proposed and studied. Here, a pot experiment was firstly conducted to estimate the efficiency of nano-hydroxyapatite (n-HAP) in stabilizing V in soil. To verify the impact of n-HAP on soil V bioavailability and phytotoxicity, cabbages (Brassica chinensis L.) were grown in V-spiked soils after n-HAP amendment. Materials and methodsSoils were sampled from a farmland in China, and the n-HAP was prepared in the laboratory. In each pot of soil spiked with 0, 75, 150, 300, and 600 mg/kg V, 2% n-HAP was amended for 30 days, while soils without n-HAP amendment were set as controls. The stabilization effect of n-HAP on V in soil was estimated by the water-extractable and bioavailable V concentrations in soils. Cabbages were grown in pots subsequently. The V(V/IV) concentrations in cabbage leaves and roots, the organic bound V concentrations in cabbage roots, and the chlorophyll concentrations in leaves were determined. Bioconcentration factor and translocation factor were calculated. The composition of organic bound V in leaf was characterized by fluorescence excitation–emission matrix. Results and discussionIn soils spiked with 150 mg/kg V, n-HAP amendment yielded the highest stabilization rates of 51.0% and 42.4% for water-extractable and bioavailable V, respectively. In 75, 150, and 300 mg/kg V-spiked soil, the plant weight, plant height, and root length of cabbage after 60-day growing decreased 54.6%/89.6%, 30.9%/45.5%, and 41.5%/51.4% in groups with/without n-HAP, respectively. Cabbage leaf chlorophyll concentrations descend firstly then ascend with rising soil V concentration. Leaf V speciation analysis revealed that less leaf V was reduced to V(IV) in groups amended with n-HAP than groups without n-HAP amendment. In 150 and 300 mg/kg V-spiked soil, n-HAP effectively reduced the V content and the V bioconcentration factor of cabbage root. Tyrosine-like and humic acid-like analogues composed the principal part of V complex. ConclusionsIn general, n-HAP amendments are potential to decrease the mobility of V in soils, as well as inhibit the bioavailability and phytotoxicity of V to cabbage. In V-spiked soils, n-HAP amendment can alleviate the toxicity of V to the cabbage. Overall, 2% n-HAP is efficient for the amendment of slight V-polluted (150–300 mg/kg) soils to alleviate the soil V stress to cabbage. 相似文献
8.
利用植物修复污染土壤是一种被人们认为安全可靠的方法.植物修复技术不仅能修复被石油污染的土壤,而且对更多品种污染的土壤修复有效,植物降解高分子有毒化合物的基础是根际环境及根际微生物,与无植物土壤不同.对根际区微生物降解和转化有机化合物的研究,更多的集中于植物对杀虫剂和除草剂的降解.事实证明,生物修复污染土壤是一项实用性和有效性很强的技术. 相似文献
9.
Background, aim, and scope Heavy metal (HM) mobility in soil depends on the HM species in it. Therefore, knowledge of the HM speciation in soil allows
the prediction of HM impact on the environment. HM speciation in soil depends on the metal chemical origin, soil texture,
and other factors such as the origin and level of soil contamination. Recently, the problem of organic waste utilization is
of great importance as the amount of this recyclable material is continually increasing. One of the possible ways of recycling
is the use of processed organic wastes for agricultural needs. In this research, aerobically composted sewage sludge was used,
the utilization of which is of essential importance. But one of the most serious restrictions is HM transfer from such material
to the soil. Therefore, a prediction of HM mobility in soil and its migration in the environment is an important issue when
using sewage sludge compost (SSC) in agriculture. Zn, Cu, and Pb speciation was performed according to the modified methodology
of Tessier et al. (Anal Chem 51:844–851, 1979) in two different (sandy and clay) soils with background HM amounts and in soil samples amended with aerobically digested
SSC to find out the predominant species of the investigated HM and to predict their potential availability.
Materials and methods The modified method of sequential extraction initially proposed by Tessier et al. (Anal Chem 51:844–851, 1979) is designed for HM speciation into five species where HM mobility decreases in the order: F1—exchangeable HM (extracted with 1 M MgCl 2 at an initial pH of 7 and room temperature), F2—carbonate-bound HM (extracted with 1 M CH 3COONa buffered to pH 5 at room temperature), F3—Fe/Mn oxide-bound HM (extracted with 0.04 M NH 2OH·HCl at an initial pH of 2 at 96°C), F4—organic matter-complexed or sulfide-bound HM (extracted with 0.02 M HNO 3 and 30% ( v/ v) H 2O 2 at a ratio of 1:1 and an initial pH of 2 at 85°C), and F5—the residual HM (digested with HNO 3, HF, and HCl mixture). After digestion, HM amounts in solution were determined by atomic absorption spectrometry (AAS ‘Hitachi’).
Mixtures of uncontaminated soils of different textures (clay and sandy) with SSC in ratios 20:1, 10:1, and 5:1 were used to
simulate the land application with SSC. During a period of 7 weeks, changes in Zn, Cu, and Pb content within species were
investigated and compared weekly in soil–SSC mixtures with their speciation in pure soil and in the SSC.
Results Results in the SSC showed that more HM were found as mobile species compared to the soils, and in sandy soil, more were found
in the mobile species than in clay soil. But the HM speciation strongly depended on the metal chemical origin. According to
the potential availability, HM ranked in the following order: Zn>Pb>Cu. Zinc generally occurred in the mobile species (F1
and F3), especially in sandy soils amended with SSC, and changes of the Zn speciation were insignificant at the end of the
experiment. Pb transfer to insoluble compounds (F5) was evident in the SSC–soil mixtures. This confirms that Pb is extremely
immobile in the soil. However, the observed increase of Pb amounts in the mobile species (F1 and F2) during the course of
experiment shows a critical trend of Pb mobilization under anthropogenic influence. Copper in the soil–SSC mixtures had a
trend to form compounds of low mobility, such as organic complexes and sulfides (F4) and nonsoluble compounds (residual fraction
F5). Initially, the amounts of mobile Cu species (F1 and F2) increased in the soils amended with SSC, probably due to the
influence of SSC of anthropogenic origin with lower pH and high organic matter content, but Cu mobility decreased nearly to
the initial level again after 3–4 weeks. Hence, the soil has a great specific adsorption capacity to immobilize Cu of anthropogenic
origin.
Discussion Zn mobility and environmental impact was greater than that seen for Cu and Pb, while mobility of both Cu and Pb was similar,
but variable depending on soil texture and contamination level. The effect on the shift of HM mobility and potential availability
was greater in sandy SSC-amended soils than in clay soils and increased with an increasing amount of SSC.
Conclusions Usage of SSC for land fertilization should be strictly regulated, especially regarding Pb amounts.
Recommendations and perspectives The influence of SSC on Cu and Zn mobility and potential availability was more significant only in the case of sandy soil
with a higher SSC ratio. Nevertheless, this waste product of anthropogenic origin increased Pb mobility in all cases in spite
of only moderate Pb mobility in SSC itself. Therefore, aerobic processing of sewage sludge must be strictly regulated, especially
regarding Pb amounts, and SSC ratios must be in control regarding HM amounts when using it for on-land application. 相似文献
10.
To investigate the influence of grape-pruning-residue (GPR) biochar on cadmium (Cd), lead (Pb), copper (Cu) and zinc (Zn) immobilization in a contaminated soil, a laboratory study was conducted with different rates of GPR biochar (0, 2, 5 and 10% w/w) at 25°C. After 1, 2, 4, and 8 weeks of incubation, the Tessier sequential extraction procedure was performed and metal mobility factor ( MF) and metal stability index ( IR) were calculated. The exchangeable (EX) and carbonate (CAR) fractions of the metals decreased significantly (p ≤ 0.05) with the biochar addition. The EX metal fractions decreased by 23 to 72%, and the CAR fractions decreased by 51 to 67% in the 10% biochar treatment after 8-week incubation. The MF values of Cd, Pb, Cu and Zn decreased by 47, 62, 70 and 49%, respectively, with addition %10 of the biochar. Biochar addition favored the metal redistribution into more stable fractions and resulted in an increase in IR values. The results demonstrated that the GPR biochar, especially at high application rate (10%), can effectively immobilize the heavy metals, thereby reducing their mobility in contaminated soils. 相似文献
11.
Analysis of phospholipid fatty acids (PLFAs) was performed to investigate effects of 2,4,6-trinitrotoluene (TNT) contamination and soil remediation on microbial biomass and community structure. A TNT-contaminated and an uncontaminated soil from a former ammunition plant were analysed before and after a humification/remediation process. TNT contamination reduced microbial biomass but indicated only minor differences in PLFA composition between the contaminated and uncontaminated soils. The humification process increased microbial biomass and altered soil PLFA patterns to a larger degree than did TNT contamination. 相似文献
12.
Abstract. Analyses of soil and hay samples collected from the Park Grass Experiment at Rothamsted during the last 137 years indicate slow but significant increases in KCl- and EDTA-extractable aluminium in soil and a sudden and very large recent increase in the concentration of aluminium in the herbage. The latter is associated with a sudden increase in the rate of acidification of the soil over the last 10–15 years and the mobilization of aluminium as the soil enters the aluminium buffer range -a Chemical Time Bomb. Such severe acidification from atmospheric inputs on a well-buffered soil illustrates how quickly an apparently stable situation can change as a result of acid deposition. It highlights the need to protect soils and plants from the effects of acidification by decreasing acid inputs or by liming. 相似文献
13.
Recent progress in methods enables a better understanding of the turnover of P in the rhizosphere. Examples of this progress are the separation of soil layers differing in proximity to the roots, improved methods for extraction and fractionation of soil P, application of 32P isotope dilution analysis to follow P fluxes between various fractions and direct determination of microbially bound P and of root phosphatases. - These methods were combined to investigate the following aspects
- –labile P pools, the P fluxes between these pools and their contribution to the P supply to growing maize roots
- –the role of microbial biomass in these interactions and the partition of mobilized P between plants and microorganisms
- –modifications of sorption and transport of P in the rhizosphere
- –plant availability of native and added organic phosphates, and the relative significance of root and soil phosphatases.
There is a significant transformation of P in the rhizosphere with a corresponding redistribution among fractions of different plant availability. About 9% of the inorganic 32P added to soil were incorporated within 2 weeks into microbial and organic fractions. The transfer of P from non-exchangeable forms exceeded the depletion of the exchangeable P by a factor of 5. About 53% of the mobilized P originated from inorganic, the remaining 47% from organic fractions. Of the mobilized P 80% was taken up by the plants and 20% was found in the microbial biomass. Up to 90% of the P in the rhizosphere soil solution was organic with a maximum just outside the root zone. Soluble inositol hexaphosphate modified the sorption of inorganic P, thus shifting its equilibrium solution concentration. The phosphatase activity of the roots is considerable. Both root phosphatase activity and the utilization of inositol hexaphosphate depend on the P supply and nutritional status of plants with regard to P. It is concluded that the rhizosphere is a key site of P transformation with a significant mobilization of P from the non-exchangeable inorganic and organic fractions. Organic P fractions not only play a significant role as a P source but also modify important soil parameters related to the sorption and transport of P in the rhizosphere. 相似文献
14.
The adsorption and ion-exchange behavior of Co, Cu, Zn, and Cd were studied in two soils of different genesis. The sorption parameters and selectivity coefficients of the Me-Ca ion exchange were determined using the Langmuir and Freundlich adsorption isotherms and two models of ion-exchange sorption based on the mass action law (a polyfunctional ion exchanger and a mixture of two ideal exchangers) for describing the relationships between the dissolved and sorbed metal forms. It was shown that simple models provided information for better understanding of the behavior of metals in sorption and ion-exchange processes, but the conclusions about the sorption of different metals in a specific soil or a specific metal in different soils based on these models can be different. 相似文献
15.
为探讨皂角苷对污泥中Cu和Zn去除的机制,采用化学淋洗的方法研究皂角苷浓度(0~7%)、pH(2~6)、振荡时间(0~48 h)、温度(10、25、40℃)和提取次数(1~4次)对四种生活污泥中Cu和Zn去除率的影响,分析去除前后重金属的形态,并监测去除过程中浸出液pH的变化。结果表明,单次淋洗条件下,皂角苷对Cu的去除率大于Zn;皂角苷溶液的pH对Cu的去除没有显著影响,而Zn的去除率在pH下降到2时明显增加;Cu经过6~12 h的振荡就能达到最大去除,Zn则需要经过较长时间的振荡(48 h)才能达到较好去除;提高振荡温度,Cu的去除率降低而Zn的增加;随着提取次数的增加,Cu和Zn的去除率均增加,Cu的去除以第1次提取为主,Zn的4次提取均有较好效果,用3%的皂角苷溶液连续4次提取后,Cu和Zn的累积去除率最大分别达到32.61%和39.32%;增加振荡时间、提高振荡温度、增加提取次数以及降低皂角苷溶液pH均能降低浸出液的pH。经过3%的皂角苷溶液的提取,污泥中各形态Cu的含量均减少,其中66%以上的酸溶态被去除;而Zn的酸溶态含量减少不明显,可还原态、可氧化态和残渣态均有所降低,但以残渣态的减少为主。 相似文献
16.
The influence of vegetational background on binding of selected heavy metals in humus was examined. For this purpose samples of terrestrial humus from surface soil layers with different vegetational background, such as spruce, pine and oak forests, and different types of mires were studied with respect to differences in binding of Cd, Cu, Pb and Zn. The metal binding capacity was examined at different pH using batch extractions. The results indicated that vegetational background influences the binding of metals in organic soil significantly. Drying and storage of the soil samples appeared not to affect the metal binding capacity of the soils. Neither did heating of the samples at 100 °C or incubation at constant temperature and moisture affect the binding significantly, indicating that any fungi or soil microorganisms present did not appreciably affect the metal binding in these soils. 相似文献
17.
Journal of Soils and Sediments - Intercropping is a promising technique for remediation of soils contaminated with heavy metals. Organic acids can increase the availability of heavy metals in soil.... 相似文献
18.
研究了Zn2+在单一及与Cd2+、Cu2+共存条件下在塿土、黄绵土、黑垆土、黄褐土、砂土5种土壤中的吸附特征,并探讨了其吸附机制。结果表明,在20℃、30℃下,Zn2+在各供试土样中吸附等温线总体上均呈I或III型等温线形式,总体上黑垆土、塿土对Zn2+吸附最强,而砂土的吸附总是最差;塿土、黄绵土和黄褐土中Zn2+吸附的温度效应呈现升温正效应特征,砂土中则总体上表现出随温度上升呈下降趋势,黑垆土中Zn2+吸附的温度效应则与重金属处理有关。Freundlich模型是描述Zn2+吸附等温线最佳模型。Cd2+、Cu2+的共存对Zn2+的吸附均具有显著的拮抗作用,但对Zn2+吸附规律的影响不同。机理分析表明,Zn2+在土壤中的吸附主要以化学吸附为主,Cu2+由于其与Zn2+相似的化学吸附特点而竞争Zn2+化学吸附点位,但Cd2+吸附主要竞争以电性引力形式吸附的Zn2+,因而Cu2+对Zn2+吸附的影响较大,而Cd2+影响较小。 相似文献
20.
The cereal crops (barley - Hordeum vulgare L., maize - Zea mays L., wheat - Triticum vulgare L.) were grown in a greenhouse using a sandy soil type treated with various doses of cadmium carbonate (salt), copper carbonate (malachite), lead carbonate (cerussite), and zinc carbonate (smithsonite), added jointly. The following levels of these metals were used: Cd ? 5, 10, 50 μg g ?1 soil; Cu and Pb - 50,100, 500 μg g ?1 soil; Zn-150, 300, 1500 μg g-1 soil. Sequential extraction was adopted to partition the metals into five operationally-defined fractions: exchangeable, carbonate, Fe-Mn oxides, organic, and residual. The residual was the most abundant fraction in the untreated (control) soil for all the metals studied (50 to 60% of the total metal content). The concentrations of exchangeable Cd, Cu, Pb, and Zn were relatively low in untreated soil but increased (over the three year period) in treated soils for Cd, Zn, and Cu, whereas only small changes were observed for Ph. This experiment showed a significant increase in Cd, Zn, and Cu in tissue of plants grown on the treated soil, but a non-significant change in plant tissue with respect to Pb concentration. 相似文献
|