首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of pH on nitrogen mineralization in crop-residue-treated soils   总被引:1,自引:0,他引:1  
Summary This study compares N mineralization in soils treated with crop residues [corn (Zea mays L.), soybean (Glycine max (L.) Merr.), sorghum (Sorghum vulgare Pers.)] or alfalfa (Medicago sativa L.) at three adjusted soil pH values (4, 6, and 8); pH was adjusted with dilute H2SO4 or KOH. A sample of soil (20 g) was treated with 0.448 g plant material (equivalent to 50t ha–1), mixed with 20 g silica sand adjusted to the pH of the soil, and packed in a leaching tube. The soil-sand mixture was leached with 100 ml 5 mM CaCl2 adjusted to the same pH as that of the treated soil to remove the initial mineral N, and incubated at 30°C. The leaching procedure was repeated every 2 weeks for 20 weeks. Results from three soils showed that N mineralization increased as the soil pH increased. In one soil (Lester soil), significant amounts of NH 4 + -N accumulated at pH 4 during the first 12 weeks. Treatment with corn and soybean residues resulted in a marked reduction in N mineralization, especially at pH 4. The percentage of organic N mineralized from sorghum residue and alfalfa added to soils increased as the soil pH increased; the values ranged from 7.7% to 37.0% for sorghum and from 17.2% to 30.1% for alfalfa.  相似文献   

2.
Abstract

Barley roots were interposed as membranes in electrochemical concentration cells. The electric potential which developed across the calomel electrodes, known commonly as the root potential, was measured as a function of pH. The root potential increased with pH reaching a maximum at pH 5.5, beyond which the values remained constant. This is explained in terms of the dissociation of the acid and basic groups that form part of the structures of the root surface and membranes.

The point of zero charge of the roots was determined by a method based on adding increasing amounts of roots to KC1 solutions of different pH and concentration. The results were somewhat higher than those obtained earlier from root potential measurements 1 2 i.e. 4 ‐ 5, compared to about 31,2. This difference was attributed to secondary reactions, related to the buffer capacity of the roots.  相似文献   

3.
酸雨对土壤有机碳氮潜在矿化的影响   总被引:16,自引:0,他引:16  
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control ofpH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg^-1 dry soil, net production of available N from 17.37 to 48.95 mg kg^-1 dry soil, and net production of NO3-N from 9.09 to 46.23 mg kg^-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P 〈 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.  相似文献   

4.
三江平原土地耕作对土壤氮矿化势和硝化势的影响   总被引:2,自引:3,他引:2  
研究了三江平原土地耕作对土壤矿化势和硝化势的影响。研究表明,随着耕作年限的增加,土壤氮矿化势在降低,耕作3年土壤为23.020±1.562mg kg-1,7、15、25年分别为22.649±2.597 mg kg-1,22.856±3.594 mg kg-1,17.315 ±0.256 mg kg-1;而弃耕后,土壤矿化势增加,土壤的矿化势与土壤活性有机质含量呈正相关(r=0.95)。硝化势的变化正相反,耕作3、7、15、25年土壤硝化势分别为0.055±0.005 mg kg-1d-1,0.083±0.001 mg kg-1d-1,0.101±0.025 mg kg-1d-1和0.086±0.015 mg kg-1d-1,在耕作土壤中pH值是影响硝化的主要因素。一般说来,随着耕作年限增加,土壤的供氮能力在降低,氮的可利用性下降;相反,弃耕能提高土壤的供氮能力,增加土壤氮的可利用性。  相似文献   

5.

Purpose

Granular activated carbon (GAC) that is both an efficient polychlorinated biphenyl (PCB) adsorbent and a good growth support for microorganisms is considered suitable for in situ remediation of PCB-contaminated aquatic sediment. Here, the potential competition between biofilm formation and PCB (Aroclor 1260) adsorption on GAC in a PCB-contaminated aquatic sediment was investigated.

Materials and methods

GACs, both coated and uncoated with biofilm or PCBs, were incubated with sediment. Each was monitored for biofilm development and PCB adsorption by: (a) cryo-scanning electron microscopy, (b) real-time quantitative PCR analysis of the 16S rRNA, (c) terminal restriction fragment length polymorphism and (d) chemical analysis.

Results and discussion

Biofilm formation on the GAC by the sediment's bacteria was rapid and occurred in three stages: (1) initial adherence of discrete bacteria, (2) an increase in biomass associated with a shift in bacterial diversity and (3) exopolymeric matrix production. The density and biodiversity of the multispecies biofilm depended on the biofilm's age. The addition of Aroclor 1260 to the sediment resulted in a decrease of the biofilm biomass, whereas Aroclor 1260 previously adsorbed on the GAC prior to contact with the sediment did not influence the biofilm biomass or its formation dynamics. Similarly, a biofilm previously developed on the GAC did not significantly decrease PCB adsorption, although contact of the GAC with the sediment did hamper adsorption of the higher chlorinated PCB congeners.

Conclusions

A mature multispecies bacterial biofilm developed in 1 month on GAC in contact with aquatic sediment did not hamper PCB adsorption, and PCB adsorption did not influence biofilm formation. These findings are important for the application of remediation strategies.  相似文献   

6.
Abstract

Herbicides have potential for economical and efficient site preparation following timber harvest. The effects of tebuthiu‐ron, one of the herbicides approved for this use, on soil nitrogen (N) mineralization and nitrification were determined in laboratory incubations. Tebuthiuron was added at rates from 0 to 1000 μg g‐1 to three soils. There was no effect of tebuthiuron additions of less than 1 μg g‐1 on soil N mineralization and nitrification. Tebuthiuron reduced nitrification in all soils at 1000 μg g‐1 and in two of the soils at 100 μg g‐1 . All soils had increased net mineralization with tebuthiuron added at 100 and 1000 μg g‐1. The addition of 50 μg NH+ 4‐N and 1000 μg tebuthiuron g‐1 resulted in increased net mineralization in the three soils. Nitrification was affected differently in each of the three soils by the addition of both NH+ 4‐N and tebuthiuron. The added NH+ 4‐N either removed the inhibition of nitrification by the herbicide or had no effect on the inhibition in two of the soils. In the third soil, nitrification was reduced by the addition of NH+ 4‐N.

The presence of NO 3‐N in these acid soils and the effects of added NH+ 4‐N on NO 3‐N production suggest that heterotrophic nitrification occurs in at least two of the soils. The findings of this study indicate that any effects of tebuthiuron on N mineralization and nitrification at the currently recommended application rates are likely to be transient and localized.  相似文献   

7.
Individual and combined effects of Cu,Pb,Zn and Cd on N mineralization,urease and phosphatase were examined in a Typic Udic Ferrisol in laboratory by employing and uniform design and a single factor design,Soil pollution caused by heavy metals inhibited N mineralization (N0 value)and urease and phosphatase activities.The combined pollution of metals alleviated their toxicity to N mineralization to some extent whereas aggravated the toxicity to urease and phosphatase.Phosphorous application could mitigat the toxic effect of heavy metals on phosphatase activities,while alleviating effect of N application on the toxicity of heavy metals to urease was inconsistent.However,the mitigating effect of the fertilizers was limited in heavily polluted soils.  相似文献   

8.
Although soil Collembola are known to contribute to soil carbon (C) cycling, their contribution to the mineralization of C sources that differ in bioavailability, such as soil organic C (SOC) and leaf litter, is unknown. Stable C isotopes are often used to quantify the effects of both soil C and litter C on C mineralization. Here, 13C-labeled litter was used to investigate the effects of Collembola (Folsomia candida) on the mineralization of both SOC and litter C in laboratory microcosms. The three microcosm treatments were soil alone (S); soil treated with δ13C-labeled litter (SL); and soil treated with δ13C-labeled litter and Collembola (SLC). The presence of Collembola did not significantly affect soil microbial biomass or litter mass loss and only had a small effect on CO2 release during the first week of the experiment, when most of the CO2 was derived from litter rather than from SOC. Later, during the experiment (days 21 and 63), when litter-derived labile C had been depleted and when numbers of Collembola had greatly increased, Collembola substantially increased the emission of SOC-derived CO2. These results suggest that the effect of Collembola on soil organic C mineralization is negatively related to C availability.  相似文献   

9.
Effect of freeze-thaw events on mineralization of soil nitrogen   总被引:15,自引:0,他引:15  
Summary In humid regions of the United States there is considerable interest in the use of late spring (April–June) soil NO 3 concentrations to estimate fertilizer N requirements. However, little information is available on the environmental factors that influence soil NO 3 concentrations in late winter/early spring. The influence of freeze-thaw treatments on N mineralization was studied on several central Iowa soils. The soils were subjected to temperatures of-20°C or 5°C for 1 week followed by 0–20 days of incubation at various temperatures. The release of soluble ninhydrin-reactive N, the N mineralization rate, and net N mineralization (mineral N flush) were observed. The freeze-thaw treatment resulted in a significant increase in the N mineralization rate and mineral N flush. The N mineralization rate in the freeze-thaw treated soils remained higher than in non-frozen soils for 3–6 days when thawed soils were incubated at 25°C and for up to 20 days in thawed soils incubated at 5°C. The freeze-thaw treatments resulted in a significant release of ninhydrin-reactive N. These values were closely correlated with the mineral N flush (r 2=0.84). The release of ninhydrin-reactive N was more closely correlated with biomass N (r 2=0.80) than total N (r 2=0.65). Our results suggest that freeze-thaw events in soil disrupt microbial tissues in a similar way to drying and re-wetting or chloroform fumigation. Thus the level of mineral N released was directly related to the soil microbial biomass. We conclude that net N mineralization following a spring thaw may provide a significant portion of the total NO 3 present in the soil profile.  相似文献   

10.
黑麦草对土壤径流与产沙的调控效应   总被引:4,自引:0,他引:4  
By using speetrally stable targets, the empirical line (EL) method was tested to correct the multispectral IKONOS imagery acquired over Putuo Mountain, Zhejiang, China. A series of calibration targets, which were spectrally stable over time, were selected to establish the linear predicted equation. Subsequently, a series of spectrally stable validation targets were selected to assess the accuracy of the equations. And, validation targets, which were speetrally unstable over time, were used to test the feasibility of using the EL method to calibrate the archival remotely sensed data. Ground reflectance measurements for each target were made using an ASD FieldSpec spectroradiometer. A Trimble GeoXTTM GPS unit with sub-meter accuracy was used to estimate the target position accurately. Linear regression equations for four tKONOS bands were derived. The coefficients of determination for the blue, green, and red bands were all greater than 0.9800 and it was 0.9697 for the near infrared band. It was concluded that reasonable results could be obtained by using speetrally stable targets.  相似文献   

11.
The objectives of this study were to determine the variability in mineralization of dairy manure N, to determine if N mineralization can be predicted by compositional factors or by near- or mid-infrared reflectance spectroscopy. Dairy manures (n =107) were collected from farms in Maryland, Virginia, Pennsylvania, New York, and Connecticut. The composition of these manures ranged from 14 to 386 g dry matter kg-1, 0.9 to 9.5 kg total N/m3, and 0.3 to 4.7 kg NH4+-N/m3. Manure-amended soil was aerobically incubated at 25°C and concentrations of NH4+-N and NO3--N were determined at day 2 and day 56. The manures were highly variable in their N mineralization characteristics, ranging from a net mineralization of 54.9% to a net immobilization of 29.2% of the organic N. When compositional parameters were individually regressed against percentage mineralized organic N, the highest correlation coefficient (r) was 0.164. A stepwise regression of all 11 variables yielded a maximal r of 0.486. These results suggest that the availability of dairy manure organic N is highly variable and that the availability cannot be predicted from simple compositional parameters. No relationship was found between near-infrared spectral characteristics and N mineralization suggesting that no simple relationship exists between N mineralization and compositional characteristics. There appears to be some potential for the use of mid-infrared for determining the mineralization potential of manures.  相似文献   

12.
Denitrification was studied using samples of salt marsh soils collected from the New Jersey coast. The pH, organic matter content, NO3? and NO2? concentrations were determined on samples from marshes with and without grasses. Denitrification was measured in laboratory studies over a temperature range from 4° to 60°C and a pH range from 5.0 to 9.0 by monitoring NO3? reduction, NO2? reduction and N2 evolution. Optimum conditions were controlled by a temperature-pH interaction which caused shifts in the pH optima relative to the change in temperature. No3? and NO2? were reduced over a broad range of No3? concentration; whereas, 0.2 mg NO2?-N ml?1 completely inhibited denitrification. The presence of NO3? reverses this inhibition. N2O was produced only at low pH values and low NO3? concentrations. It was concluded that the NO2? reducing system was the most easily disrupted of the three main processes of denitrification.  相似文献   

13.
Effect of cropping systems on nitrogen mineralization in soils   总被引:3,自引:0,他引:3  
 Understanding the effect of cropping systems on N mineralization in soils is crucial for a better assessment of N fertilizer requirements of crops in order to minimize nitrate contamination of surface and groundwater resources. The effects of crop rotations and N fertilization on N mineralization were studied in soils from two long-term field experiments at the Northeast Research Center and the Clarion-Webster Research Center in Iowa that were initiated in 1979 and 1954, respectively. Surface soil samples were taken in 1996 from plots of corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. N mineralization was studied in leaching columns under aerobic conditions at 30  °C for 24 weeks. The results showed that N mineralization was affected by cover crop at the time of sampling. Continuous soybean decreased, whereas inclusion of meadow increased, the amount of cumulative N mineralized. The mineralizable N pool (N o) varied considerably among the soil samples studied, ranging from 137 mg N kg–1 soil under continuous soybean to >500 mg N kg–1 soil under meadow-based rotations, sampled in meadow. The results suggest that the N o and/or organic N in soils under meadow-based cropping systems contained a higher proportion of active N fractions. Received: 10 February 1999  相似文献   

14.
选用大型溞作为受试生物,探讨多氯联苯(PCB153与PCB28)对浮游动物的急性和慢性毒性反应,初步评价多氯联苯(PCBs)对浮游动物的毒害效应。急性毒性试验中,PCB28和PCB153对大型溞的48h-LC50分别为27.08μg·L-1和579.16μg·L-1。实验表明,大型溞对PCB28的敏感性高于对PCB153的敏感性。慢性毒性试验显示,PCB28和PCB153对大型溞的生长、生殖均有不利影响,PCB28的影响表现为随浓度的升高,生长和生殖抑制效应加强;PCB153对大型溞生长的影响表现为随浓度升高而抑制效应增强,但其对大型溞的繁殖则表现为低浓度抑制而高浓度促进的现象虼耍团ǘ榷嗦攘剑≒CB153、PCB28)长期暴露的潜在毒性和高浓度多氯联苯的急性毒性在环境生态安全研究中值得高度关注。  相似文献   

15.
温度对厌氧条件下不同pH水稻土氮素矿化的影响   总被引:2,自引:0,他引:2  
氮矿化反应是土壤生态系统氮素循环的重要环节之一,决定了土壤氮素的可利用性。温度和pH是影响氮素矿化的重要环境因子。为研究厌氧条件下温度对不同pH水稻土氮素矿化的影响,本文以两种不同pH的水稻土为试验对象,在厌氧条件下,设置15℃、25℃、37℃和50℃4个温度,结合一级反应动力学方程式和有效积温式研究温度对土壤氮素矿化势、矿化速率、矿化程度和矿化势/全氮等矿化参数的影响。结果表明,两种土壤氮素矿化势均随着温度的升高而增大。在15~37℃范围内,两种土壤的矿化速率以及矿化程度均随着温度升高而增大,且同种温度下两土壤差异不显著。但在37~50℃范围内,随着温度的升高,两种pH土壤矿化速率以及矿化程度有增大也有减小,差异达1%显著水平。说明在高温范围内,不同pH土壤氮素矿化对温度的响应有很大差异。4个温度下,矿化势/全氮的值均随温度升高而增大,说明有机氮的品质随温度升高而提高。通过温度与矿化参数的相关性分析发现,在15~37℃范围内,各矿化参数与温度均呈正相关,且相关性极显著(P0.01);但37~50℃时,各矿化参数与温度相关性均较小,有的为负相关。本试验测定各培养周期的pH,发现在培养过程中,两种土壤pH波动不大,对土壤氮矿化的变化无影响。结果表明,厌氧条件下,尽管中、低温时不同pH水稻土氮素矿化对温度有相似的响应,但高温时不同pH土壤的氮素矿化显著不同。  相似文献   

16.
温度变化对森林土壤氮矿化的影响   总被引:1,自引:0,他引:1  
Nitrogen mineralization in forest soil wa studied in laboratory by incubating undisturbed soil cores enclosed within PVC columns at different temperatures to compare the effect of flucttuating temperature with that of constant temperaature,and to find out whether soil nitrification shows linearity over time .The results showed that there was no significant difference between soil nitrification at fluctuating temperature and that at constant temperature,and suggested that it must be careful to make the conclusion that soil nitrification has linearity over time.  相似文献   

17.
我国主要植烟土壤氮素矿化潜力研究   总被引:4,自引:0,他引:4  
为研究我国植烟土壤潜在供氮能力及其分布状况,从18个烤烟主产省的317个县采集了500多个土壤样品,采用Stanford的间歇淋洗好气培养法,测定了土壤氮素矿化势和矿化速率常数。结果表明,植烟土壤氮素矿化速率常数(k)平均为0.017/d,土壤氮素矿化势(No)平均为130.6 mg/kg,变幅为5.5~372.0 mg/kg,0—30 cm土壤累积潜在供氮量达到了470.2 kg/hm2。不同植烟区土壤矿化势差异显著,黄淮烟区、北部西部烟区、东北烟区、南部烟区、长江中上游烟区、长江中下游烟区、西南烟区土壤矿化势的分别为:64.1、78.8、99.0、119.9、127.8、135.0 和160.5 mg/kg。其中南方烟区(南部烟区、长江中上游烟区、长江中下游烟区、西南烟区)的矿化势显著高于北方烟区(北部西部烟区和东北烟区)和黄淮烟区。不同类型土壤矿化势存在显著差异,即使是同一类型土壤,其矿化势变异仍很大。因此应从宏观上把握全国植烟土壤的供氮潜力,对于土壤供氮潜力过高的区域,在植烟土壤区划中应考虑进行调整,而对较高的区域,可以考虑采用农艺措施进行调控,减少烟株生育后期氮素供应;而对于土壤供氮适量的区域,应作为优先发展烤烟生产的区域。  相似文献   

18.
Levels of total Hg were determined in the muscle tissue of Helicolenus dactylopterus (mean=0.29 ug.g−1 ±0.025 S.E.; range=0.041.10 ug.g−1) and Pontinus kuhlii (mean=0.16 ug.g−1 ±0.092 S.E.; range=0.05-0.50 ug.g−1) caught in the Azores between August 1989 and May 1990. Mercury concentrations were related to sex, length, weight, age, growth and condition of both fish species. There were highly significant positive correlations between Hg levels and these variables. In P. kuhlii a significant sex-related difference in Hg levels was found; the rate of Hg accumulation is significantly faster in females than in males and mean Hg levels were higher in females. Relationships describing Hg vs size and age dependence were determined for both species and sexes and patterns and rates of Hg accumulation were discussed in relation to a number of biological and ecological factors with influence on it. A comparison of Hg content of Azorean and Mediterranean populations of H. dactylopterus was conducted and its suitability as an indicator in pollutant monitoring of benthic compartment of marine ecosystems is discussed.  相似文献   

19.
Abstract

The effect of soil pH on the exchangeability and solubility of soil cations (Ca, Mg, Na, K, and NH4‐N) and anions (NO3‐N, Cl, and P) was investigated for 80 soils, spanning a wide range in physical and chemical properties and taxonomic groups. This information is needed from environmental and agronomic standpoints to estimate the effect of changes in soil pH on leachability and plant availability of soil nutrients. Soils were incubated with varying amounts of acid (H2SO4) and base (CaCO3) for up to 30 days. Although acid and base amendments had no consistent effect on cation exchangeability (as determined by neutral NH4OAc), amounts of water‐soluble Ca, Mg, Na, K, NH4‐N, and P decreased, while NO3‐N and Cl increased with an increase in soil pH. The increase in cation solubility was attributed to an increase in the negative charge of the soil surface associated with the base addition. The change in surface electrostatic potential had the opposite effect on amounts of NO3‐N and Cl in solution, with increases in N mineralization with increasing soil pH also contributing to the greater amount of NO3‐N in solution. The decrease in P solubility was attributed to changes in the solubility of Fe‐, A1‐, and Ca‐P complexes. The logarithm of the amount of water‐soluble cation or anion was a linear function of soil pH. The slope of this relationship was closely related (R2 = = 0.90 ‐ 0.96) to clay content, initial soil pH, and size of the cation or anion pool maintaining solution concentration. Although the degree in soil pH buffering increased with length of incubation, no effect of time on the relationship between cation or anion solubility and pH was observed except for NO3‐N, due to N mineralization. A change in soil pH brought about by acid rain, fertilizer, and lime inputs, thus, affects cation and anion solubility. The impact of these changes on cation and anion leachability and plant availability may be assessed using the regression equations developed.  相似文献   

20.
黑碳添加对土壤有机碳矿化的影响   总被引:10,自引:0,他引:10  
通过室内培养试验,向土壤中分别添加不同温度制备的黑碳,热解温度分别为350℃(T350)、600℃(T600)和850℃(T850),研究了黑碳添加对土壤有机碳矿化的影响。结果表明,不同温度条件制备的黑碳在15℃和25℃培养条件下,土壤CO2释放速率总的趋势是前期分解速率快,后期缓慢。在整个培养过程中(112天),随着培养时间的延长,土壤CO2释放速率下降趋势逐渐降低,CO2释放速率相对值的大小随着培养温度的的升高而增大。在不同温度培养条件下,添加黑碳后土壤CO2-C累计量均是T350>T600>T850,T350土壤CO2-C累计量最高分别为415.26 mg/kg和733.82 mg/kg。添加不同黑碳后,土壤有机碳矿化增加率存在极显著差异(p<0.01),表明不同温度制备的黑碳对土壤有机碳矿化的影响显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号