首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The concentrations of Cr and Mn in water, sediment, nanoplankton, phytoplankton, zooplankton, and fish were determined during 1983–1984, to investigate biomagnification of these metals in Husainsagar Lake, India. The concentration of Cr in the water phase was above the permissible limits and Mn exhibited complex distribution pattern. The high concentrations of Cr and Mn in the surficial sediment was related to an increase in the intensity of in situ processes, mainly the enrichments of these metals in the organisms. The concentration of Cr was least in nanoplankton and remained the lowest in samples of phytoplankton, zooplankton and fish. The concentration of Mn decreased from nanoplankton to fish, except in phytoplankton which showed the highest concentration. This trend did not illustrate the expected pattern of food chain enrichment in the classic sense of the term as noted for Hg and DDT. Furthermore, the Mn, but not the Cr, concentrations decreased with the increase in body weight of the fish.  相似文献   

2.
Historical discharges of mercury (Hg) to Onondaga Lake, New York, have resulted in elevated Hg concentrations in lake fishes. In 1990, a remedial investigation and feasibility study (RI/FS) was initiated to evaluate problems related to Hg and other hazardous substances in the lake. As part of the RI/FS, the distribution of Hg in the aquatic food web was determined to provide input to a site-specific model of Hg cycling and to evaluate potential ecological risks of Hg in the lake. Mercury concentrations were measured in surficial sediments, sediment interstitial water, lake water, phytoplankton, Zooplankton, benthic macroinvertebrates, and fishes (including planktivores, benthivores, and piscivores). The percentage of total Hg accounted for by methyl-Hg (CH3Hg) generally increased with higher trophic levels, confirming that CH3Hg is more efficiently transferred to higher trophic levels than is inorganic Hg. Concentrations of total Hg in amphipods and chironomids were closely related to concentrations of total Hg in sediments, suggesting that sediments are a likely source of Hg for benthic macroinvertebrates. Mercury concentrations in edible muscle tissue (fillets) of lake fishes have declined substantially from values found in the early 1970s, reflecting the large reductions in Hg discharges to the lake that have occurred since that time. The CH3Hg concentrations in fillets and whole bodies of fishes generally were similar, indicating that concentrations in fillets often can provide estimates of concentrations in whole bodies. Methyl-Hg concentrations and bioaccumulation factors increased with higher trophic levels in both the pelagic and benthic components of the lake food web.  相似文献   

3.
Sediments from an eutrophic reference lake (L. HjÄlmaren) and eleven oligotrophic Swedish lakes were analyzed for heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and tested for whole sediment toxicity to Daphnia magna. Whole sediment toxicity, expressed as 48-hr EC50 on a wet weight basis in reconstituted dilution water, ranged from 2.8% (most toxic) to >32% (least toxic). Correlations between bulk sediment heavy metal concentrations and toxicity were significant (P≤0.05) for Hg, Pb, and Zn. However, a causal connection between the concentrations of these metals and toxicity was not supported by the results from metal-spiked sediment toxicity tests. In addition sediment toxicity was not affected by the addition of EDTA, which is a strong chelator known to reduce metal toxicity. After storage for several months test sediments either remained nontoxic, toxic, or increased in toxicity. These results illustrate some of the difficulties in the interpretation of bulk sediment chemistry data and the release of toxic chemicals from sediment samples, highlighting the effect of sediment storage on toxicity.  相似文献   

4.
Methyl mercury (Hg) was determined in rainbow trout (Oncorhynchus mykiss) and organisms in the lower tropic levels: smelts (Retropinna retropinna), bullies (Gobiomorphus cotidianus), koura (Paranephrops planifrons); and zooplankton (Daphnia carinata and Calamoecia lucasi) in Lakes Okareka, Okaro, Tarawera, Rotorua and Rotomahana, New Zealand. Water concentrations of total Hg (HgT) and methyl Hg were also measured. Mean methyl Hg concentrations in the trout, the prey species (smelts, bullies and koura) and zooplankton increased linearly with mean HgT and methyl Hg chloride (CH3HgCl) concentrations in water. Most of the bio-magnification of methyl Hg occurred in the lower trophic levels of the trout food web (104.72) between the zooplankton and water. The bioaccumulation factors between the forage fish and zooplankton were 100.73 for bullies and 101.06 for smelt. Methyl Hg was 100.41 to 100.95 times greater in the trout then their prey.  相似文献   

5.
Food as the Dominant Pathway of Methylmercury Uptake by Fish   总被引:1,自引:0,他引:1  
A field experiment was conducted to determine the degree to which fish accumulated methylmercury (MeHg) via their food or via passive uptake from water through the gills. Finescale dace (Phoxinus neogaeus) were held in 2000 L enclosed pens floating in an undisturbed, oligotrophic lake in northwestern Ontario. Fish were exposed to water containing either low (0.10–0.40 ng L-1), intermediate (0.45–1.30 ng L-1), or high (0.80–2.1 ng L-1) concentrations of MeHg. Zooplankton with either low (0.16–0.18 µg g-1 d.w.) or high (0.28–0.76 µg g-1 d.w.) concentrations of MeHg were added daily to each pen. Fish fed zooplankton with high concentrations of MeHg had significantly higher concentrations of mercury in muscle after 32 days than fish fed zooplankton with low concentrations of MeHg (ANCOVA, P<0.0001). Fish feeding on zooplankton with low concentrations of MeHg had the same amount of Hg in their tissues as fish at the start of the experiment. Uptake from water was at most 15%. This is the first experiment to confirm that food is the dominant pathway of MeHg bioaccumulation in fish at natural levels of MeHg.  相似文献   

6.
The concentrations of Hg, Cu, Pb, Cd, and Zn accumulated by regional macrophytes were investigated in three tropical wetlands in Colombia. The studied wetlands presented different degrees of metal contamination. Cu and Zn presented the highest concentrations in sediment. Metal accumulation by plants differed among species, sites, and tissues. Metals accumulated in macrophytes were mostly accumulated in root tissues, suggesting an exclusion strategy for metal tolerance. An exception was Hg, which was accumulated mainly in leaves. The ranges of mean metal concentrations were 0.035?C0.953 mg g?1 Hg, 6.5?C250.3 mg g?1 Cu, 0.059?C0.245 mg g?1 Pb, 0.004?C0.066 mg g?1 Cd, and 31.8?363.1 mg g?1 Zn in roots and 0.033?C0.888 mg g?1 Hg, 2.2?C70.7 mg g?1 Cu, 0.005?C0.086 mg g?1 Pb, 0.001?C0.03 mg g?1 Cd, and 12.6?C140.4 mg g?1 Zn in leaves. The scarce correlations registered between metal concentration in sediment and plant tissues indicate that metal concentrations in plants depend on several factors rather than on sediment concentration only. However, when Cu and Zn sediment concentrations increased, these metal concentrations in tissues also increased in Eichhornia crassipes, Ludwigia helminthorriza, and Polygonum punctatum. These species could be proposed as Cu and Zn phytoremediators. Even though macrophytes are important metal accumulators in wetlands, sediment is the main metal compartment due to the fact that its total mass is greater than the corresponding plant biomass in a given area.  相似文献   

7.
Phytoplankton data for 1973 to 1977 from Clearwater Lake, an acid- and heavy metal—contaminated lake near Sudbury, Ontario are presented.Peridinium inconspicuum (Lemmermann) comprised between 30 and 55% of the average, ice-free period biomass of 0.33 to 0.73 mg l?1 and is considered indicative of acidic lakes if it forms a substantial portion of the total biomass. The data were compared with those from three other contaminated and ten uncontaminated lakes in Ontario. The phytoplankton communities of all contaminated lakes were dominated byP. inconspicuum while chrysophytes dominated the uncontaminated lakes. Community biomass was better correlated with phosphorus concentration than with hydrogen ion concentration. There was some evidence of reductions of biomass in lakes with the highest heavy metal concentrations. Limitations of phytoplankton data collected in synoptic surveys are discussed.  相似文献   

8.
Purpose

Select South Dakota, USA water bodies, including both natural lakes and man-made impoundments, were sampled and analyzed to assess mercury (Hg) dynamics and historical patterns of total Hg deposition.

Materials and methods

Sediment cores were collected from seven South Dakota lakes. Mercury concentrations and flux profiles were determined using lead (210Pb) dating and sedimentation rates.

Results and discussion

Most upper lake sediments contained variable heavy metal concentrations, but became more consistent with depth and age. Five of the seven lakes exhibited Hg accumulation fluxes that peaked between 1920 and 1960, while the remaining two lakes exhibited recent (1995–2009) Hg flux spikes. Historical sediment accumulation rates and Hg flux profiles demonstrate similar peak and stabilized values. Mercury in the sampled South Dakota lakes appears to emanate from watershed transport due to erosion from agricultural land use common to the Northern Great Plains.

Conclusions

For sampled South Dakota lakes, watershed inputs are more significant sources of Hg than atmospheric deposition.

  相似文献   

9.
The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873–1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150–3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322–331 kg of Hg annually to Clear Lake, which represents ca. 86–99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150–300 years.  相似文献   

10.
Mercury accumulations in some fish species from Grenada Lake in north Mississippi exceed the Food and Drug Administration standards for human consumption. This large flood control reservoir serves as a sink for the Skuna and Yalobusha River watersheds whose highly erodible soils contribute to excessively high sediment yields and impaired water quality. This study was conducted to characterize the distribution of total Hg in watershed soils and determine the relationship between the easily transportable clay, organic C (OC), and Fe oxide fractions and the movement of Hg from upland sources to reservoir sinks. Cores were collected from soils, of different land-use, representative of the three soil orders (Alfisols, Entisols, and Vertisols) found in the watersheds. Sediment cores were collected from the Yalobusha River and Grenada Lake. In the laboratory, soil cores were sampled by horizon while sediment cores were sampled in 10 cm increments. These samples were characterized for total Hg, particle size distribution, OC, Fe oxide contents, and pH. Mercury concentrations ranged from 10 to 112 µg kg 1 in the soil profiles, with average regression coefficient (r2) values of 0.104, 0.362, and 0.06 for Hg versus clay, OC, and Fe oxides, respectively. River sediment cores had Hg concentrations ranging from 0 to 38 µg kg 1, and significant (1% level) r2 values of 0.611, 0.447, and 0.632 versus clay, OC, and Fe oxides, respectively. Mercury concentrations in the lake sediment ranged from 0 to 125 µg kg 1. The r2 values for Hg versus clay, OC, and Fe oxides in the lake sediment were 0.813, 0.499, and 0.805, respectively, all significant at the 1% level. These results indicate that total Hg is poorly correlated with the clay, OC, and Fe oxide fractions at depth in the soil profiles because maximum Hg concentrations occur in the surface horizons due to atmospheric in-fall. The statistically significant r2 values for Hg versus these components in the sediment cores are the result of particulate clay, Fe oxides, and finely divided OC sorption of Hg from solution during the runoff and sediment transport process. The higher correlations for the lake sediment reflect an enrichment of the Hg-laden clay fraction relative to stream sediment through flocculation and sedimentation processes in the slack-water environment of the reservoir.  相似文献   

11.
Elevated Hg levels in game fish from wilderness lakes in northern Minnesota led to the present study of sediment cores from two lakes to ascertain the source and history of Hg deposition. Natural background levels of Hg were found to range from 0.03 to 0.06 μg g?1, with cultural levels as high as 0.16 μg g?1. Reconstructed geochronologies reveal a dramatic two-fold increase in Hg flux, from 0.008 to 0.017 μg cm?2 yr?1, occuring after the year 1880, suggesting an anthropogenic influence. No industrial or geologic source of Hg is found in the study watersheds. The entire historical increase in Hg flux can be accounted for by atmospheric loading provided that 1/5 of all the Hg presently supplied to the watershed via precipitation is ultimately deposited in lake sediment. Hg levels in fish are not correlated with Hg levels in lake sediment, although there is a link to acid-sensitivity of lake water, amount of acid-neutralizing geologic material exposed in the watershed, and watershed area/lake volume ratio. Thermal stratification of lake water and a complexation-adsorption mechanism are proposed to account for variations in Hg levels observed in sediment collected from different sites.  相似文献   

12.
The relationship between mercury (Hg) concentrations in freshwater biota and trophic position, as defined by stable nitrogen isotope ratios (δ15N), was examined in 6 lakes in northwestern Ontario. The heavier isotope of nitrogen (15N) increases an average of 3 parts per thousand (‰) from prey to predator and is used as a measure of an organism's trophic position. Dorsal muscle from lake trout, burbot, walleye, northern pike, white sucker, lake cisco, lake whitefish, and yellow perch was analyzed for Hg and δ15N using flameless atomic absorption and mass spectrometry respectively. Within each lake, log Hg was significantly related to δ15N (r 2 ranged from 0.47 to 0.91,P<0.01). For four species, yellow perch, northern pike, lake cisco, and lake trout, log Hg was positively related to δ15N (r 2 ranged from 0.37 to 0.47,P≤0.09) across all lakes. We also used δ15N measurements (assuming a 3‰ shift between an organism and its diet) and the developed within-lake regression equations to calculate a prey Hg for each individual fish. These food Hg values were then used to predict predator Hg using Norstromet al's bioenergetics model. Predicted results were strongly correlated to measured Hg concentrations (r=0.91,P<0.001), indicating that δ15N has potential to be used in modeling.  相似文献   

13.
The sources and concentrations of total mercury (total Hg) and methylmercury (MeHg) in the upper catchment of the Lake Gordon/Lake Pedder system in Tasmania, Australia were investigated. The catchment area, which contains over 50% wetlands, is located in a temperate region with no obvious point sources of mercury. Surface waters in the region had concentrations of total Hg ranging from 1.2 to 14.4 ng L-1 and MeHg from < 0.04 to 1.4 ng L-1. MeHg concentrations were seasonally dependent, with the highest concentrations occurring in summer. Sediments/soils in the catchment had concentrations of total Hg ranging from 4.0 to 194 ng g-1 and MeHg from <0.02 to 20.1 ng g-1. The low concentrations of total Hg confirmed that this region is pristine as regards mercury and has no geological enrichment of total Hg. The highest total Hg and MeHg concentrations in both sediment/soils and waters were found in bogs whereas the lowest concentrations typically occurred on the wetlandplains. MeHg concentrations, in bog and swamp sediments were correlatedwith the organic matter content (r = 0.942, P < 0.001). Acid volatile sulfide (AVS) measurements indicate that in most sediments AVS was greater than total Hg. Given the high reactivity of inorganic mercury and sulfide, this suggests that most of the particulate mercury in sediments is present as mercuric sulfide. The yield of MeHg from the catchment was estimated to be 3.2 mg ha-1 yr-1 and is higher than published rates measured in non-contaminated temperate catchments in the northern hemisphere. The higher yield was attributed to the generally warmer climatic conditions that favour net methylation and the relatively high rainfall (2–3 m yr-1) of the region, which supplies reactive inorganic mercury to the active zones ofmercury methylation and also flushes MeHg from the catchment.  相似文献   

14.
At concentrations above 1 ppm NTA can react with sparingly soluble compounds to release the metal and associated anions through complexation. It also interacts with sediment to release certain metals depending on the abundance of the metals in the sediment. In situ and laboratory experiments have been carried out to study such interactions and also to follow the fate of these released metals after NTA has degraded. Degradation of certain NTA-metal complexes in lake water medium has also been studied. It was found that certain NTA complexes (Cu, Ni, Cd, Hg) are very resistent to degradation.  相似文献   

15.
We measured Hg concentrations in northern pike (Esox lucius) from 17 small lakes in Evo forest area, Lammi, southern Finland. The mean Hg concentration in muscle tissue of a 1 kg pike ranged from 0.15 to 1.36 μg g−1 (ww) in the lakes. There was a trend towards higher concentrations in acidic and humic lakes than in circumneutral and clear-water lakes. The Hg content of pike from successive lakes of a lake chain was similar, whereas there were clear differences in the Hg concentrations among seepage lakes and the uppermost lakes of other lake chains. The latter was probably due to special characteristics of the lakes: in one lake pike was the only fish species, two of the lakes were regulated by beaver, and one lake was a groundwater or spring lake. Our observations indicate that Hg concentrations in pike can vary considerably from lake to lake in a small geographical area and that the variation among lakes in the accumulation of Hg in fish largely depends on lake characteristics and on the diet of pike.  相似文献   

16.
During the last decade a new pattern of Hg pollution has been discerned, mostly in Scandinavia and North America. Fish from low productive lakes, even in remote areas, have been found to have a high Hg content. This pollution problem cannot be connected to single Hg discharges but is due to more widespread air pollution and long-range transport of pollutants. A large number of waters are affected and the problem is of a regional character. The national limits for Hg in fish are exceeded in a large number of lakes. In Sweden alone, it has been estimated that the total number of lakes exceeding the blacklisting limit of 1 mg Hg kg-1 in 1-kg pike is about 10 000. The content of Hg in fish has markedly increased in a large part of Sweden, exceeding the estimate background level by about a factor of 2 to 6. Only in the northernmost part of the country is the content in fish close to natural values. There is, however, a large variation of Hg content in fish within the same region, which is basically due to natural conditions such as the geological and hydrological properties of the drainage area. Higher concentrations in fish are mostly found in smaller lakes and in waters with a higher content of humic matter. Since only a small percentage of the total flow of Hg through a lake basin is transferred into the biological system, the bioavailability and the accumulation pattern of Hg in the food web is of importance for the Hg concentrations in top predators like pike. Especially, the transfer of Hg to low trophic levels seems to be a very important factor in determining the concentration in the food web. The fluxes of biomass through the fish community appear to be dominated by fluxes in the pelagic food web. The Hg in the lake water is therefore probably more important as a secondary source of Hg in pike than is the sediment via the benthic food chain. Different remedy actions to reduce Hg in fish have been tested. Improvements have been obtained by measures designed to reduce the transport of Hg to the lakes from the catchment area, eg. wetland liming and drainage area liming, to reduce the Hg flow via the pelagic nutrient chains, eg. intensive fishing, and to reduce the biologically available proportion of the total lake dose of Hg, eg. lake liming with different types of lime and additions of selenium. The length of time necessary before the remedy gives result is a central question, due to the long half-time of Hg in pike. In general it has been possible to reduce the Hg content in perch by 20 to 30% two years after treatments like lake liming, wetland liming, drainage area liming and intensive fishing. Selenium treatment is also effective, but before this method can be recommended, dosing problems and questions concerning the effects of selenium on other species must be evaluated. Regardless how essential these kind of remedial measures may be in a short-term perspective, the only satisfactory long-term alternative is to minimize the Hg contamination in air, soil and water. Internationally, the major sources of Hg emissions to the atmosphere are chlor-alkali factories, waste incineration plants, coal and peat combustion units and metal smelter industries. In the combustion processes without flue gas cleaning systems, probably about 20 to 60% of the Hg is emitted in divalent forms. In Sweden, large amounts of Hg were emitted to the atmosphere during the 50s and 60s, mainly from chlor-alkali plants and from metal production. In those years, the discharges from point sources were about 20 to 30 t yr 1. Since the end of the 60s, the emission of Hg has been reduced dramatically due to better emission control legislation, improved technology, and reduction of polluting industrial production. At present, the annual emissions of Hg to air are about 3.5 t from point sources in Sweden. In air, more than 95% of Hg is present as the elemental Hg form, HgO0. The remaining non-elemental (oxidized) form is partly associated to particles with a high wash-out ratio, and therefore more easily deposited to soils and surface waters by precipitation. The total Hg concentration in air is normally in the range 1 to 4 ng m-3. In oceanic regions in the southern hemisphere, the concentration is generally about 1 ng m?3, while the corresponding figure for the northern hemisphere is about 2 ng m-3. In remote continental regions, the concentrations are mainly about 2 to 4 ng m?3. In precipitation, Hg concentrations are generally found in the range 1 to 100 ng L?1. In the Nordic countries, yearly mean values in rural areas are about 20 to 40 ng L?1 in the southern and central parts, and about 10 ng L?1 in the northern part. Accordingly, wet deposition is about 20 (10 to 35) g km?2 yr?1 in southern Scandinavia and 5 (2 to 7) in the northern part. Calculations of Hg deposition based on forest moss mapping techniques give similar values. The general pattern of atmospheric deposition of Hg with decreasing values from the southwest part of the country towards the north, strongly suggests that the deposition over Sweden is dominated by sources in other European countries. This conclusion is supported by analyses of air parcel back trajectories and findings of significant covariations between Hg and other long range transported pollutants in the precipitation. Apart from the long range transport of anthropogenic Hg, the deposition over Sweden may also be affected by an oxidation of elemental Hg in the atmosphere. Atmospheric Hg deposited on podzolic soils, the most common type of forest soil in Sweden, is effectively bound in the humus-rich upper parts of the forest soil. In the Tiveden area in southern Sweden, about 75 to 80% of the yearly deposition is retained in the humus layer, chemically bound to S or Se atoms in the humic structure. The amount of Hg found in the B horizon of the soils is probably only slightly influenced by anthropogenic emissions. In the deeper layers of the soil, hardly any accumulation of Hg takes place. The dominating horizontal flow in the soils takes place in the uppermost soil layers (0 to 20 cm) during periods of high precipitation and high groun water level in the soils. The yearly transport of Hg within the soils has been calculated to be about 5 to 6 g km?2. The specific transport of total Hg from the soil system to running waters and lakes in Sweden is about 1 to 6 g km?2 yr1. The transport of Hg is closely related to the transport of humic matter in the water. The main factors influencing the Hg content and the transport of Hg in run-off waters from soils are therefore the Hg content in soils, the transport of humic matter from the soils and the humus content of the water. Other factors, for example acidification of soils and waters, are of secondary importance. Large peatlands and major lake basins in the catchment area reduce the out-transport of Hg from such areas. About 25 to 75% of the total load of Hg of lakes in southern and central Sweden originates from run-off from the catchment area. In lakes where the total load is high, the transport from run-off is the dominating pathway. The total Hg concentrations in soil solution are usually in the range 1 to 50, in ground water 0.5 to 15 and in run-off and lake water 2 to 12 ng L?1, respectively. The variation is largely due to differences in the humus content of the waters. In deep ground water with a low content of humic substances, the Hg concentration is usually below 1 ng L?1. The present amount and concentrations of Hg in the mor layer of forest soils are affected by the total anthropogenic emissions of Hg to the atmosphere, mainly during this century. Especially in the southern part of Sweden and in the central part along the Bothnian coast, the concentrations in the mor layer are markedly high. In southern areas the anthropogenic part of the total Hg content is about 70 to 90%. Here, the increased content in these soils is mainly caused by long-range transport and emissions from other European countries, while high level areas in the central parts are markedly affected by local historical emissions, mainly from the chlor-alkali industry. When comparing the input/output fluxes to watersheds it is evident that the present atmospheric deposition is much higher than the output via run-off waters, on average about 3 to 10 times higher, with the highest ration in the southern parts of Sweden. Obviously, Hg is accumulating in forest soils in Sweden at the present atmospheric deposition rate and, accordingly, the concentrations in forest soils are still increasing despite the fact that the emissions of Hg have drastically been reduced in Sweden during the last decades. The increased content of Hg in forest soils may have an effect on the organisms and the biological processes in the soils. Hg is by far the most toxic metal to microorganisms. In some regions in Sweden, the content of Hg in soils is already today at a level that has been proposed as a critical concentration. To obtain a general decrease in the Hg content in fish and in forest soils, the atmospheric deposition of Hg has to be reduced. The critical atmospheric load of Hg can be defined as the load where the input to the forest soils is less than the output and, consequently, where the Hg content in the top soil layers and the transport of Hg to the surface waters start to decrease. A reduction by about 80% of the present atmospheric wet deposition has to be obtained to reach the critical load for Scandinavia.  相似文献   

17.
Sediment samples from 24 tributaries of the Po River (Italy) were screened for selected trace elements (Cd, Cu, Hg, Pb, and Zn) and extractable organic compounds; a proxy for contamination by organic microcontaminants. The toxicity of sediment extracts was evaluated using a battery of biotests (Dugesia gonocephala, Paracentrotus lividus, and Tamnocephalus platyurus). Contamination by trace elements (including very high Hg pollution – 4 to 16ppm total Hg – in one sub-basin) reached potentially harmful levels only in the sediments of four tributaries; while contamination by organic microcontaminants was present in most sub-basins. Sediments from most study sites did actually show signs of anthropogenic stress and were able to elicit a toxic response. A more detailed evaluation of sediment quality in the Po River tributaries seems to be urgently needed for developing the necessary remediation strategies. Research priorities should include more thorough testing of sediment toxicity, determination of metal background levels in the various sub-basins and a more detailed identification of the organic micropollutants of possible concern.  相似文献   

18.
Water quality conditions in three oxbow lakes were examined before and after best management practices (BMPs) implementation within the Mississippi Delta. Experimental design called for the development of structural and cultural treatments to reduce sediment and associated pollutants entering watershed oxbow lakes. Three watersheds were selected and developed with different levels of BMPs. Changes in lake water quality were used as measures of management success. Analyses of water quality data prior to the implementation of BMPs suggested the lakes were stressed and ecologically damaged due to excessive sediment inflow. Significant improvements in water quality were observed with the use of cultural and structural BMPs. Sediments decreased 34–59%, while Secchi visibility and chlorophyll generally increased. The most dramatic improvements in water quality occurred in the two watersheds that featured cultural practices and combinations of cultural and structural practices. Reducing suspended sediment concentrations in these oxbow lakes favored phytoplankton production resulting in increased chlorophyll concentrations and higher concentrations of dissolved oxygen. Cultural BMPs, more so than structural BMPs, play a vital role in improving lake water quality, and are needed in addition to structural measures to ensure improved water quality in oxbow lakes receiving agricultural runoff.  相似文献   

19.
Concerns about Hg contamination of fish have changed in emphasis from Hg-contaminated systems to more remote and apparently unpolluted systems. For remote lakes, a negative relationship between lake pH and Hg in fish has been demonstrated, implying an effect on Hg uptake from lake acidification. Though this relationship was discussed, and hypotheses put forward concerning the possible mechanisms 8 yr ago, the factors regulating Hg uptake by aquatic biota are still poorly understood. Several recent studies have prompted workers to observe that frequently cited concepts about processes affecting Hg accumulation and cycling are in fact over-simplifications. This review attempts to synthesize and clarify the present state of knowledge. We critically evaluate evidence for a number of controlling factors in the context of the concentrations, the chemical species and the biological uptake processes for Hg. The factors include: trophic status and organic content of water, food chain transfer and biomagnification of Hg, organism age and size effects, feeding strategies, biological and chemical methylation, concentration of cations including H+ and Ca2+ and the immediate source of Hg.  相似文献   

20.
The aim of this study is to describe general features of sediment, primary producers and both benthic and planktonic consumers in two shallow saline lakes (Salada de La Muerte andSalada de Piñol) in order to detect main factors influencing food web structure. The lakes are located in Los Monegros district, in the central area of the Ebro River catchment, NE Spain. Both lakes are temporary with salinity well above 30 g L4. Although they are situated close to each other (distance: 300 m), their communities of primary producers differ dramatically. One lake (La Muerte) is dominated by microbial mats and seems to function through the benthic pathway. The other (Piñol) has some macrophytes but phytoplankton is the main source of primary production. Two cycles (1994/95 and 1995/1996), quite different in their hydrological characteristics, have been studied. PCA demonstrated the major influence of hydrologic features (e.g. water level) over biotic and abiotic parameters. The presence of microbial mats in La Muerte played a key role in stabilizing the sediments. A comparison of food web structure and dynamics in both lakes has been performed and the influence of sediment features is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号