首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of the effects of different levels of cadmium (Cd) in the nutrient solution (0.0, 1.5, and 6.0 mg/L Cd) on the assimilation of nitrate (NO3 ) and the uptake and distribution of cationic nutrients in pea (Pisum sativum cv. Argona) seedlings. Cadmium treatment resulted in an accumulation of NO3 in the root, indicating an alteration in NO3 translocation to the shoot. This was related to a decrease in the nitrate reductase (NR) activity in the shoot, severely inhibiting NO3 assimilation, and associated to a reduction in fresh tissue weight and in their relative water content. The concentration of potassium (K) decreased in both root and shoot, but its relative distribution between those tissues was not affected by the presence of Cd. Among other cationic nutrients, manganese (Mn) was the most affected, its concentration constantly decreased concomitantly with the increase in Cd supply. The distribution of Mn between shoot and root revealed that more was accumulated in the shoot than in the root, opposite to the distribution of NO3 The ‘shock’ addition of 6.0 mg/L Cd in a short‐term experiment confirmed that the transport of NO3 to the aerial part was reduced after 72 h of treatment and Cd displaced Mn from its physiological positions in root tissues.  相似文献   

2.
A rhizosphere application of NO inf3 sup- and/or naringenin affected the Pisum sativum — Rhizobium leguminosarum biovar viciae symbiosis. NO inf3 sup- (5 mM) lowered while naringenin raised the nodulation status (nodule numbers and weight) and nodule efficiency (C2H2 reduction activity). However, the inhibitory effect of NO inf3 sup- was to some extent alleviated when applied in combination with naringenin. The plant biomass was increased by the application of NO inf3 sup- and naringenin, either alone or in combination, while a higher root: shoot ratio was observed only in the naringenin-treated plants. Root flavonoids are known to regulate the expression of nod genes; their high-performance liquid chromatography profile was influenced in different ways by NO inf3 sup- and naringenin.  相似文献   

3.
The effect of nitrogen (nitrate) deficiency (-N) on the accumulation of cadmium (Cd) and nickel (Ni) in chamomile ( Matricaria chamomilla ) plants was studied. Elimination of N from the culture medium led to decreases in N-based compounds (free amino acids and soluble proteins) and increases in C-based compounds (reducing sugars, soluble phenols, coumarins, phenolic acids, and partially flavonoids and lignin), being considerably affected by the metal presence. Proline, a known stress-protective amino acid, decreased in all -N variants. The activity of phenylalanine ammonia-lyase was stimulated only in -N control plants, whereas the activities of polyphenol oxidase and guaiacol peroxidase were never reduced in -N variants in comparison with respective +N counterparts. Among detected phenolic acids, chlorogenic acid strongly accumulated in all N-deficient variants in the free fraction and caffeic acid in the cell wall-bound fraction. Mineral nutrients were rather affected by a given metal than by N deficiency. Shoot and total root Cd and Ni amounts decreased in -N variants. On the contrary, ammonium-fed plants exposed to N deficiency did not show similar changes in Cd and Ni contents. The present findings are discussed with respect to the role of phenols and mineral nutrition in metal uptake.  相似文献   

4.
Abstract

The presence of small amounts of apparently physiologically significant nitrate‐N in citrus leaves was demonstrated. Nitrate‐N and total N were determined and compared in citrus tree leaves receiving different rates of N and, in one case, additional P and K fertilizers. The nitrate‐N in the leaves showed a close relationship with the N fertilizer rate. In P and K fertilized trees, nitrate‐N content was also affected by these two elements.  相似文献   

5.
Barley (Hordeum vulgare L. cv. Martin) plants grown in solution culture, were exposed to increasing cadmium (Cd) concentration (0, 5, 10, 25, 50, and 100 μM) for a duration of 12 days. The sequence of important biochemical steps of nitrate (NO3) assimilation were studied in roots and shoots as a function of external Cd concentration. Cadmium uptake in roots and shoots increased gradually with Cd concentration in the medium. This Cd accumulation lowered substantially root and shoot biomass. The nitrate reductase (NR, EC 1.6.6.1) and nitrite reductase (NiR, EC 1.6.6.4) activities declined under Cd stress. Concurrently, tissue NO3 contents and xylem sap NO3 concentration were also decreased in Cd‐treated plants. These results suggest that Cd could exert an inhibitory effect on the assimilatory NO3 reducing system (NR and NiR) through a restriction of NO3 availability in the tissues. We therefore examined, in short‐term experiments (12 h), the impact of Cd on NO3 uptake and the two reductases in nitrogen (N)‐starved plants that were pretreated or not with Cd. It was found that Cd induced inhibition of both NO3 uptake and activities of NR and NiR, during NO3 induction period. The possible mechanisms of Cd action on NO3 uptake are proposed. Further, in Cd‐grown plants, the glutamine synthetase (GS, EC 6.3.1.2) showed a decreasing activity both in shoots and roots. However, increasing external Cd concentration resulted in a marked enhancement of glutamate dehydrogenase (NADH‐GDH, EC 1.4.1.2) activity, coupled with elevated levels of ammonium (NH4 in tissues. On the other hand, the total protein content in Cd‐treated plants declined with a progressive and substantial increase of protease activity in the tissues. These findings indicate that under Cd stress the usual pathway of NH4 assimilation (glutamine synthetase/glutamate synthase) can switch to an alternative one (glutamate dehydrogenase). The changes in all parameters investigated were concentration‐dependent and more marked in roots than shoots. The regulation of N absorption and assimilation by Cd in relation to growth and adaptation to stress conditions are discussed.  相似文献   

6.
The assimilation of ammonium and nitrate nitrogen into amino acids of mature sunflower leaves and their transport to the other plant parts were investigated using nitrogen-15 as a tracer. In the leaf, to which 15N-labelled ammonium was vacuum-infiltrated, the 15N content of glutamine was always the highest of the amino acids tested and that of alanine was higher than that of glutamic acid and aspartic acid at 15 min after the infiltration. On the other hand in the leaf to which 15N-labelled nitrate was vacuum-infiltrated, the 15N content of glutamic acid and aspartic acid was superior to that of glutamine. The incorporation of 15N into serine was not active in the case of either 15N-labelled ammonium or nitrate. In the internodes above and below the treated leaf, through which photosynthates were transported into other parts, the 15N content of γ-aminobutyric acid and glutamine was markedly high when both nitrogen sources were supplied. There were no differences in the labelling patterns of amino acids between the upper and lower internodes. From these results it may be concluded that glutamine, glutamic acid, and aspartic acid play an important role in the assimilation of ammonium and nitrate nitrogen in leaves and that nitrogen is transported mainly in the forms of γ-aminobutyric acid and glutamine from the leaves to the other plant parts,  相似文献   

7.
Kaolinite was equilibrated with Cd and with varying amounts of the individual compounds: EDTA, NTA, alginic acid, and humic acid. In experiments in which the Cd and kaolinite concentrations were held constant, and the ligand concentration allowed to vary, conditions under which ligand enhanced and inhibited Cd association with the solid phase were noted. Further experiments at constant Cd: ligand confirmed that, for alginic acid and humic acid, enhancement of uptake occurred, while EDTA diminished uptake. These results were compared with the adsorption of ligand by clay in the absence of organic, and it is suggested that the enhancement of uptake is due to the formation of an adsorbed organic layer on the clay serving as a solid phase ligand.  相似文献   

8.
A set of 21 pea (Pisum sativum L.) non‐nodulating mutants and a supernodulating mutant were compared to the parental cv. ‘Finale’ by leaf nitrate reductase activity, nitrogen (N) content in the shoot, content of photosynthetic pigments, and growth. The plants were cultivated asymbiotically at the growth‐saturating nitrate (NO3) level (10 mM) to detect the nitrate assimilation faults. Both positive and negative deviations were revealed in all traits, indicating pleiotropy of symbiotic mutations and/or the deleterious effects of multiple mutations. Only four mutants were indistinguishable from the control plants by all traits. The supernodulating line RisfixC demonstrated lower shoot growth and increased N content in the shoot, in spite of the asymbiotic cultivation.  相似文献   

9.
Heavy metal environmental pollution which occurs as a result of lime contaminated with cadmium (Cd) poses a potential health hazard. This investigation was undertaken to study uptake of Cd by strawberry plants grown in soil amended with three different sources and two different rates of industry waste lime containing 3.4, 14.3, and 60.0 mg Cd/kg, respectively. The effects of Cd applied to the soil were investigated, including its distribution in the soil and effect on Cd concentration in strawberry cv. Senga Sengana (Fragaria anassa) leaves and fruit in response to soil organic matter content and lime rates. Cadmium accumulated mainly in the plough layer, increasing from 0.170 mg Cd/kg (background level) to a maximum of 1.2 mg Cd/kg. Fruit had very high, hazardous Cd concentrations regardless of its content in the soil. This indicates that Cd was easily taken up by strawberry plants and accumulated in upper plant parts, including the fruit. Soil Cd content had no effect on concentration of this element in strawberry fruit. However, plant Cd uptake and fruit concentration was increased in acid soils even when soil Cd concentration was low.  相似文献   

10.
The determination of the leaf nitrate concentration, as well as the nitrate reductase activity have been proposed as a parameters for the estimation of the nitrogen requirements of citrus plants. Because this, it is interesting to dispose of a well criteria for their suitable diagnosing. On nutritionally normal Verna lemon trees we study the annual evolution of the leaf nitrate levels as well as the nitrate reductase activities. At the same time, the cause of the nitrogen alterations induced by iron chlorosis are determined. The results show that is the ferredoxin the iron compound responsible of this nitrogen unbalance.  相似文献   

11.
Seed germination was delayed and seedling growth inhibited by 0.04 to 1.9 mM Pb+2 in Sesamum indicum L. var HT-I. In root, shoot and leaf Pb+2 accumulation increased with increasing Pb+2 concentration in the nutrient solution. In root and leaf tissues in vivo and in vitro nitrate reductase activity was inhibited significantly which was well correlated with the concentration of Pb+2 supplied and its accumulation in the plant parts. The inhibition of the NR enzyme activity could be, however, reversed by simultaneous treatment of Sesamum seedlings with K2HPO4, CaCl2 and KNO3 dissolved in nutrient solution. Total organic N and soluble protein of roots and shoots/leaves, on the other hand, increased with increasing concentration of Pb+2 while the same treatment caused a decrease in the N content of cotyledons. It appears therefore, that the increase in N and protein in the roots, shoots/leaves may be a result of increased translocation of N from the cotyledons to the roots and shoots/leaves during early seedling growth in a Pb+2 enriched environment.  相似文献   

12.
Abstract

We characterized and quantified the chemical form of cadmium (Cd) in intercellular solutions of the apparent free space (AFS) of roots and leaves of bush bean plants. Plants were grown in sand and treated daily for five days with Hoagland nutrient solution containing, respectively, 0.5 and 1 mM Cd(NO3)2. The intercellular solution was collected by infiltration‐extraction procedure using successively distilled water, 5 mM CaCl2, and 5 mM EDTA in order to collect separately the water soluble, exchangeable, and complexed Cd. The ability of extradant solutions to remove Cd from the AFS of roots and leaves was: H2O < CaCl2 ? EDTA, confirming that most of Cd was bound at the cell wall. Voltarimetric technique showed that water‐soluble Cd in intercellular solutions of the root and leaf tissues was as the Cd2+ ion, suggesting that Cd might be taken up by the roots and transported to leaves as the free ion.  相似文献   

13.
增硝营养对水稻不同生育时期生长及氮素吸收同化的影响   总被引:14,自引:0,他引:14  
The effect of nitrate (NO3^-) on rice (Oryza sativa L.) growth as well as N absorption and assimilation during different growth stages was examined using three typical rice cultivars. Dry weight, yield, N uptake, nitrate reductase activity (NRA) in leaves, and glutamine synthetase activity (GSA) in roots and leaves during their entire growth periods, as well as the kinetic parameters of ammonium (NH4^+) uptake at the seedling stage, were measured with solution culture experiments. Results indicated that addition of NH4^+-N and NO3^-N at a ratio of 75:25 (NH4^++NO3^- treatment) when compared with that of NH4^+-N alone (NH4^+ treatment) increased the dry weight of ‘Nanguang' cultivar by 30% and ‘Yunjing 38' cultivar by 31%, and also increased their grain yield by 21% and 17%, respectively. For the four growth stages, the total N accumulation in plants increased by an average of 36% for ‘Nanguang' and 31% for ‘Yunjing 38', whereas the increasing effect of NO3^- in the ‘4007' cultivar was only found at the seedling stage, in the NH4^++NO3^- treatment compared to the NH4^+ treatment, NRA in the leaves increased by 2.09 folds, and GSA increased by 92% in the roots and 52% in the leaves of the three cultivars. NO3^- supply increased the maximum uptake rate (Vmax) in the ‘Nanguang' and ‘Yunjing 38' cultivars, reflecting that the NO3^- itself, not the increasing N concentration, increased the uptake rate of NH4^+ by rice. There was no effect on the apparent Michaelis-Menten constant (Kin) of the three cultivars. Thus, some replacement of NH4^+ with NO3^-could greatly improve the growth of rice plants, mainly on account of the increased uptake of NH4^+ promoted by NO3^-, and future studies should focus on the molecular mechanism of the increased uptake of NH4^+ by NO3^-.  相似文献   

14.
根瘤菌存在下土壤胶体和矿物对镉的吸附   总被引:8,自引:2,他引:6  
Experiments were conducted to study the adsorption of Cd on two soil collids(red soil and yellowbrown soil) and three variable-charge minerals (goethite,noncrystalline Fe oxide and kaolin) in the absence and presence of rhizobia.The tested strain Rhizobium fredii C6,tolerant to 0.8 mmol L^-1 Cd,was selected from 30 rhizobial strains.Results showed that the isotherms for the adsorption of Cd by examined soil colloids and minerals in the presence of rhizobia could be described by Langmuir equation.Within the range of the numbers of rhizobial cells studied,the amount of Cd adsorbed by each system increased with increasing rhizobial cells,Greater increases for the adsorption of Cd were found in red soil and kaolin systems.Rhizobia influence on the adsorption of Cd by examined soil colloids and minerals was different from that on the adsorption of Cu.The presence of rhizobia increased the adsorption affinity of soil colloids and minerals for Cd,particularly for the goethite and kaolin systems.The discrepancies in the influence of rhizobia on the adsorbability and affinity of selected soil colloids and minerals for Cd suggesed the different interactions of rhizobia with various soil components.It is assumed that bacterial biomass plays an important role in controlling the mobility and bioavailability of Cd in soils with kaolinite and goethite as the major colloidal compnents,such as in variable-charge soil.  相似文献   

15.
Barley seedlings were grown in hydroponic culture in the presence of toxic concentrations of cadmium (Cd), molybdenum (Mo), nickel (Ni), and zinc (Zn) and analyzed for element composition [boron (B), calcium (Ca), Cd, iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), phosphorus (P), and Zn]. In a first survey, heavy metal concentrations were selected which resulted in a similar inhibition of root growth. Toxic concentrations of Cd, Mo, Ni, and Zn revealed both similar and distinct effects on specific leaf and root element contents. Examples for such responses were decreasing contents in root Mn and Mg at elevated levels of all heavy metals, including Mo, in the medium. In contrast, changes in root contents of B were specific for the applied type of heavy metal stress. The heavy metal dependent changes in B, Ca, Mg, and Mn contents were studied in more detail. In some cases, severe heavy metal toxicity caused excessive accumulation or depletion of nutrient elements that may be deleterious to the plants in addition to other primary damages caused by the heavy metal ions.  相似文献   

16.
The combined effects of NaCl and N nutrition (NO3 and NH4 ++NO3 ) on nitrate reductase activity (NRA) in intact tomato (Lvcopersicum esculentum) and cucumber (Cucumis sativus) seedlings were studied. NRA decreased in leaves of both plant species as salinity increased. Within each salinity level, NRA increased with the external NO3 concentration. An interference of C1 on NO3 uptake was observed. Based on these results, it appears that the NRA was affected directly by the presence of excessive NaCl in the root media at least in two ways, by either interfering with the uptake of NO3 by roots, or by inhibiting the transport of NO3 from vacuole to cytosol. The effects were accentuated by the presence of NH4 + as N source.  相似文献   

17.
Abstract

Sub‐optimal nitrogen (N) affects the N‐rich carbon dioxide (CO2) assimilation enzymes which can limit maize (Zea mays) production. The status of the carboxylation system is closely correlated to the Assimilation Efficiency Index (AEI) which is the initial slope of the CO2 assimilation rate versus intercellular leaf CO2 concentrations. Experiments were undertaken to ascertain the effect of soil N nutrition on the AEI, determine genotypic variability for AEI under N‐deficiency, determine how leaf and plant development affect treatment differences, and examine correlations between the AEI and plant development. Studies were conducted in the field and greenhouse on five maize genotypes on leaves of different ages at three stages of plant development. Field studies were conducted on a fine, silty mixed, mesic cumulic Hapludoll (1.2 g N kg‐1), and high and low N treatments were imposed in the greenhouse. Quantum yield of emerging and mature leaves was determined. Results indicated that emerging and fully mature leaves had the greatest AEI values compared to other expanding leaves. Low N availability reduced the AEI of younger leaves but increased the AEI on the oldest leaf. The AEI increased until tasseling and then declined. Correlations were established between the AEI and leaf N concentrations and with CO2 assimilation. Grain yield was correlated to the AEI during grain fill. Quantum yield of the mature leaf was greater with low N than with high N availability indicating that the energy capture or transfer mechanism was less affected by N levels than was the CO2 trapping mechanism. There were pronounced gsnotypic differences in the AEI at tassel emergence but not in leaf N concentrations intimating differences in the distribution of N to enzymes and other compounds important for CO2 assimilation. Internal N distribution was also dependent upon available N. The study demonstrated that the ability of a plant to maintain high carboxylation activity under N stress may be a valuable selection criteria for obtaining tolerance of corn to low soil N.  相似文献   

18.
Climate change and elevated atmospheric CO2 should affect the dynamics of soil organic carbon (SOC). SOC dynamics under uncertain patterns of climate warming and elevated atmospheric CO2 as well as with different soil erosion extents at Nelson Farm during 1998-2100 were simulated using stochastic modelling. Results based on numerous simulations showed that SOC decreased with elevated atmospheric temperature but increased with atmospheric CO2 concentration. Therefore, there was a counteract effect on SOC dynamics between climate warming and elevated CO2 . For different soil erosion extents, warming 1 C and elevated atmospheric CO2 resulted in SOC increase at least 15%, while warming 5 C and elevated CO2 resulted in SOC decrease more than 29%. SOC predictions with uncertainty assessment were conducted for different scenarios of soil erosion, climate change, and elevated CO2 . Statistically, SOC decreased linearly with the probability. SOC also decreased with time and the degree of soil erosion. For example, in 2100 with a probability of 50%, SOC was 1 617, 1 167, and 892 g m 2 , respectively, for no, minimum, and maximum soil erosion. Under climate warming 5 C and elevated CO2 , the soil carbon pools became a carbon source to the atmosphere (P > 95%). The results suggested that stochastic modelling could be a useful tool to predict future SOC dynamics under uncertain climate change and elevated CO2 .  相似文献   

19.
20.
The effect of lead and cadmium ions on the fluctuating asymmetry of the side leaflets’ central veins of the common bean (Phaseolus vulgaris L.) was estimated. The impact of heavy metals on the parameter with the lead or cadmium content in the ground in the concentration of 650 mg/kg or 10 mg/kg respectively was not revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号