首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of a flood control, low flow argumentation reservoir in the Midwestern part of the United States on BOD, COD, and ammonia was evaluated in this paper. Fifteen years of weekly water quality data (9 yr before impoundment and 6 yr after impoundment) from four sampling stations upstream and downstream of the reservoir were available for analysis. The annual loading rates of these parameters (kg ha?1 vr?1) were found to correlate well with annual runoff (cm yr?1). Besides, the reservoir was found to have had a significant and beneficial impact on the downstream loading rates of BOD and COD, which were reduced by 55 and 75%, respectively. As for ammonia, the results of this study indicate that its annual loadings at downstream locations were not significantly affected by the reservoir. Average non-point source contributions of BOD and ammonia loadings into the system were found to be about 80 and 55%, respectively.  相似文献   

2.
Treatment of a soil under permanent pasture with carbaryl (a broad spectrum carbamate biocide) resulted in a 2-fold increase in the volume of surface runoff. This was attributed to a 3-fold reduction in infiltration rate as a result of litter accumulation at the soil surface in the absence of surface-casting earthworm activity. The amounts of dissolved inorganic P (DIP), NH+4-N, and NO?3-N in surface runoff from pasture treated with carbaryl (1.18, 9.53 and 4.25 kg ha?1 yr?1, respectively) were appreciably greater than those from untreated pasture (0.31, 1.63 and 0.52 kg ha?1 yr?1). This was attributed to the large amounts of DIP, NH+4-N, and NO?13-N released from decomposing litter. Following incubation at 4°C for 18 days the release of DIP, NH+4-N and NO?3-N from litter was 160, 1600 and 950 μg g?1, respectively. Losses of particulate P and sediment in surface runoff were lower in the absence (0.31 and 290 kg ha?1 yr?1, respectively) than in the presence (0.56 and 1120 kg ha? yr?1) of surface casts, pointing to the importance of surface casts as a source of sediment. Surface casts accounted for 45 and 75%, respectively, of the annual loading of particulate P and sediment in surface runoff. Nevertheless, the total loss in surface runoff of P and N forms was increased substantially when the production of earthworm casts was eliminated  相似文献   

3.
The Mar Menor is a Mediterranean coastal lagoon of high conservation interest, but highly threatened by non-point pollution derived from agricultural lands. This is the first comprehensive study that evaluates the inputs into the Mar Menor from a drainage channel and the Albujón wadi, the main watercourse, and their influence on the trophic state of the lagoon. Discharge variation during the study period was closely related to the precipitation pattern. Suspended sediments and particulate organic matter loads greatly increased with flash floods. Nitrate concentrations, too, increased after heavy autumn rains through washing of the nitrates accumulated in soils, although no significant correlations were found between nitrate concentrations and precipitation or discharge. The nitrate load depended on several factors including the intensity and frequency of precipitation, and the nitrates accumulated in soils as a result of fertilisation. Phosphate concentrations decreased with higher flows. The total input into the lagoon from the two discharges estimated for the period September 2002–October 2003 were 10,142 t.yr?1of suspended sediments, 389 t.yr?1 of particulate organic matter, 2,010 t.yr?1 of dissolved inorganic nitrogen (93 % as NO? 3) and 178 t.yr?1 of soluble reactive phosphorus. The Albujón wadi exported about 80% of the N load and 70% of the P load. Higher flows contributed approximately 80% of the total discharge and nutrient loads, 99% of suspended sediment and 88% of the particulate organic matter. Mean suspended solids and nutrient concentrations in the lagoon followed a spatial pattern, decreasing with distance from the mouth of the Albujón wadi. Water nitrate and phosphate concentrations in the Mar Menor lagoon were lower than reference limits for eutrophic conditions, except after heavy rains. Nutrient concentrations were positively correlated with precipitation variables and particulate and nutrient inputs. Phosphorus was the most limiting nutrient in the Mar Menor, the DIN:SRP ratios found being higher than the Redfield ratio on all sampling dates. Phytoplankton bloom in the lagoon was only found next to the Albujón mouth during late summer and extending 5000 m into the lagoon in autumn as a consequence of large freshwater discharge caused by flash floods. Around 53.6% of the variation in chlorophyll a in the lagoon was explained by the NH4 and NO3 inputs and distance from the Albujón mouth. A good deal of P input into the lagoon is retained in the sediments, supporting a high biomass of the benthic macroalga Caulerpa prolifera in spring and summer.  相似文献   

4.
This study focuses on the role of runoff events in influencing concentrations and export of suspended sediments and phosphorus in a headwater stream draining an agroforestry catchment in northwestern Spain. Large differences exist between suspended sediment and phosphorus (P) concentrations measured during base-flow conditions and runoff events, with a higher delivery during runoff events. Suspended sediment and phosphorus exports were 29.44 and 0.08 kg ha?1 y?1 respectively, with more than 50% delivered during runoff events (12% of the year). The relative contributions of phosphorus forms to the total annual export were 75% and 25% as particulate and dissolved phosphorus, respectively. Soil erosion is the main source of suspended sediment and phosphorus in the stream.  相似文献   

5.
The maximum critical load of sulfur and its exceedance by the sulfur deposition of 1994–1997 were mapped for South Korea with a spatial resolution of 11 × 14 km using the steady-state mass balance method. The Korean soil and geological maps were used as basis for the estimations of the critical alkalinity leaching and the weathering rate of base cations. The normalized difference vegetation index data obtained from the Advanced Very High Resolution Radiometer (AVHRR) together with the observed primary productivity of plants were used for the estimation of the critical uptake of base cations. Wet deposition of the non-sea-salt base cations was derived from measured base cation concentrations in precipitation, precipitation rate and air concentration of total suspended particulate while dry deposition of base cations was estimated using the inferential technique using scavenging ratios. The predominant ranges of base cation weathering, uptake and deposition were estimated to be of 200 – 600 eq ha?1 yr?1, 200 – 400 eq ha?1 yr?1 and 400 – 600 eq ha?1 yr?1, respectively. Critical alkalinity leaching was mainly in the range of 1000 – 2000 eq ha?1 yr?1 due to relatively high value of precipitation runoff. Exceedance of sulfur critical load was found at 40 % of the ecosystems considered mainly in the southeastern part of Korea, and about 60 % of Korea ecosystems were sustainable against sulfur acidity loadings.  相似文献   

6.
Gold-coated denuders have been used to separate gas phase and particulate phase Hg in air samples. The denuders were 65 cm long with a 0.4 cm i.d. and were capable of removing >99.9% of the vapor phase elemental Hg in an air stream at flow rates of about 1 L min?1. Data were obtained at different sampling locations around the city of Göteborg. The concentration of particulate Hg was found to be within the range of 0.11 to 0.57 ng m?3, which corresponds to 2.8 to 16.9% of the total airborne Hg. Positive correlations between the concentration of particulate Hg and that of soot and suspended particles as well as a negative correlation between the concentration of particulate Hg and relative humidity were observed.  相似文献   

7.
The concentration and amounts of NO3-N and TN transported in surface, accelerated subsurface, and subsurface runoff and stream flow draining a 20 ha pasture watershed were measured over a period of 3 yr. A slight decrease and increase of NO3-N and particulate N concentrations, respectively, were obtained with increased flow of the runoff types and stream, due to dilution and increased sediment transport, respectively. The concentration of NO3-N in surface, accelerated subsurface and subsurface runoff and stream flow averaged for the 3 yr was 0.3, 6.6, 4.8, and 4.6 mg 1?1, respectively, amounting to 0.5, 9.4, 11.6, and 16.8 kg ha?1 yr?1, respectively, transported annually. Although NO3-N accounted for only a minor proportion of the TN transported in surface runoff (10%) it was the main form of N (75%) transported in the other runoff types and in streamflow. Subsurface runoff contributed the major proportion of stream discharge (63%), and NO3-N (69%), particulate N (44%) and TN (65%) loading of the stream. The results are discussed in terms of non-point pollution of surface waters by NO3-N.  相似文献   

8.
Nutrient fluxes from a soil treatment process for pig slurry   总被引:3,自引:0,他引:3  
Abstract. The effects of pig slurry applications to a hydrologically isolated field treatment plant (at Solepur) were studied over a period of eight years. Thirty repeated doses, averaging 160 m3 ha?1 were applied from April to October of each year (1991–1995), to reach a total application of 4930 m3 ha?1. All slurry samples were analysed for their total solids (TS), macronutrient (C, N, P, K, Ca) and micronutrient (Cu, Zn) content. In total, 284 tonnes of total solids (57 t TS ha?1 yr?1), 115 tonnes of carbon (23 t C ha?1yr?1), 24.5 tonnes of nitrogen (4900 kg N ha?1 yr?1), 7964 kg of phosphorus (1593 kg P ha?1 yr?1), 16 518 kg of potassium (3304 kg K ha?1 yr?1), 183 kg copper (37 kg Cu ha?1 yr?1) and 266 kg zinc (53 kg Zn ha?1 yr?1) were applied to the soil. Thus, this site provides an opportunity to assess the balance and to examine the long‐term behaviour of nutrients under conditions of intensive land application of pig slurries or similar effluents. The main nutrient fluxes through the soil‐water system were determined for each element. Over 40% of the total carbon applied was retained by the soil. About 25% of the slurry nitrogen applied remained in the soil profile and 12.5% was leached through the drainage water as nitrate. Most of the slurry phosphorus applied was retained in the soil profile either as P‐Dyer extractable (83%), or as total soil phosphorus (112%); <0.01% was found in the drainage water. Forty‐three per cent of the potassium applied in the slurry was recovered from the soil profile and 15% was recovered in the drainage water. Most of the copper (62%) and zinc (74%) applied in the slurry remained in the soil as EDTA extractractable forms; very low percentages (0.05% and 0.6% respectively) were found in the drainage water.  相似文献   

9.
A cross-disciplinary research project has been implemented because of increased awareness of the potential environmental effects caused by dispersion of metals from external applications into the environment. The work comprises a 4-year (1998–2002) field exposure of grades 304 and 316 stainless steels, and a laboratory percolation study simulating 20–25 years of chromium and nickel containing runoff water interactions with soil. Total metal annual release rates varied between 0.2 and 0.7 mg m?2 yr?1 for Cr, between 0.1 and 0.8 mg m?2 yr?1 for Ni and between 10 and 200 mg m?2 yr?1 for Fe. Most Cr and Ni is present in an ionic form as a result of the limited presence of organic matter at the immediate release situation. Metal ion concentrations in the runoff water are far below reported ecotoxic concentrations. Studies of the environmental interaction between runoff water from stainless steel and soil show the majority of released Cr and Ni to be retained and their concentrations in percolation water to be very low (0.5–1 μg L?1 and 1–5.5 μg L?1 for Cr and Ni, respectively). Speciation calculations showed Cr to be primarily complexed to dissolved organic carbon while Ni also was present in an ionic form in the solution phase. Soil extractions showed Cr and Ni to be very strongly retained within the soil.  相似文献   

10.
Knowledge of differentiation of pollutants in urban runoff between dissolved and particulate matter is of great concern for a successful design of a water treatment process. Seasonal variations in pollutant load are of equal importance. Ten metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), as dissolved and particulate bound, was studied in the runoff from a major urban highway during a winter season and its following summer. Studded tyres and winter salting were expected to have an impact on the runoff water quality. The dissolved part of Al, Cd, Co, Cr, Mn and Ni was significantly higher in winter in comparison with summer (p?<?0.01). For Fe, however, the dissolved part was lower during winter. No significant difference was found for Cu, Pb and Zn between the two seasons. The mass concentration (mg kg?1) for all metals was significantly higher over the summer except for Al and Co, which showed a higher mass concentration during the winter. The concentration of selected metals vs. total suspended solids (TSS) showed a linear relationship (r 2?>?0.95) during winter runoff events except for Cd. A good correlation (r 2?>?0.90) was also found for the summer period for Al, Cu, Fe, Mn, Ni and Zn. It is suggested that the metal pollutant load during winter could be assessed indirectly by measurement of TSS.  相似文献   

11.
Atmospheric C (TAC) is continuously transported by rivers at the continents’ surface as soil dissolved and particulate organic C (DOC, POC) and dissolved inorganic C (DIC) used in rock weathering reactions. Global typology of the C export rates (g.m?2.yr?1) for 14 river classes from tundra rivers to monsoon rivers is used to calculate global TAC flux to oceans estimated to 542 Tg.yr?1, of which 37 % is as DOC, 18 % as soil POC and 45 % as DIC. TAC originates mostly from humid tropics (46 %) and temperate forest and grassland (31 %), compared to boreal forest (14 %), savannah and sub-arid regions (5 %), and tundra (4 %). Rivers also carry to oceans 80 Tg. yr?1 of POC and 137 TG.yr?1 of DIC originating from rock erosion. Permanent TAC storage on land is estimated to 52 Tg.yr?1 in lakes and 17 Tg.yr?1 in internal regions of the continents.  相似文献   

12.
Abstract

The strategy to mitigate phosphorus (P) losses in areas of arable cropping in Norway has focused on measures to reduce erosion. Risk assessment of erosion has formed the basis for implementation of the measures. The soil P content has increased during recent decades, motivating an evaluation of its effect on P transfer in the landscape. The present study describes the spatial variability of runoff P concentrations from an agricultural dominated catchment (4.5 km2), representative for agriculture in south-eastern Norway. The concentrations of suspended sediments (SS), total P (TP) and dissolved reactive P (DRP) in runoff from 22 subcatchments (0.3–263 ha) during one year (monthly and during runoff-events) were evaluated. Contributions from point sources were 38 kg TP yr?1 compared to a total P loss of 685 kg yr?1 from the whole catchment. During low flow, mean diffuse TP concentration in runoff from subcatchments varied from 28 to 382 µg l?1. The mean low flow TP concentration was 39 µg l?1 from the housing area (only diffuse runoff) and 33 µg l?1 from the forested area. During high flow the highest diffuse TP concentration was measured in an area with high erosion risk and high soil P status. At the subcatchment level the transfer of SS varied from 25 to 175% of the whole catchment SS transfer. Correspondingly for TP, the transfer varied from 50 to 260% of the whole catchment TP transfer. For each of five agricultural subcatchments the slope of the relationship between TP and SS concentrations reflected the mean soil P status of the subcatchment. Erosion risk estimates were closely related to the SS concentration (R2=0.83). The study illustrates that soil P status in addition to soil erosion is an important factor for P transfer.  相似文献   

13.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

14.
Phosphorus (P) transfers may accelerate water eutrophication to waters. Increasing awareness of the role of diffuse P sources motivates land managers in different regions of Europe to undertake conservation programs that place emphasis not only on soil conservation but also on water quality and eutrophication risk. Fertilizer applications and wastes are the main sources of dissolved P in Galicia and in the Atlantic regions of Spain. The aim of this study was to assess the temporal changes in concentration of total P (TP), sedimentary P (SP), and total dissolved P (TDP) and suspended solids at the outlet of an agroforestry catchment located in northwestern Spain. The study datasets range from January 1999 to December 2007, with 992 water samples collected. The water-collection strategy was a stratified point sampling involving more frequent collections when flow was high. Phosphorus contents were assessed by inductively coupled plasma (ICP)–mass spectroscopy (MS), and suspended solids were measured by filtration. The content ranges of the different studied P forms and suspended solids were as follows: TDP between 1 and 672 mg L?1, SP between 1 and 1064 mg L?1, TP between 1 and 1111 mg L?1, and suspended solids between 1 and 1044 mg L?1. A few events of intense precipitation with peaks of TP greater than 200 mg L?1 and in some cases even more than 1000 mg L?1 were responsible for most of the P losses in the catchment studied. TP and SP, TP and suspended solids, and SP and suspended solids showed highly significant correlations during the entire study period, evidencing the erosive origin of P in this catchment.  相似文献   

15.
In Oregon’s Willamette River Basin (Basin), health advisories currently limit consumption of fish that have accumulated methylmercury. Under the Clean Water Act, these advisories create the requirement for a mercury Total Maximum Daily Load (TMDL), which, in turn, created the need to better characterize the cycling of mercury in the Basin. This paper presents: (a) a mass balance model relating the processes, reservoirs, and fluxes of the Basin’s mercury cycle, (b) first-approximation estimates of reservoir masses, flux rates, and turnover times, and (c) an assessment of the impact of anthropogenic mercury sources on this cycle. Deposition from the atmosphere to land is estimated to be the largest (587 kg yr?1) single flux; with much (≈54%) of this deposited mercury returned to the atmosphere via volatilization. Combined local anthropogenic (360 kg yr?1) and global emissions (390 kg yr?1) substantially overshadow all other anthropogenic point-source inputs. Runoff of mercury from native soils (particulate and dissolved phases) was estimated as the largest (≈70%) single source of Hg to surface water; contributions from anthropogenic air emissions deposited on land and then transported as runoff were ≈17%. All other currently identified and quantifiable non-atmospheric anthropogenic point sources made a small (≈5%) contribution to total loadings. These first-approximation estimates suggest that management of soil erosion should have a higher priority than reductions in local anthropogenic air emissions, with the caveat, however, that the degree of linkage between any such reductions and that of methylmercury levels in fish is presently unclear. Additional work will be required to develop the better parameterized and calibrated model needed to predict the outcome of Hg loading reduction alternatives under consideration within the TMDL process.  相似文献   

16.
On acid sandy soils of Niger (West Africa) fertilizer N recovery by pearl millet (Pennisetum glaucum L.) is often more than 100 per cent in years with normal or above average rainfall. Biological nitrogen fixation (BNF) by N2-fixing bacteria may contribute to the N supply in pearl millet cropping systems. For a long-term field experiment comprising treatments with and without mineral fertilizer (F) and with and without crop residue application (CR) a N balance sheet was calculated over a period of six years (1983-1988). After six years of successive millet cropping total N uptake (36-77 kg N ha?1 yr?1) was distinctly higher than the amount of fertilizer N applied (30 kg N ha?1 yr?1). The atmospheric input of NH4-N and NO3-N in the rainwater was about 2 kg N ha?1 yr?1, 70 % in the form of NH4-N. Gaseous NH3 losses from urea (broadcast, incorporated) were estimated from other experiments to amount to 36 % of the fertilizer N applied. Nitrogen losses by leaching (15 to > 25 kg N ha?1 yr?1) were dependent on the treatment and on the quantity and distribution of single rainfall events (>50 mm). Decline in total soil N content (0-60 cm) ranged from 15 to 48 kg N ha?1 yr?1. The long-term N balance (1983-1988) indicated an annual net gain between 6 (+CR-F) and 13 (+CR+F) kg N ha?1 yr?1. For the control (-CR-F) the long-term N balance was negative (10 kg N ha?1 yr?1). In the treatment with crop residues only, the N balance was mainly determined by leaching losses, whereas in treatments with mineral fertilizer application the N balance depended primarily on N removal by the millet crop. The annual net gain in the N balance increased from 7 kg ha?1 with mineral fertilizer to 13 kg ha?1 in the combination mineral fertilizer plus crop residues. In both the rhizosphere and the bulk soil (0-15 cm), between 9 and 45% of the total bacterial population were N2-fixing (diazotrophic) bacteria. The increased N gain upon crop residue application was positively correlated with an increase in the number of diazotrophic and total bacteria. The data on bacterial numbers suggest that the gain of N in the longterm N balance is most likely due to an N input by biological nitrogen fixation. In addition, evidence exists from related studies that the proliferation of diazotrophs and total bacteria in the rhizosphere due to crop residue application stimulated root growth of pearl millet, and thus improved the phosphorus (P) acquisition in the P deficient soil.  相似文献   

17.
Studies of waste generation from the freshwater phase of Atlantic salmon (Salmo salar L.) production have not been substantially updated since the mid 1980's, and advances in husbandry prectices designed to reduce wastage which have taken place in that period therefore remain unconsidered. In order to determine if reductions have been achieved, two Scottish fish farms were visited on a number of occasions during one year, and outputs of suspended solids (SS), biochemical oxygen demand (BOD), total ammonia nitrogen (TAN) (NH3+NH4 +), dissolved reactive and total phosphorus (DRP, TP) were monitored. The range of waste loadings obtained were 9.1–10.0 kg TP t fish?2 yr?1, 410 kg BOD5 t fish?1 yr?1, 191–606 kg SS t fish?1 y?1, and 20.3–39.3 kg TAN-N t fish?1 yr?1. Compared to existing data, a greater range of daily waste loadings were observed, suggesting that more frequent monitoring is required to reduce variations observed in the data set, and to obtain accurate information on waste outputs from such operations. Modifications of feeding methods remains a route through which further reductions in waste outputs may be made.  相似文献   

18.
Alternative use of poultry litter (PL) for forest rather than pasture fertilization would improve forest soil fertility and reduce nutrient build-up in pasture. Yield and nutrient uptake of Alamo switchgrass (Panicum virgatum L.) in a loblolly pine (Pinus taeda L.) silvopasture annually fertilized with PL or urea at 80 and 160 kg N ha?1 for four years, and without fertilization were compared. Treatment effects on soil fertility and effect of PL on runoff water quality were also determined. Fertilization with N increased yields 120% to an average of 3.8 Mg ha?1 yr?1. Since nutrient removal was small, P, base cations and pH increased in the ≤30 cm depth soil with PL. Total P in edge-of-plot runoff was increased by 0.31 kg ha?1 y?1 at the higher PL rate. Two applications at this rate per tree rotation might be justified based on increased soil fertility and infrequently increased P load.  相似文献   

19.
Abstract

Two Ferralsols (350 and 600 g kg?1 clay) from the Brazilian Cerrado Region were evaluated for long‐term effects (5 and 8 years) of no tillage on carbon (C) stocks in particulate (>53 µm) and mineral‐associated (<53 µm) soil organic matter (SOM) fractions. Carbon stocks in particulate SOM increased under no tillage compared with conventional tillage, and the rate was higher in the clayey soil (0.62 Mg C ha?1 yr?1) than in the sandy clay loam soil (0.31 Mg C ha?1 yr?1). In contrast, the mineral‐associated SOM in the top soil layer (0–20 cm) was not affected by tillage system. Sequestration of atmospheric C in tropical no‐tillage soils seems to be due to accumulation of C in labile SOM fractions, with highest rates in clayey soils probably due to physical protection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号