共查询到20条相似文献,搜索用时 109 毫秒
1.
N. Okon Levy Y. Meller Harel Z. M. Haile Y. Elad E. Rav‐David E. Jurkevitch J. Katan 《Plant pathology》2015,64(2):365-374
The effect of soil solarization and Trichoderma harzianum on induced resistance to grey mould (Botrytis cinerea) and powdery mildew (Podosphaera xanthii) was studied. Plants were grown in soils pretreated by solarization, T. harzianum T39 amendment or both, and then their leaves were inoculated with the pathogens. There was a significant reduction in grey mould in cucumber, strawberry, bean and tomato, and of powdery mildew in cucumber, with a stronger reduction when treatments were combined. Bacillus, pseudomonad and actinobacterial communities in the strawberry rhizosphere were affected by the treatments, as revealed by denaturing gradient gel electrophoresis fingerprinting. In tomato, treatments affected the expression of salicylic acid (SA)‐, ethylene (ET)‐ and jasmonic acid (JA)‐responsive genes. With both soil treatments, genes related to SA and ET – PR1a, GluB, CHI9 and Erf1 – were downregulated whereas the JA marker PI2 was upregulated. Following soil treatments and B. cinerea infection, SA‐, ET‐, and JA‐related genes were globally upregulated, except for the LOX genes which were downregulated. Upregulation of the PR genes PR1a, GluB and CHI9 in plants grown in solarized soil revealed a priming effect of this treatment on these genes' expression. The present study demonstrates the capacity of solarization and T. harzianum to systemically induce resistance to foliar diseases in various plants. This may be due to either a direct effect on the plant or an indirect one, via stimulation of beneficial microorganisms in the rhizosphere. 相似文献
2.
葡萄霜霉病抗病性鉴定方法及品种抗病性测定 总被引:3,自引:0,他引:3
本文通过对葡萄霜霉病抗病性鉴定方法进行优化,建立了一种更为快捷、方便、可靠的鉴定方法,并对32个葡萄品种对霜霉病抗病性进行了鉴定,为葡萄抗病品种的选育和应用提供依据。结果显示:以田间混合的霜霉病菌为接种体采用叶盘法鉴定葡萄品种的抗病性更加快捷、方便。供试的32个葡萄品种对葡萄霜霉病的抗性存在显著差异。其中免疫品种有‘康拜尔早生';高抗的有‘阳光玫瑰'、‘美乐'、‘Ms27-31'等5个品种;中抗的有‘贝达'、‘小芒森'、‘2E-16-2'等6个品种;低抗的有‘瑞都红玉'、‘早黑宝'、‘摩尔多瓦'等10个品种;感病的有‘里扎马特'、‘玫瑰香'、‘香妃'等10个品种。 相似文献
3.
4.
Ahmed Sid Ahmed Consuelo Pérez Sánchez Maria Emilia Candela 《European journal of plant pathology / European Foundation for Plant Pathology》2000,106(9):817-824
The effect of pepper seed and root treatments with Trichoderma harzianum spores on necrosis caused in stems by Phytophthora capsici inoculation and on the course of capsidiol accumulation in the inoculated sites were studied. The results indicate that seed treatments significantly reduced stem necrosis, which fell by nearly a half compared with the values observed in plants grown from non-treated seeds. Necrosis was also reduced in plants whose roots were drenched with various doses of T. harzianum spores, although the extent of necrosis was not correlated with the dose used. Attempted isolation of P. capsici and T. harzianum from the zones immediately contiguous with the necrotic zones revealed the presence of the former but not of the latter, suggesting that there was no direct contact between them in the zones of isolation, which means that there was no competition for space. The percentage of P. capsici isolated 9 days after inoculation was greater in non-treated inoculated plants than in treated inoculated plants. These results suggest that T. harzianum, introduced into the subterranean part of the plant, induces a systemic defense response against P. capsici in the upper part of the plant. Analysis of capsidiol in the stems of treated inoculated plants by the end of the sixth day after inoculation, revealed that its concentration was more than seven-fold greater than in non-treated and inoculated plants, while after 9 days, the concentration of capsidiol decreased in the treated inoculated plants and increased in the non-treated inoculated plants. The high concentration of capsidiol detected in treated and inoculated stems after 6 days might be one of the contributing factors, but not necessarily the main factor, in delaying lesion development in the stems of pepper plants. 相似文献
5.
Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea 总被引:11,自引:0,他引:11
Geert De Meyer Joseph Bigirimana Yigal Elad Monica Höfte 《European journal of plant pathology / European Foundation for Plant Pathology》1998,104(3):279-286
Biocontrol of Botrytis cinerea with Trichoderma spp. is generally believed to result from direct interaction of the biocontrol agent with the pathogen or from a Trichoderma-induced change in environmental conditions that affects B. cinerea development. In this work we provide arguments for the participation of induced plant defence in T. harzianum T39 control of B. cinerea. In tomato, lettuce, pepper, bean and tobacco, T. harzianum T39 application at sites spatially separated from the B. cinerea inoculation resulted in a 25–100%percnt; reduction of grey mould symptoms, caused by a delay or suppression of spreading lesion formation. Given the spatial separation of both micro-organisms, this effect was attributed to the induction of systemic resistance by T. harzianum T39. The observation that in bean the effect of T. harzianum T39 was similar to that of the rhizobacterium Pseudomonas aeruginosa KMPCH, a reference strain for the induction of systemic resistance, confirmed this hypothesis. Since B. cinerea control on tobacco leaves sprayed with T. harzianum T39 was similar to the control on leaves from T. harzianum T39 soil-treated plants, induction of plant defence might also participate in biocontrol on treated leaves. 相似文献
6.
A. Calonnec S. Wiedemann‐Merdinoglu L. Delière P. Cartolaro C. Schneider F. Delmotte 《Plant pathology》2013,62(3):533-544
This study was designed to assess the reliability of grapevine leaf bioassays for predicting disease resistance on fruit in the field. The efficacy of various grapevine quantitative trait loci (QTLs) for conferring resistance to downy and powdery mildew was evaluated in bioassays and in a 2‐year field experiment for downy mildew. The resistance genes studied were inherited from Muscadinia rotundifolia (Rpv1 and Run1) and from American Vitis species through cv. Regent (QTLRgP and QTLRgD). In bioassays, genotypes carrying Run1 blocked powdery mildew development at early stages. Genotypes combining Run1 with QTLRgP displayed no greater level of resistance. For downy mildew, genotypes carrying Rpv1 and/or QTLRgD were more resistant than the susceptible cv. Merlot, and showed a high level of leaf resistance in the field (<10% severity). Disease levels on bunches were much higher than those on leaves, with a high variability between Rpv1 genotypes (1–48%). A Bayesian decision theory framework predicted that an OIV‐452 threshold of 5 in leaf bioassays allowed accurate selection of grapevine genotypes (P = 0·83) with satisfactory disease severity on bunches. Therefore, this study validates that the use of early bioassays on leaves, as currently performed by grapevine breeders, ensures a satisfactory level of resistance to downy mildew of bunches in the field. 相似文献
7.
R. Pezet K. Gindro O. Viret J.-L. Spring 《Physiological and Molecular Plant Pathology》2004,65(6):297-303
Levels of resistance to Plasmopara viticola, from susceptible to highly resistant, of different grapevine cultivars were observed in vineyards and confirmed by the symptoms developed after inoculations. On the abaxial surface of infected leaves, P. viticola developed abundant sporangiophores on susceptible cultivars (Chasselas, Gamay, Gamaret and Pinot Noir), whereas on less susceptible cultivars (Seyval Blanc and Johanniter) the parasite produced few sporangiophores and some necrotic spots at the site of infection. On resistant cultivars (Bronner, Solaris, IRAC 2091), P. viticola induced a hypersensitive response and only necrotic spots were visible and the disease ceased to develop. Stilbenes were analyzed 4, 7, 24, 48 h post-infection (hpi) on small leaf samples cut from the site of infection. Large differences were observed between the cultivars at 24 and 48 hpi. Susceptible grapevines produced resveratrol and its glycoside, piceide. In contrast, resistant plants produced high concentration of ε- and δ-viniferin. Resveratrol and piceide have little or no toxicity activity against P. viticola, whereas δ-viniferin is highly toxic and can be considered an important marker for resistance of grapevine to downy mildew. The importance of oxidative dimerization of resveratrol in comparison to the extent of its glycosylation in defense reaction of grapevines against P. viticola is discussed. 相似文献
8.
Susan Asghari Behrouz Harighi Morahem Ashengroph Christophe Clement Aziz Aziz Qassim Esmaeel Essaid Ait Barka 《Plant pathology》2020,69(5):827-837
Crown gall disease of grapevine, caused by Agrobacterium tumefaciens, often results in severe economic loss to grape production worldwide. This study demonstrated the ability of the endophytic bacteria Pseudomonas sp. Sn48 and Pantoea sp. Sa14 isolated from domesticated and wild grapevines to induce resistance in both above- and belowground tissues of grapevines infected with A. tumefaciens. Our results provide evidence that both strains can colonize roots and/or shoots. We showed that the strains Pseudomonas sp. Sn48 and Pantoea sp. Sa14 are capable of inducing stilbenic phytoalexin production in grapevine tissues and to further prime plantlets for enhanced phytoalexin production after A. tumefaciens inoculation. We also showed that in the majority of treatments, polyamine accumulation remained unchanged or slightly increased in plantlets treated with Pseudomonas sp. Sn48 and Pantoea sp. Sa14 compared with the control. Our findings indicated that the levels of polyamines remain unchanged or significantly decrease in plantlets treated with endophytic bacteria after A. tumefaciens challenge compared to the control and plantlets treated with individual endophytic bacterial strains. PR1, PR2, and PR4 gene expression levels of plantlets treated with Pseudomonas sp. Sn48 and Pantoea sp. Sa14 significantly increased after A. tumefaciens inoculation. The findings revealed the efficacy of the selected endophytic bacteria in triggering grapevine resistance against A. tumefaciens and the possible use of these strains as an alternative to chemical control methods in grapevine crown gall disease management. 相似文献
9.
Of the three isomers of aminobutyric acid, only the β isomer (BABA) was effective in inducing resistance against Peronospora parasitica , the causal agent of downy mildew, in cauliflower ( Brassica oleracea var. botrytis ). A single foliar spray applied to 7-day-old seedlings protected the plants against Peronospora parasitica for at least 15 days. Of the enantiomers (R and S), only the R was effective. Resistance was accompanied by a hypersensitive-like reaction (necrotic spots) which was evident before inoculation. BABA was systemically effective when applied to the roots, but failed to protect cotyledons adjacent to treated ones. Unlike other chemical inducers, BABA was effective when applied several hours postinoculation. It had no effect on P. parasitica spore germination. In cauliflower seedlings, BABA did not induce the accumulation of the pathogenesis-related protein PR-1, PR-2, PR-3, PR-5 and PR-9. Only treated and challenged seedlings accumulated PR-2. 相似文献
10.
Lettuce (Lactuca sativa) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. Quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions were mapped in an interspecific population derived from a cross between susceptible L. sativa cultivar Salinas and the highly susceptible L. serriola accession UC96US23. Four significant QTLs were detected on linkage groups LG 1 (pm‐1.1), LG 2 (pm‐2.1 and pm‐2.2) and LG 7 (pm‐7.1), each explaining between 35 to 42% of the phenotypic variation. The four QTLs are not located in the documented hotspots of lettuce resistance genes. Alleles for the disease resistance at the four QTLs originated from both parents (two from each), demonstrating that even highly susceptible accessions may provide alleles for resistance to powdery mildew. These QTLs appeared to operate during limited periods of time. Results of the field trials with F2:3 and F3:4 families derived from a Soraya (moderately resistant) × Salinas cross demonstrated effective transfer of resistance to powdery mildew in this material. An integrated rating approach was used to estimate relative levels of resistance in 80 cultivars and accessions tested in a total of 23 field and greenhouse experiments. Generally, very low resistance was observed in crisphead‐type lettuces, while the highest relative resistance was recorded in leaf and butterhead types. Comparison of two disease assessment methods (percentage rating and the area under the disease progress steps, AUDPS) for detection of QTLs shows that the two approaches complement each other. 相似文献
11.
12.
Evaluation of Malaysian oil palm progenies for susceptibility,resistance or tolerance to Fusarium oxysporum f. sp. elaeidis and defence‐related gene expression in roots 下载免费PDF全文
Vascular wilt of oil palm caused by Fusarium oxysporum f. sp. elaeidis (Foe) is a devastating disease in West and Central Africa. As the oil palm industry in southeast Asia is still expanding, so is the oil palm germplasm collection through the importation of seed and pollen from Africa, the centre of diversity for Elaeis guineensis. There is a risk of inadvertent spread of the disease on contaminated seed or pollen. Regular re‐evaluation of the reaction of currently grown palm genotypes towards Foe is clearly required for biosecurity. This study has demonstrated that four Malaysian oil palm progenies, three in current or recent commercial use, are highly susceptible to infection by at least one of two African isolates of Foe, representing different countries, aggressiveness and vegetative compatibility groups. Symptoms and reduction of palm growth generally reflected the extent and intensity of systemic colonization by Foe. Progeny PK 5463 expressed partial resistance to Foe isolate F3, but not to isolate 16F, displaying significantly milder symptoms and supporting less widespread vascular colonization. This relatively incompatible interaction was used to study expression of potential defence‐related genes during root infection when compared to a susceptible palm–isolate combination. The only significant response was an early up‐regulation of chitinase in resistant palms. The research revealed at least one progeny–isolate differential interaction, and the associated resistance expression suggests a component of tolerance, because colonization by Foe was systemic in both compatible and incompatible combinations. 相似文献
13.
Downy mildew resistance was previously identified from screening a Brassica oleracea collection against two standard UK isolates of Hyaloperonospora parasitica. Sources of resistance were chosen from this material and developed further in this study by generating doubled haploid (DH) and inbred lines. Seedlings from the new lines were tested for resistance to a larger collection of H. parasitica isolates collected in 2001–2002 and 2007–2008 from the main broccoli and cauliflower production regions of the UK. Three lines (derived from borecole or summer cabbage) were broadly resistant to the pathogen isolates. Three of the remaining lines exhibited strong isolate‐specific resistance; several examples of weak or basal level of resistance to some isolates were observed. A new H. parasitica variant collected in 2008 was virulent in the broadly resistant lines, but was avirulent in a line with narrow specificity of resistance. The F2 and BC1 seedlings derived from outcrossing each of the three broadly resistant lines to susceptible broccoli and cauliflower lines segregated in a manner indicating that the resistance was controlled by a single dominant gene. No susceptibility was observed amongst F2 seedlings derived from intercrossing the three resistant lines, indicating that they all share the same or closely linked broad‐spectrum resistance gene(s). DH lines were produced from F1 plants, and resistant plants were further backcrossed to produce broccoli and cauliflower‐like lines that could be useful pre‐breeding material. A combination of resistance from lines with broad and narrow specificity is recommended for controlling downy mildew in UK brassica production. 相似文献
14.
Effectiveness of Rlm7 resistance against Leptosphaeria maculans (phoma stem canker) in UK winter oilseed rape cultivars 下载免费PDF全文
G. K. Mitrousia Y. J. Huang A. Qi S. N. M. Sidique B. D. L. Fitt 《Plant pathology》2018,67(6):1339-1353
The Rlm7 gene in Brassica napus is an important source of resistance for control of phoma stem canker on oilseed rape caused by the fungus Leptosphaeria maculans. This study shows the first report of L. maculans isolates virulent against Rlm7 in the UK. Leptosphaeria maculans isolates virulent against Rlm7 represented 3% of the pathogen population when cultivars with the Rlm7 gene represented 5% of the UK oilseed rape area in 2012/13. However, the Rlm7 gene has been widely used since then, representing >15% of the UK oilseed rape area in 2015/16. Winter oilseed rape field experiments included cultivars with the Rlm7 gene, with the Rlm4 gene or without Rlm genes and took place at five sites in the UK over four cropping seasons. An increase in phoma leaf spotting severity on Rlm7 cultivars in successive seasons was observed. Major resistance genes played a role in preventing severe phoma leaf spotting at the beginning of the cropping season and, in addition, quantitative resistance (QR) in the cultivars examined made an important contribution to control of phoma stem canker development at the end of the cropping season. Deployment of the Rlm7 resistance gene against L. maculans in cultivars with QR in combination with sustainable disease management practices will prolong the use of this gene for effective control of phoma stem canker epidemics. 相似文献
15.
Nematode quantitative resistance conferred by the pepper genetic background presents additive effects and is stable against different isolates of Meloidogyne incognita 下载免费PDF全文
Root‐knot nematodes (RKNs), Meloidogyne spp., are a major disease problem in solanaceous crops worldwide, including pepper (Capsicum spp.). Genetic control provides an economically and environmentally sustainable protection alternative to soil fumigants. In pepper, resistance to the main RKN species (M. incognita, M. javanica and M. arenaria) is conferred by the major genes (R genes) Me1, Me3 and N. However, RKNs are able to develop virulence, thus endangering the efficiency of R genes. Quantitative resistance (QR) against Meloidogyne spp. is expected to provide an alternative to R genes, or to be combined with R genes, to increase the resistance efficiency and durability in pepper. In order to explore the ability of QR to protect pepper against RKNs, five pepper inbred lines, differing in their QR level, were tested directly, or after combination with the Me1 and Me3 genes, for their resistance to a panel of M. arenaria, M. javanica and M. incognita isolates. The M. arenaria and M. javanica isolates showed low pathogenicity to pepper, unlike the M. incognita isolates. The QR, controlled by the pepper genetic background, displayed a high resistance level with a broad spectrum of action, protecting pepper against Me3‐virulent as well as avirulent M. incognita isolates. The QR was also expressed when combined with the Me1 and Me3 genes, but presented additive genetic effects so that heterozygous F1 hybrids proved less resistant than homozygous inbred lines. The discovery of this QR is expected to provide promising applications for preserving the efficiency and durability of nematode resistance. 相似文献
16.
17.
Fusarium culmorum causes head blight, produces toxins and reduces yield and quality of cereals. To prevent damage caused by fusarium head blight (FHB), azole fungicides are mainly applied. The occurrence of insensitivity to azoles is a major problem in agriculture. The present study shows that a tebuconazole insensitive strain of F. culmorum can be readily produced in the laboratory, but that the resulting strain of the fungus is of lower fitness in vitro. Insensitivity was confirmed microscopically and by cell viability and metabolic activity. The tebuconazole insensitive strain shows cross insensitivity to nine important azoles. In addition, plants inoculated with the insensitive F. culmorum strain showed no reduction of FHB symptoms and deoxynivalenol (DON) content after tebuconazole treatment, compared to an inoculation with the sensitive strain. Use of wheat cultivars carrying a high resistance level (i.e. cv. Toras) was the most effective method for reducing symptoms and decreasing DON content, independent from the level of fungicide insensitivity of the F. culmorum strain. In conclusion, resistant cultivars and a fungicide mixture which combines different mechanisms of action in fungal metabolism should be applied to avoid fungicide insensitivity of Fusarium spp. in future. 相似文献
18.
The aim of this study was to investigate the potential diversity and pathogen‐specificity of sources of quantitative resistance to leaf rust caused by Puccinia triticina in French wheat germplasm. From a set of 86 genotypes displaying a range of quantitative resistance levels during field epidemics, eight wheat genotypes were selected and challenged in a greenhouse with three isolates of the pathogen, belonging to different pathotypes. Five components of resistance were assessed: infection efficiency, for which an original methodology was developed, latent period, lesion size, spore production per lesion, and spore production per unit of sporulating tissue. High diversity and variability for all these components were expressed in the host × pathotype combinations investigated; isolate‐specificity was found for all the components. The host genotypes displayed various resistance profiles, based on both the components affected and the isolate‐specificity of the interaction. Their usefulness as sources of quantitative resistance was assessed: line LD7 probably combines diversified mechanisms of resistance, being highly resistant for all the components, but displaying isolate‐specificity for all the components; cv. Apache did not show isolate specificity for any of the components, which could be related to the durability of its quantitative resistance in the field over more than 11 years. 相似文献
19.
A reproducible and accurate procedure, based on HPLC analysis, has been developed to determine simultaneously acibenzolar‐S‐methyl (CGA 245 704) and its acid derivative (CGA 210 007) in tomato leaves. The limit of detection and quantification of the method are 0.015 and 0.15 mg litre?1 for CGA 245 704 and 0.030 and 0.30 mg litre?1 for CGA 210 007. In tomato plants treated with 250 µM CGA 245 704, it was found that the inducer rapidly translocates from treated leaves (cotyledons, 1st and 2nd) to untreated leaves (3rd to 5th), with the maximum translocation (40% of the total quantity found) occurring 8 h after the treatment. CGA 245 704 residues decreased as time elapsed in both treated and untreated tomato leaves, reaching negligible values 72 h after treatment. The acid derivative, CGA 210 007, was formed in tomato plants as early as 2 h after CGA 245 704 treatment, albeit only in the treated leaves. CGA 210 007 residues decreased in treated tomato leaves with a trend similar to that observed for CGA 245 704. Treatment of tomato plants with CGA 245 704 or CGA 210 007 at 250 µM systemically protected the plants against Pseudomonas syringae pv tomato attacks, the causal agent of bacterial speak disease. Evidence of this were reductions in the degree of infection, the bacterial lesion diameter and the bacterial growth in planta. Since neither CGA 245 704 nor CGA 210 007 inhibited bacterial growth in vitro and the protection against bacterial speak of tomato was observed when the two compounds were completely degraded, the protection must be due to the activation of the plant's defence mechanisms. © 2001 Society of Chemical Industry 相似文献
20.
Screening of rice (Oryza sativa) cultivars for resistance to rice black streaked dwarf virus using quantitative PCR and visual disease assessment 下载免费PDF全文
Rice black streaked dwarf virus (RBSDV) causing rice black streaked dwarf disease is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a persistent propagative manner. The disease is considered among the most destructive in rice production in east and southeast Asia. For sustainable control of the disease, planting resistant cultivars is the most economical and efficient method. The virus content in different rice cultivars was quantified using a TaqMan RT‐qPCR assay under greenhouse conditions and the disease was visually assessed in these cultivars in both greenhouse and field conditions. Results revealed significant positive moderate correlation (r = 0.3787; P = 0.0009) between the virus content and visual disease assessment in the greenhouse under forced inoculation. Among 66 rice cultivars, there was no significant difference in RBSDV genome equivalent copies (GEC) in seven cultivars, namely Lian‐dao 9805 (200.2 ± 12), Liangyou 3399 (206.6 ± 28), Ningjing 4 (206.6 ± 28), DaLiang 207 (302.0 ± 61), X 008 (354.0 ± 30), Shengdao 301 (658.4 ± 69) and Liangyou 1129 (679.5 ± 98). These cultivars were also visually assessed as resistant under greenhouse and field conditions. These cultivars could be used in disease management to reduce the likelihood of epidemics. 相似文献