首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
A new approach for the simultaneous identification of the viruses and vectors responsible for tomato yellow leaf curl disease (TYLCD) epidemics is presented. A panel of quantitative multiplexed real‐time PCR assays was developed for the sensitive and reliable detection of Tomato yellow leaf curl virus‐Israel (TYLCV‐IL), Tomato leaf curl virus (ToLCV), Bemisia tabaci Middle East Asia Minor 1 species (MEAM1, B biotype) and B. tabaci Mediterranean species (MED, Q biotype) from either plant or whitefly samples. For quality‐assurance purposes, two internal control assays were included in the assay panel for the co‐amplification of solanaceous plant DNA or B. tabaci DNA. All assays were shown to be specific and reproducible. The multiplexed assays were able to reliably detect as few as 10 plasmid copies of TYLCV‐IL, 100 plasmid copies of ToLCV, 500 fg B. tabaci MEAM1 and 300 fg B. tabaci MED DNA. Evaluated methods for routine testing of field‐collected whiteflies are presented, including protocols for processing B. tabaci captured on yellow sticky traps and for bulking of multiple B. tabaci individuals prior to DNA extraction. This work assembles all of the essential features of a validated and quality‐assured diagnostic method for the identification and discrimination of tomato‐infecting begomovirus and B. tabaci vector species in Australia. This flexible panel of assays will facilitate improved quarantine, biosecurity and disease‐management programmes both in Australia and worldwide.  相似文献   

3.
Molecular and biological characterization of the begomovirus isolate BR:LNS2:Pas:01, obtained from yellow passionfruit plants in Livramento de Nossa Senhora, Bahia state, Brazil, was carried out. Sequence analysis demonstrated that the BR:LNS2:Pas:01 DNA‐A had highest nucleotide sequence identity with Tomato chlorotic mottle virus (77%) and had five ORFs corresponding to the genes cp, rep, trap, ren and ac4. The DNA‐B had highest nucleotide sequence identity with Tomato yellow spot virus (74%) and two ORFs corresponding to the genes mp and nsp. These identity values indicate that this isolate represents a new begomovirus species, for which the name Passionfruit severe leaf distortion virus (PSLDV), is proposed. Phylogenetic analysis clustered the PSLDV DNA‐A and ‐B in a monophyletic branch with Brazilian tomato‐infecting begomoviruses. The isolate’s host range was restricted to species from the Passifloraceae and Solanaceae. PSLDV‐[BR:LNS2:Pas:01] was capable of forming pseudorecombinants with tomato‐infecting begomoviruses, reinforcing its close relationship with these viruses and suggesting a possible common origin. However, the virus was not capable of infecting tomato.  相似文献   

4.
The fungus Rhizoctonia solani AG‐1 IA causes sheath blight, one of the most important rice diseases worldwide. The first objective of this study was to analyse the genetic structure of R. solani AG‐1 IA populations from three locations in the Iranian Caspian Sea rice agroecosystem. Three population samples of R. solani AG‐1 IA isolates were obtained in 2006 from infected rice fields separated by 126–263 km. Each field was sampled twice during the season: at the early booting stage and 45 days later at the early mature grain stage. The genetic structure of these three populations was analysed using nine microsatellite loci. While the population genetic structure from Tonekabon and Amol indicated high gene flow, they were both differentiated from Rasht. The high gene flow between Tonekabon and Amol was probably due mainly to human‐mediated movement of infested seeds. The second objective was to determine the importance of recombination. All three populations exhibited a mixed reproductive mode, including both sexual and asexual reproduction. No inbreeding was detected, suggesting that the pathogen is random mating. The third objective was to determine if genetic structure within a field changes over the course of a growing season. A decrease in the proportion of admixed genotypes from the early to the late season was detected. There was also a significant (P = 0·002) increase in the proportion of loci under Hardy–Weinberg equilibrium. These two lines of evidence support the hypothesis that basidiospores can be a source of secondary inoculum.  相似文献   

5.
Mycosphaerella species that cause the ‘Sigatoka disease complex’ account for significant yield losses in banana and plantain worldwide. Disease surveys were conducted in the humid forest (HF) and derived savanna (DS) agroecological zones from 2004 to 2006 to determine the distribution of the disease and variation among Mycosphaerella species in Nigeria. Disease prevalence and severity were higher in the HF than in the DS zone, but significant (P < 0·001) differences between agroecological zones were only observed for disease severity. A total of 85 isolates of M. fijiensis and 11 isolates of M. eumusae were collected during the survey and used to characterize the pathogenic structure of Mycosphaerella spp. using a putative host differential cultivar set consisting of Calcutta‐4 (resistant), Valery (intermediate) and Agbagba (highly susceptible). Area under disease progress curve (AUDPC) was higher on all cultivars when inoculated with M. eumusae than with M. fijiensis, but significant (P < 0·05) differences between the two species were only observed on Valery. Based on the rank‐sum method, 8·3% of the isolates were classified as highly aggressive and 46·9% were classified as aggressive. About 11·5% of all the isolates were classified as least aggressive, and all of these were M. fijiensis. The majority of M. eumusae isolates (seven out of 11; 64%) were classified as aggressive. A total of nine pathotype clusters were identified using cluster analysis of AUDPC. At least one M. fijiensis isolate was present in all the nine pathotype clusters, while isolates of M. eumusae were present in six of the nine clusters. Isolates in pathotype clusters III and V were the most aggressive, while those in cluster VIII were the least aggressive. Shannon’s index (H) revealed a more diverse Mycosphaerella collection in the DS zone (H = 1·81) than in the HF (H = 1·50) zone, with M. fijiensis being more diverse than M. eumusae. These results describe the current pathotype structure of Mycosphaerella in Nigeria and provide a useful resource that will facilitate screening of newly developed Musa genotypes for resistance against two important leaf spot diseases of banana and plantain.  相似文献   

6.
Phytophthora niederhauserii, P. pisi, P. sojae and P. vignae are closely related species that are pathogenic to various legume plants. While P. sojae and P. vignae are reported to specifically infect soybean and cowpea, respectively, P. pisi is reported to attack pea and faba bean. Phytophthora niederhauserii is considered to have a broad host range. Zoospores of some Phytophthora species are chemotactically attracted to the isoflavones that are secreted by their host plants. The focus of the current study was to determine the chemotaxic behaviour of zoospores from closely related legume‐root infecting Phytophthora species and to investigate the correlation, if any, to host preference as determined by greenhouse pathogenicity tests. The results showed that P. sojae and P. vignae were attracted to the non‐soybean isoflavone prunetin as well as to the soybean isoflavones genistein and daidzein, which is in contrast with their host specificity on soybean and cowpea, respectively. On the other hand, P. pisi and P. niederhauserii were only attracted to prunetin, previously reported to be produced by pea, but not to the isoflavones associated with the non‐host soybean. The lack of responsiveness to genistein and daidzein in P. pisi may represent a recent adaptation to the host specialization towards pea. However, the affinity of P. niederhauserii to prunetin shows that this trait can also be present in taxa not specifically associated with legume hosts.  相似文献   

7.
The biological and molecular characterization of six isolates of a new Cowpea mild mottle virus strain (CPMMV; Carlavirus, Betaflexiviridae) are reported. Soybean plants with mosaic and stem necrosis were collected in Bahia, Goiás, Mato Grosso and Minas Gerais states, Brazil. Complete genomes of the CPMMV isolates are 8180–8198 nucleotides (nt) long, excluding the 3′‐polyadenylated tail, and have 67–68% nt sequence identity with a Ghana isolate of CPMMV, the only CPMMV isolate for which the genome has previously been sequenced. The replicase has only 60–61% nt sequence identity with the Ghana CPMMV isolate, and the coat protein (CP) is highly conserved (79% nt sequence identity and 95–96% amino acid sequence identity). The high CP identity and the phylogenetic analyses supported the classification of the Brazilian isolates as CPMMV. Biological and molecular differences with the Ghana CPMMV isolate were found and indicated that the six isolates represent a distinct CPMMV strain denominated as CPMMV‐BR. Furthermore, it is shown that recombination occurred mainly in the polymerase gene, and may occur less frequently in other regions of the CPMMV genome.  相似文献   

8.
Yellow vein mosaic disease (YVMD) caused by whitefly‐transmitted begomoviruses is an economically significant viral disease of okra. In this study, a survey of begomoviruses associated with YVMD was carried out in eight states and two union territories of India. A total of 92 full‐length DNA‐A components were sequenced and characterized. Sequence comparisons and population structure analysis revealed the existence of four begomovirus species. Two novel species were detected with several recombinationally derived genome fragments that probably originated from begomoviruses known to infect malvaceous and non‐malvaceous hosts. Among the four species, Bhendi yellow vein Maharastra virus (BYVMaV) and Bhendi yellow vein Madurai virus (BYVMV) were found to be predominant in okra, with BYVMV having a pan‐India distribution. There was evidence for a high degree of genetic variability and subpopulation structure within these four species. Neutrality tests suggested the occurrence of purifying selection acting upon these populations. The results of the current study have uncovered the diversity and genetic structure of okra‐infecting begomoviruses in India and generated potentially useful information for developing management strategies for YVMD.  相似文献   

9.
Since 2007, serious damage to tomato from leaf mould caused by Passalora fulva has frequently been observed in commercial greenhouses in Gifu Prefecture, Japan. One of the factors relating to this damage was suspected to be a decrease in azoxystrobin sensitivity of the pathogen. Biological and molecular studies were conducted to characterize fungicide resistance. In in vitro sensitivity tests using mycelial homogenate placed on fungicide‐amended medium, the minimum inhibitory concentrations (MIC) of azoxystrobin for mycelial growth of the isolates divided into two ranges, 0.031–0.5 mg L?1 and 8–32 mg L?1. Isolates with MICs within the two ranges were considered as sensitive and resistant, respectively, to azoxystrobin because, in in vivo tests, the percentage protection conferred by this fungicide (100 mg a.i. L?1) against these isolates was 89.7–100% and 4.5–31.1%, respectively. Resistant isolates had a replacement of phenylalanine with leucine at codon 129 (F129L) in cytochrome b. Forty‐five percent of the 271 isolates collected from 63 tomato greenhouses from 2007 to 2008 were resistant to azoxystrobin. In many greenhouses where the isolation frequency of resistant isolates was 80% or more, azoxystrobin had been used twice per crop for approximately 6 years. In 2012, 27% of the 405 isolates collected were resistant to azoxystrobin, and there was a marked difference in the frequency of occurrence of resistant isolates in the field populations between the three locations sampled. The occurrence of azoxystrobin‐resistant P. fulva isolates (F129L mutants) inflicted considerable damage on greenhouse tomatoes.  相似文献   

10.
The prevalence of viruses in pepper crops grown in open fields in the different agro‐ecological zones (AEZs) of Côte d'Ivoire was surveyed. Pepper veinal mottle virus (PVMV; genus Potyvirus) and Cucumber mosaic virus (CMV; genus Cucumovirus) were the most frequent viruses among those surveyed, while tobamoviruses (genus Tobamovirus) were detected at low frequency. PVMV showed a high heterogeneity across AEZs, which may be related to climatic, ecological or agronomical conditions, whereas CMV was more homogeneously distributed. The molecular diversity of CMV and PVMV were analysed from partial genome sequences. Despite the low number of CMV isolates characterized, two molecular groups were revealed, one corresponding to subgroup IA and the other to reassortants between subgroups IA and IB. RNAs 1 and 3 of the reassortants clustered with the IB subgroup of CMV isolates, whereas their RNA 2 clustered with the IA subgroup. Importantly, RNA 1 of CMV isolates of the IB subgroup has been shown to be responsible for adaptation to pepper resistance. The diversity of PVMV in the VPg‐ and coat protein‐coding regions revealed multiple clades. The central part of the VPg showed a high level of amino acid diversity and evidence of positive selection, which may be a signature of adaptation to plant recessive resistance. As a consequence, for efficient deployment of resistant pepper cultivars, it would be desirable to examine the occurrence of virulent isolates in the CMV or PVMV populations in Côte d'Ivoire and to follow their evolution as the resistance becomes more widely deployed.  相似文献   

11.
Fusarium poses food and feed safety problems because most species produce mycotoxins. To understand the epidemiology of the Fusarium disease, efforts must focus more precisely on how environmental variables affect disease presence. The objectives of the present study were to monitor the occurrence of Fusarium species in maize kernels in northwestern Spain to determine the risk of mycotoxin contamination and to identify environmental traits affecting the composition of the Fusarium species identified. A combination of 24 environments was evaluated. The percentage of kernels infected by F. verticillioides ranged from 33 to 99%, supporting the idea that fumonisin contamination is the main maize‐based feed and food safety concern in this area. In this region, temperature and humidity primarily affected Fusarium spp. occurrence. Warmer temperatures during the later stages of kernel development and during kernel drying increased the frequency of F. verticillioides in maize kernels, while the presence of F. subglutinans was increased by higher relative humidity during the silking stage and cooler temperatures during kernel drying.  相似文献   

12.
Tall perennial grass species can be utilised as bioenergy feedstocks, but some are considered invasive species. Using biomass from such species as feedstocks for anaerobic digestion (AD) may introduce the risk of disseminating viable seeds onto agricultural lands during digestate application. To evaluate this risk, we investigated the survival rates of perennial grass seeds obtained from biomass species during AD. After removal from the digester, seeds were germinated and stained with tetrazolium chloride to determine viability. During three experimental runs, batches of 100 seeds from four species were exposed to 0, 2, 6, 12, 24, 48, 72 and 168 h of mesophilic (38°C) AD within a commercial‐scale digester. Seed viability of Phalaris arundinacea, Phragmites australis, Panicum virgatum and Solanum lycopersicum was reduced by 95% (LT95) after 29, 52, 98 and 105 h of AD respectively. Commercial digesters that utilise perennial grasses as a feedstock typically have retention times ranging from 240 to 1480 h, which greatly exceeds the LT95 values found in this study. Anaerobic digestion resulted in the rapid death of seeds in all species tested, suggesting unwanted dissemination of perennial grass species via digestate application to agricultural land is unlikely.  相似文献   

13.
Over the last two decades, ash dieback has become a major problem in Europe, where the causative fungus has invaded the continent rapidly. The disease is caused by the invasive pathogenic fungus Hymenoscyphus pseudoalbidus (anamorph Chalara fraxinea), which causes severe symptoms and dieback in common ash, Fraxinus excelsior. It is becoming a significant threat to biodiversity in forest ecosystems and the economic and aesthetic impacts are immense. Despite the presence of the disease for at least 10 years in Scandinavia, a small fraction of F. excelsior trees have remained vigorous, and these trees exhibit no or low levels of symptoms even where neighbouring trees are very sick. This gives hope that a fraction of the ash trees will retain a sufficiently viable growth to survive. Following a period of high mortality in natural populations, selection and breeding of remaining viable ash trees could therefore provide a route for restoring the role of ash in the landscape. This paper reviews the available data on disease dissemination, and the consequences thereof in terms of symptom severity and mortality, and appraises studies that have tested the hypothesis that less‐affected trees have genetically based resistance. The implications of the results for the adaptive potential of common ash to respond to the disease through natural or assisted selection are discussed. The risks of adverse fitness effects of population fragmentation due to high mortality are considered. Finally, it is recommended that resistant trees (genotypes) should be selected to facilitate conservation of the species.  相似文献   

14.
15.
Ralstonia solanacearum causes bacterial wilt disease in Solanaceae spp. Expression of the Phytophthora inhibitor protease 1 (PIP1) gene, which encodes a papain‐like extracellular cysteine protease, is induced in R. solanacearum‐inoculated stem tissues of quantitatively resistant tomato cultivar LS‐89, but not in susceptible cultivar Ponderosa. Phytophthora inhibitor protease 1 is closely related to Rcr3, which is required for the Cf‐2‐mediated hypersensitive response (HR) to the leaf mould fungus Cladosporium fulvum and manifestation of HR cell death. However, up‐regulation of PIP1 in R. solanacearum‐inoculated LS‐89 stems was not accompanied by visible HR cell death. Nevertheless, upon electron microscopic examination of inoculated stem tissues of resistant cultivar LS‐89, several aggregated materials associated with HR cell death were observed in xylem parenchyma and pith cells surrounding xylem vessels. In addition, the accumulation of electron‐dense substances was observed within the xylem vessel lumen of inoculated stems. Moreover, when the leaves of LS‐89 or Ponderosa were infiltrated with 106 cells mL?1 R. solanacearum, cell death appeared in LS‐89 at 18 and 24 h after infiltration. The proliferation of bacteria in the infiltrated leaf tissues of LS‐89 was suppressed to approximately 10–30% of that in Ponderosa, and expression of the defence‐related gene PR‐2 and HR marker gene hsr203J was induced in the infiltrated tissues. These results indicated that the response of LS‐89 is a true HR, and induction of vascular HR in xylem parenchyma and pith cells surrounding xylem vessels seems to be associated with quantitative resistance of LS‐89 to R. solanacearum.  相似文献   

16.
The evergreen holm oaks (Quercus ilex subsp. ilex and Q. ilex subsp. ballota) are the most representative tree species in the Iberian peninsula and the main tree species in oak‐rangeland ecosystems (dehesas). Oak decline in western, central and southern parts of Spain has been associated with root rot caused by Phytophthora cinnamomi for decades. However, Phytophthora species such as P.  quercina and P. psychrophila have recently been found associated with Quercus decline in eastern Spain where calcareous soils are predominant. Soil and root samples from two Quercus forests presenting decline symptoms in two different geographical areas in eastern Spain (Carrascar de la Font Roja and Vallivana) were analysed by amplicon pyrosequencing. Metabarcoding analysis showed Phytophthora species diversity, and revealed that an uncultured Phytophthora taxon, named provisionally Phytophthora taxon ballota, was the predominant species in both areas. In addition, a real‐time PCR assay, based on the pyrosequencing results, was developed for the detection of this uncultured Phytophthora taxon, and also for the detection of P. quercina. TaqMan assays were tested on soil and root samples, and on Phytophthora pure cultures. The new assays showed high specificity and were consistent with metabarcoding results. A new real‐time PCR protocol is proposed to evaluate the implication of different Phytophthora spp. in oak decline in eastern Spain.  相似文献   

17.
Potato yellow mosaic Panama virus (PYMPV), Tomato leaf curl Sinaloa virus (ToLCSiV) and Tomato yellow mottle virus (TYMoV) of genus Begomovirus (family Geminiviridae) are the only three begomovirus species detected infecting tomato (Solanum lycopersicum L.) in Panama. PYMPV, ToLCSiV and TYMoV induce symptoms of stunting, yellowing, curling, distortion of leaves and reduction of fruit size and cause important economic loses. A loop-mediated amplification under isothermal conditions (LAMP) assay was developed for the individual detection of these three begomovirus species by using a set of three primer pairs specific per each one of them. Amplification products were visualized by gel electrophoresis or direct Gel-Red staining of DNA into the reaction tube. PYMPV, ToLCSiV and TYMoV were detected in total DNA extracts obtained from different plant tissues such as leaves, stems, flowers, fruits and roots of infected tomato plants collected in different production regions of Panama. LAMP sensitivity was similar to that of conventional PCR but, the first procedure was faster and cheaper than the last one. Moreover, all three viruses were successfully detected by LAMP and not by conventional PCR from sap extracts obtained from leaf tissues of infected tomato plants which were embedded into 3MM Whatman paper and stored several days, facilitating the samples processing as well as the material movement among different laboratories. Therefore, LAMP is a specific, rapid and cheap procedure to detect all three begomoviruses infecting tomato in Panama and it is suitable for field surveys and sanitation programs.  相似文献   

18.
Between 1998 and 2009, the four tomato‐infecting begomovirus species detected in Taiwan were Ageratum yellow vein Hualien virus (AYVHuV), Tomato leaf curl Taiwan virus (ToLCTWV), Tomato yellow leaf curl Thailand virus (TYLCTHV) and a newly defined species Tomato leaf curl Hsinchu virus (ToLCHsV). AYVHuV was detected occasionally in 2003 and ToLCHsV only in 2000–2001, whilst ToLCTWV was detected throughout the period. TYLCTHV was first detected in 2005. Between 1998 and 2005, >99% of the begomovirus‐positive samples were infected with ToLCTWV. In 2007 in western Taiwan, 16% of the positive samples were infected with ToLCTWV, 35% with TYLCTHV and 49% with mixed infection (ToLCTWV/TYLCTHV). In contrast, in eastern Taiwan the proportions were 84% ToLCTWV, 2% TYLCTHV and 14% mixed infection. However, throughout Taiwan in 2008–2009, most positive samples were either identified as TYLCTHV (51%) or mixed infection (ToLCTWV/TYLCTHV; 41%), and only 8% were ToLCTWV. This shows a clear trend of shifting from ToLCTWV to TYLCTHV and mixed infection over a short time period in Taiwan. Sequence analyses indicated that tomato‐infecting AYVHuV, an apparent recombinant between ToLCTWV and AYVHuV from Ageratum, represents a new strain Hsinchu. TYLCTHV Taiwan isolates were highly similar to each other, whereas ToLCTWV isolates had greater diversity and were classified into three strains which had one country‐wide and two local distributions. ToLCTWV and TYLCTHV were confirmed as monopartite and bipartite begomoviruses, respectively, by agroinfection followed by transmission with Bemisia tabaci biotype B. In addition, TYLCTHV was found to be mechanically transmissible together with viral DNA‐B.  相似文献   

19.
Bacterial soft rots are a serious limitation to the production of orchids and other horticultural plants. Here, the characterization of causative bacteria isolated from Phalaenopsis orchids showing symptoms, from a commercial production site, is reported. The most commonly isolated bacteria were identified as Dickeya spp. Partial sequencing of 16S rDNA, fliC and dnaX showed diversity among the isolates and divided the isolates into two groups, with greatest similarity to previously reported undefined Dickeya lineages from orchids (UDL‐3 and UDL‐4). Two isolates (B16, S1) were sequenced using next‐generation sequencing, which has provided draft genomes of these two isolates for further studies (Ali? et al., 2015 ). Newly developed fliC‐based lineage‐specific quantitative real‐time PCR assays were used to distinguish among the lineages and to assess their relative abundances in diseased tissues. Virulence and aggressiveness comparison tests in vivo on Phalaenopsis orchids, potato plants and witloof chicory leaves indicated high virulence and extreme maceration potential of these novel Dickeya isolates, compared to a reference panel of other Dickeya spp. Pantoea cypripedii (formerly Pectobacterium cypripedii), which has previously been reported as a soft rot pathogen of orchids, was not detected, and isolates obtained from culture collections did not cause symptoms on artificially infected Phalaenopsis orchids.  相似文献   

20.
The biological and molecular characterization of a virus recognized as a distinct begomovirus species, Tomato curly stunt virus (ToCSV), first observed in South Africa in 1997, is reported here. Whitefly‐transmission and host‐range studies were carried out using a Bemisia tabaci colony identified as the B‐biotype. The experimental host range of ToCSV spanned primarily species in the Solanaceae and Fabaceae. The complete ToCSV genome (2·766 kb) was amplified by PCR, cloned, and the DNA sequence determined. Phylogenetic analysis revealed that ToCSV was most closely related to Tobacco leaf curl Zimbabwe virus (TbLCZV), at 84% nucleotide identity, indicating that ToCSV is a new species in the genus Begomovirus that is probably endemic to southern Africa. The ToCSV genome sequence contained all of the hallmark coding and non‐coding features characteristic of other previously recognized monopartite begomoviruses. ToCSV is only the second begomovirus described from southern Africa that infects solanaceous species. Neither a begomoviral DNA‐B component nor a satellite‐like DNA molecule was detected by PCR in extracts of ToCSV‐infected plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号