首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Food‐grade soybeans [Glycine max (L.) Merr] used to produce tofu have specific seed composition, shape, size and colour requirements. Seed qualities, such as protein content, have been correlated with tofu texture. The objective of this study was to determine the relationships between textural qualities of tofu and seed characters, including shape, size, density, weight, protein content and oil content. Tofu was produced from the seed of 48 high‐protein or food‐grade soybean lines grown at two locations in 2010. Four tofu textural traits were assessed including work to failure, deformability, stiffness and hardness. Seed protein and oil content were significantly correlated with stiffness and hardness, and protein was additionally correlated with work to failure. Pearson's correlation coefficients ranged from 0.45 to 0.60 (adjusted P‐values < 0.002) for protein and ?0.49 to ?0.35 for oil (adjusted P‐values < 0.016). No significant correlations between tofu texture and seed volume or shape were detected. Seed protein content can be assessed for indirect selection for tofu firmness, whereas this study reveals no evidence that seed size affects tofu texture.  相似文献   

2.
Typical soybean oil is composed of palmitic, stearic, oleic, linoleic and linolenic acids. High oleic acid content in soybean seed is a key compositional trait that improves oxidative stability and increases oil functionality and shelf life. Using a marker‐assisted selection method, near‐isogenic lines (NILs) of G00‐3213 for the high oleic trait were developed and yield tested. These NILs have various combinations of FAD2‐1A and FAD2‐1B alleles that were derived from the same backcrossing populations. The results indicated that G00‐3213 NILs with both homozygous mutant FAD2‐1A and FAD2‐1B alleles produced an average of 788 g/kg oleic acid content. The results also demonstrated that possessing these mutant alleles did not cause a yield reduction. Furthermore, seed germination tests across 12 temperatures (12.8–32.0°C) showed that modified seed composition for oleic acid in general did not have a major impact on seed germination. However, there was a possible reduction in seed germination vigour when high oleic seeds are planted in cold soil. The mutant FAD2‐1A and FAD2‐1B alleles did not hinder either seed or plant development.  相似文献   

3.
European tofu manufacturers are becoming more and more interested in locally grown soybeans. A prerequisite for the development of European tofu cultivars is to improve our understanding of how the environment and genetics affect soymilk and tofu quality, as well as how quality and agronomic traits are correlated. This study was based on 215 recombinant inbred lines derived from two populations and grown at three locations that were evaluated for tofu traits in a bench‐scale tofu laboratory. The heritabilities of most of the evaluated tofu traits were moderately high with h2 > 0.6. We observed significant genotypic variance components, but an even stronger contribution of the location. The network analysis of the evaluated traits was population‐dependent; however, the tofu traits were not associated with any of the agronomic traits. Collectively, our results indicate the potential to improve tofu‐related traits in European soybean. The bench‐scale tofu production method provides a valuable tool to test soybean lines in breeding programmes; however, the method needs to be further improved and automated to minimize errors due to the laboratory staff.  相似文献   

4.
Seed starch content (SSC) greatly affects the taste, flavour and processing properties of soy foods. The objective in this study was to identify quantitative trait loci (QTL) for SSC in soybean. A total in 169 recombinant inbred lines (RILs) derived from a cross in ‘Williams 82’ and ‘PI 366121’ were grown for three consecutive years. The SSC of the RILs displayed continuous variation with transgressive segregation and hence amenable for QTL mapping. Nine significant QTL exhibiting 5.6–11.3% of the total phenotypic variation (PVE) were identified. The QTL qSTR06_2 showed highest PVE (9.1–11.3%) at LOD values of 4.25–5.39. No stable QTL over 3 years were identified, indicating strong environmental influence on SSC. The QTL qSTR11_1 and qSTR20_1 were found to colocalize with some of the previously reported QTL for sucrose content in soybean, implying the interrelationship between starch and sucrose biosynthesis. As the carbohydrate components may affect key constituents such as oil and protein in soybean seed, findings of the study may be useful in breeding soybeans with improved seed composition.  相似文献   

5.
Soybean seed oil was valued in foods, animal feed and some industrial applications. Molecular marker‐assisted selection (MAS) for high‐oil‐content cultivars was an important method for soybean breeders. The objective of this study was to identify quantitative trait loci (QTL) and epistatic QTL underlying the seed oil content of soybeans across two backcross (BC) populations (with one common male parent ‘Dongnong47’) and two different environments. Two molecular genetic maps were constructed. They encompassed 1046.8 cM [with an average distance of 6.75 cM in the ‘Dongnong47’  ×  ‘Jiyu89’ (DJ) population] and 846.10 cM [with an average distance of 5.76 cM in the ‘Dongnong47’  ×  ‘Zaoshu18’ (DZ) population]. Nine and seven QTL were identified to be associated with oil content in the DJ and DZ populations, respectively. The phenotypic variation explained by most of the QTL was usually less than 10%. Among the identified QTL, those stable ones across multiple environments and populations often had stronger additive effects. In addition, three stable QTL in the DZ populations were identified in the similar genomic region of the three QTL in the DJ population [qDJE and qDZE‐1 were located near Satt151 of Chromosome 15 (Chr15), qDJA1 and qDZA1 were located near Satt200 of Chr15 (LG A1), and qDJD2‐1 and qDZD2‐1 were located near Sat365 of Chr17]. In conclusion, MAS will be able more effectively to combine beneficial alleles of the different donors to design new genotypes with higher soybean seed oil content using the BC populations.  相似文献   

6.
Heterosis, or hybrid vigour, has been used to improve seed yield in several important crops for decades and it has potential applications in soybean. The discovery of over‐dominant quantitative trait loci (QTL) underlying yield‐related traits, such as seed weight, will facilitate hybrid soybean breeding via marker‐assisted selection. In this study, F2 and F2 : 3 populations derived from the crosses of ‘Jidou 12’ (Glycine max) × ‘ZYD2738’ (Glycine soja) and ‘Jidou 9’ (G. max) × ‘ZYD2738’ were used to identify over‐dominant QTL associated with seed weight. A total of seven QTL were identified. Among them, qSWT_13_1, mapped on chromosome 13 and linked with Satt114, showed an over‐dominant effect in two populations for two successive generations. This over‐dominant effect was further examined by six subpopulations derived from ‘Jidou12’ × ‘ZYD2738’. The seed weight for heterozygous individuals was 1.1‐ to 1.6‐fold higher than that of homozygous individuals among the six validation populations examined in different locations and years. Therefore, qSWT_13_1 may be a useful locus to improve the yield of hybrid soybean and to understand the molecular mechanism of heterosis in soybean.  相似文献   

7.
Seed protein and oil contents are important quantitative traits in soybean. Previously, quantitative trait loci (QTL) associated with seed protein and oil were mostly identified in single genetic background. The objective of this work was to identify QTL and their epistatic effects underlying seed protein and oil contents in three recombinant inbred line populations (two of them used one common female parent) across eight environments by composite interval mapping. Forty QTL underlying protein content and 35 QTL underlying oil content were identified. Among them, nine were universal QTL underlying protein content and four were universal QTL underlying oil content. Epistatic interactions between QTL underlying seed protein/oil and different genetic backgrounds were detected. Different pairs of epistatic interactions were observed in diverse genetic backgrounds across multi‐environments. Common marker intervals were observed to simultaneously underlie seed protein and oil contents with different epistatic interactions. The results in this study suggested that a specific genotype with high oil content and low protein content might significantly affect the selection of soybean lines for high seed protein.  相似文献   

8.
Selection for soybean (Glycine max L. Merr.) rich in isoflavones, protein and oil has been difficult due to negative genetic interrelationships. In this study, genetic interrelationships among seed isoflavones and protein and oil contents were evaluated using both unconditional and conditional QTL mapping. Daidzein (DZ), genistein (GT), glycitein (GC) and total isoflavone (TI) contents were analysed in F5:6, F5:7 and F5:8 recombinant inbred lines (RILs) derived from a cross between ‘Zhongdou 27’(TI 3791 μg/g; protein content 42.84%; oil content 18.73%) and ‘Jiunong 20’ (TI 2061 μg/g; protein content 34.05%; oil content 21.42%). When DZ, GT, GC and TI were analysed for their genetic relationships with protein or oil contents, eight conditional QTL were detected, which included DZ|pro, GC|pro, GT|pro, TI|pro, DZ|oil, GC|oil, GT|oil and TI|oil. Seventeen QTL that had significant genetic associations between seed isoflavone, and seed protein or oil contents were found, including two for DZ conditioned on protein (qDZ|proK‐1, qDZ|proF‐2); one for GC conditioned on protein (qGC|proM‐1); three for GT conditioned on protein (qGT|proM‐1, qGT|proA2‐1, qGT|proL‐1); three for TI conditioned on protein (qTI|proM‐1, qTI|proA2‐1, qTI|proF‐2); one for DZ conditioned on oil (qDZ∣oil K_1); one for GC conditioned on oil (qGC∣oilI_1); four for GT conditioned on oil (qGT∣oil A2_1, qGT∣oil F_1, qGTF_2, qGT∣oilD2_1); three for TI conditioned on oil (qTI∣oilA2‐1, qTI∣oilE‐1, qTI∣oilL‐1). Few epistatic interactions among loci were detected. These loci may be valuable for improving seed isoflavone, protein and oil contents.  相似文献   

9.
Numerous quantitative trait loci (QTL) for various characters have recently been reported in different crop plants. However, information is limited about the molecular mechanisms behind QTL, because most of them have only been detected at a statistical level. Therefore, progeny from a cross between two soybean genotypes segregating for the presence vs. absence of the Kunitz trypsin inhibitor, a 21.5 kDa protein, have been analysed for possible effects of that protein on agronomic and seed quality characters. Protein content was reduced by, on average, 4.5 g/kg in segregants lacking the Kunitz protein, whereas oil content and other characters remained unaffected. This finding can be interpreted as a ‘model QTL’ for variation in seed protein content, because the molecular and genetic backgrounds of the soybean Kunitz trypsin inhibitor are well understood.  相似文献   

10.
Soybean seed averages about 40% protein and is a dominant source of protein in animals and human foods. Increasing protein in soybeans is a goal in soybean breeding programs. Initial selection for protein among progeny from breeding populations is often based on non-destructive Near Infrared Reflectance (NIR) spectroscopy analysis of a 5 g or more seed sample in the F3 or later generations. NIR spectroscopy analysis for protein on single F2 seed would allow selection at the earliest possible time and improve selection efficiency for protein content; however this practice has not been evaluated. The objective of this study was to test effectiveness of NIR spectroscopy analysis of single F2 seeds to select for increased protein content from two populations developed from high and average protein content parents. F2 seeds from a single F1 plant of each population showed a normal distribution with transgressive segregation for protein concentration. In both populations, F3 seeds produced from plants from single F2 seeds with either low or high protein content were analyzed for protein by NIR spectroscopy. Protein means and ranges of F3 seed selected from high protein F2 seeds were higher in protein than F3 seed from low protein F2 seeds which produced low means and ranges in protein content. This shows that analysis of single F2 seed for protein content using NIR spectroscopy was effective in selecting for increased protein in the F3 generation. Analysis of single F2 seeds from breeding populations will improve breeding efficiency for protein in soybean breeding programs.  相似文献   

11.
Diversity of food-grade soybeans is critical for utilization of genetic resources in cultivar development, germplasm enhancement, and end-product commercialization. The objective of this study was to assess seed quality attributes and phenotypic variability among 54 U.S. and 51 Asian food-grade cultivars and breeding lines. The results showed greater genetic diversity of protein content, calcium content, seed hardness, and seed size uniformity than other quality traits in both small- and large-seeded genotypes evaluated in this study. Among the small-seeded soybeans, the U.S. genotypes were more diverse and exhibited higher swell ratio and oil content but lower stone seed ratio and protein content than Asian accessions. Among the large-seeded accessions, U.S. genotypes had higher stone seed ratio and oil content but lower swell ratio and protein content, and were less diverse than Asian genotypes. The characterization of diverse food-grade soybeans will facilitate parent selection in specialty soybean breeding.  相似文献   

12.
Soybean seed protein and oil concentrations are important traits that directly affect the quality of soyfoods. Many studies and breeding programmes have been conducted to find major quantitative trait loci (QTL) that regulate protein and oil concentrations and to develop soybean cultivars with high protein and/or oil content. The purpose of this study was to identify these QTL using a selected breeding population. The population was tested in field conditions over a period of 3 years. Seed protein and oil concentrations were measured each year. Single‐nucleotide polymorphisms (SNPs) were used to construct genetic map using a 180K SoyaSNP array, which identified 1,570 SNPs. We identified 12 QTL for seed protein, 11 for seed oil concentration and four for both traits. Among these, 17 QTL were closely mapped to previously reported QTL, whereas ten sites were novel. Several QTL were detected across at least two experimental years. These loci are good candidate QTL for optimal seed protein and oil concentrations. Our results demonstrate that favourable target QTL can be successfully identified using selected breeding populations.  相似文献   

13.
The development of soybean varieties that lack the β‐conglycinin α‐subunit is an attractive goal because the β‐conglycinin α‐subunit negatively influences the nutrition and gelation of tofu and is a major allergen. To remove this undesirable allergen and simultaneously improve the seed nutritional value and food‐processing quality, marker‐assisted background selection (MABS) was used in backcross breeding to incorporate cgy‐2, a null phenotype version of the gene encoding the β‐conglycinin α‐subunit, from the donor line ‘RiB’ into the genetic background of the Chinese cultivar ‘Dongnong47’ (DN47), a popular high‐oil superfine seed soybean cultivar from Heilongjiang Province, China. In each F2 (F2, BCnF2) generation of the breeding programme, the offspring that carried the introgressed cgy‐2 were identified by sodium dodecyl sulphate–polyacrylamide gel electrophoresis and rescreened by MABS using simple sequence repeat markers to accelerate recurrent parent genome recovery. Of the 49 advanced backcrossing breeding lines (ABLs), the three best lines, ABL1, ABL2 and ABL3, were selected from the BC1, BC2 and BC3 populations, respectively. The ABLs were evaluated for desirable agronomic characteristics, yield‐related traits, amino acid composition, free amino acid composition and tofu‐processing quality in the mature seeds. All of the ABLs lacked the α‐subunit but grew and reproduced normally without deleterious effects on physiological processes such as seed development and germination. The free amino acid content of ABL1 was significantly higher than that of ‘DN47’, with arginine (Arg) being particularly enriched. Compared to the recurrent parent ‘DN47’, the total protein content of the three ABLs was higher, the amino acid composition of the seed proteins was markedly modified and the yield and hardness of the tofu that was made from the ABLs were significantly increased. MABS combined with stringent phenotypic selection in a backcross breeding programme is a feasible strategy for the genetic engineering of seed protein components to produce allergenic subunit‐deficient variant alleles.  相似文献   

14.
Soybean sprouts, a traditional vegetable in Asia, are gaining popularity in the United States. Soybean sprout demand has been supplied by natto (a Japanese soyfood) cultivars that share some seed characteristics with sprout cultivars. However, natto seeds do not meet all requirements of sprouts and are rejected by sprout manufacturers. The objectives of this study were to evaluate important seed and sprout traits as potential selection criteria in breeding sprout soybeans and to study the storage effect on soybean sprout quality. Almost all genotypes produced thicker and longer hypocotyls and higher fresh-sprouts than ‘MFS-561’, a commercial soybean sprout variety. Hypocotyl length ranged from 13.8 to 16.2 cm. Four fungi genera Bipolaris sp., Cercospora sp., Botrytis sp. and Caethomium sp. were isolated from seeds. Cracked cotyledons and abnormal seedlings were the two main constraints affecting soybean sprout quality. Correlation coefficients among all traits indicated that percentage and weight of high- and average-quality sprouts would determine sprout yield. Acceptable yield and several traits were recommended to be used simultaneously while breeding superior sprout soybean cultivars. Good sprout varieties should produce high-quality sprouts >48%, average-quality sprouts <38%, low-quality sprouts <14%, sprout yield >5.7 g/g seed, hypocotyl thickness >1.6 cm and hypocotyl length >13 cm. One-year seed storage at room temperature reduced sprout quality. V09-3876 and V12-1939 had superior seed and sprout traits and are promising lines for further evaluation for sprout production. Seed storage over time affects seed germination and seedling vigor, and fungi on seed can cause reduced seed quality.  相似文献   

15.
Isoflavones are plant secondary metabolites produced in soybean (Glycine max), which provide plant defense against pathogens and are beneficial to human health. Soybean cyst nematode (SCN) is a major yield‐limiting pest in most soybean‐producing area across the world. Traits, seed isoflavones and SCN resistance are quantitative in nature, and their phenotypic evaluations are expensive. Quantitative trait loci (QTL) underlying the two traits will be helpful to develop SCN‐resistant lines with elevated isoflavones using marker‐assisted‐selection (MAS). This study aims to identify isoflavones and SCN‐related QTL in a soybean population consisting of 109 RILs, which was developed from a cross between two commercial soybean cultivars viz. ‘RCAT1004’ and ‘DH4202’ and grown in four non‐SCN and SCN‐infested fields during 2015 and 2016. While single marker ANOVA identified 10 QTL for isoflavones and five for SCN (p < 0.01), simple interval and multiple QTL mappings identified four QTL associated with isoflavones (LOD ≥ 2.2). These results contribute to a better understanding of the genetics of the two traits and provide molecular markers that can be used in MAS to facilitate developing SCN‐resistant soybeans with increased isoflavones.  相似文献   

16.
Seven pairs of near‐isogenic lines (glandless vs. glanded) and the recurrent parents were used to determine the effects of the dominant glandless gene from ‘Hai 1’(Gossypium barbadense) on agronomic, fibre, and seed characters in Upland cotton, Gossypium hirsutum, backgrounds. The results showed that there were no apparent linkage associations of the glandless gene on most agronomic, fibre and seed characters of Upland cotton, except for seed quality. The glandless line derived from ‘Liaomian 7’had significantly more protein (489.6 g/kg), and that from H237 had significantly more oil (362.4 g/kg) and had the largest oil index (2.70 g) and protein index (3.03 g). The gossypol content of seed in dominant glandless lines in Upland cotton was very low (<0.04 g/kg). Therefore, it is suggested that the glandless gene can play an important role in breeding glandless or low seed‐gossypol Upland cotton cultivars.  相似文献   

17.
Soybean (Glycine max) seeds contain bioactive proteins with antinutritional and immunological properties that affect metabolism and assimilation of nutrients. The presence of antinutritional proteins requires soybeans to be heat‐treated resulting in input energy costs. Nulls for bioactive seed proteins have been previously isolated from the USDA soybean collection, including Kunitz trypsin inhibitor (TI), soybean agglutinin (LE) and immunodominant soybean allergen P34 protein. Each of these nulls has the potential to partially address the concerns of soybean feed/food consumption. A stack of recessive nulls of TI, LE and P34 was created in a cv ‘Williams 82’ background termed ‘Triple Null’. Triple Null has a slight reduction of total protein compared with ‘Williams 82’ corresponding to aggregate contribution of TI, LE and P34 in the seed proteome. Triple Null's proteome analysis revealed P34 and TI nulls are frame‐shift mutants able to accumulate small amounts of authentic P34 and TI proteins. Triple Null has possible application as a conventional feed/food source and for immunotherapy to mitigate soybean allergenic response.  相似文献   

18.
Quantitative trait loci for yield, yield components and seed protein content were investigated on the basis of experiments performed with two populations of pea (Pisum sativum L.) lines derived from linked crosses between lines Wt11238, Wt3557 and Wt10245 with contrasting characteristics. The yield-related traits were defined as components giving the grain yield in a multiplicative way. The aim was to clarify the genetic architecture of the relation between seed yield, its components and protein content, with a possible inclusion of the role of epistasis in this explanation. To take full advantage of the availability of the two populations, additive QTL effects and both types of epistasis were analysed: the QTL by genetic background interaction and the first-order QTL–QTL interaction. The two hybrid populations differed with respect to the prevailing gene action, which in the Wt11238 × Wt3557 progeny was mainly additive, while in the Wt10245 × Wt11238 progeny mainly epistatic. Some loci with previously reported, large, repeatable, but contradictory effects on yield and protein content were confirmed. New loci with alleles coming from the protein-rich Wt11238 line, positive for yield components, were identified. It was found that the first order QTL–QTL interaction events were more frequent for the loci showing the QTL by genetic background interaction.  相似文献   

19.
Natto, a traditional soyfood fermented by Bacillus subtilis (natto), is prepared by steaming/cooking of soaked soybean seeds followed by inoculation with the bacteria and incubation. Natto soybean has increased in popularity due to its nutritional value and health benefits. Thus, the natto soybean market provides additional opportunities for farmers. The development of soybean cultivars with improved natto quality characteristics is crucial for maintaining and increasing the natto soybean market. Good‐quality characteristics of natto are determined by soybean cultivar, processing conditions and bacteria strain. Natto quality evaluation generally determined by sensory panels is time consuming. Therefore, indirect selection for natto quality based on seed traits is preferred. Seed morphological and physiological characteristics and seed compositions play an important role in producing natto of good quality. In this review, we have summarized natto processing conditions, natto quality characteristics, seed traits involved in natto quality and their genetic variation, as well as the genetic diversity in food‐grade soybean germplasms and B. subtilis strains. Information presented will be helpful for natto soybean cultivar development and natto manufacture.  相似文献   

20.
This study was conducted to compare recently developed and historical soybean varieties and evaluate genetic gain in yield and other agronomic traits in the southern USA. A total of 45 southern varieties from public breeding programs, which were released from 1928 to 2008, were used in this study. Three experiments were conducted in 2007 and 2008 at Keiser, Stuttgart, and Marianna in Arkansas (USA). Varieties with maturity groups (MG) late IV to early V had a yield gain of 21.7 kg/ha/yr from the 1950s to the 2000s, mid to late MG V had a yield gain of 16.4 kg/ha/yr from the 1940s to the 2000s, and MG VIs had a yield gain of 12.4 kg/ha/yr from the 1920s to the 2000s. Yield increased linearly for all combined experiments by 16.8 kg/ha/yr. Plant height remained steady over time for most experiments. No significant changes were observed in maturity. Lodging scores decreased, protein concentration decreased, and oil concentration increased linearly over time for all combined experiments. Hutcheson, Narrow, R97‐1634, and Young were recommended as parent lines in future soybean breeding efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号