首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Development of cytoplasmic-genic male sterility in safflower   总被引:1,自引:0,他引:1  
K. Anhani 《Plant Breeding》2005,124(3):310-312
An interspecific cross was made between Carthamaus oxyacantha and the cultivated species C. tinctorius to develop a cytoplasmic‐genic male sterility (CMS) system in safflower. C. oxyacantha was the donor of sterile cytoplasm. The 3: 1 segregation pattern observed in BC1F2 suggested single gene control with dominance of male‐fertility over male‐sterility. The information obtained from crossing male sterile X male fertile plants in BC1F3 and BC1F4 generations showed statistically significant single gene (1: 1) segregation for male sterility vs. male fertility. The results demonstrated that C. tinctorius possesses a nuclear fertility restorer gene and that a single dominant allele restored fertility (Rf) in progeny carrying CMS cytoplasm of C. oxyacantha. Male sterility occurred with the homozygous recessive condition (rfrf) in a sterile C. oxyacantha cytoplasm background and not in the normal cytoplasm of C. tinctorius. The genetic background of different restorer lines of C. tinctorius having normal cytoplasm did not effect fertility restoration. The absence of male sterile plants in C. tinctorius populations ruled out the possibility of genetic male sterility. Normal meiosis in F1 and BC1F2 ruled out a cytogenetic basis for the occurrence of male sterility.  相似文献   

2.
The male sterility system in hybrid seed production can eliminate the cost of emasculation and ensure seed hybridity through avoidance of self pollination. GMS and CMS are two types of male sterility system that currently employed in pepper breeding. Conversion from GMS to CMS will increase the male sterility proportion of female parent from 50 to 100%. In this study, segregation analysis of four male sterile mutants consisting of one CMS mutant (CA1) and three GMS mutants (GA1, GA3 and GA4) showed that each had single recessive gene inheritance. A modified complementation test was performed by replacing male sterile mutants with their maintainer line as male parent. The nuclear restorer gene for CMS was independent of all nuclear restorer genes for GMS and all nuclear restorer genes for GMS were independent each other. Further observation on CMS and GMS male sterility loci revealed that GA1 and GA3 had mutated in both nuclear restorer genes for CMS and GMS, while CA1 and GA4 each carried mutation in single male sterility system of nuclear restorer gene for CMS and GMS, respectively. Conversion from GMS to CMS in the case of lines carried mutations in both sterility systems required only S-type cytoplasm donor, while lines carried mutation in single nuclear restorer gene for GMS required not only S-type cytoplasm but also rf allele donors. The important finding is the broader function of maintainer line in certain male sterility system that can be used as a maintainer or restorer line for other male sterility systems. We also confirmed that line CC1 is the general restorer for both CMS and GMS systems.  相似文献   

3.
Genetic male sterility (GMS) exists naturally in safflower (Carthamus tinctorius L.). In the existing safflower GMS lines, sterile and fertile plants are distinguishable at flowering. This causes delay in fertile plants rouging and reduction in hybrid purity. In this investigation, a cross between a spiny GMS parent 13‐137 and a spiny non‐GMS parent ‘A1’ was effected. One sib cross, SC‐67, producing non‐parental‐type non‐spiny sterile and spiny fertile plants in F3 was advanced to F9 through sib crossing between non‐spiny sterile and spiny fertile plants. Mendelian digenic segregation was not observed for non‐spiny trait and male sterility. The results revealed strong linkage between these traits. The linkage was confirmed in F2 generations of crosses between a non‐spiny marker‐linked GMS line (MGMS) and five elite lines. Male sterility–linked non‐spiny trait could distinguish sterile and fertile plants at elongation stage. The MGMS would be useful in production of pure F1 hybrid seed and development of elite populations.  相似文献   

4.
A Brassica juncea line carrying an introgression from Moricandia arvensis restored male fertility to two cytoplasmic male‐sterile (CMS) B. juncea lines carrying either M. arvensis or Diplotaxis catholica cytoplasm. Genetics of fertility restoration was studied in the F1, F2, F3 and backcross generations of the cross between CMS and fertility‐restorer lines. No male‐sterile plants were found in F1‐F3 generations of the cross between CMS [M. arvensis] B. juncea and the restorer. However, a 1: 1 segregation for male sterility and fertility was observed when the F1 was pollinated with non‐restorer pollen from a euplasmic line. These results clearly show that restoration is mono‐genic and gametophytic. In CMS lines carrying D. catholica cytoplasm, the restorer conferred male fertility to the F1 and showed 3: 1 and 1: 1 segregations for male fertility and sterility in F2 and BC1 generations, respectively, indicating a monogenic, sporophytic mode of fertility restoration. The results were also supported by pollen stainability in the F1 which was about 65% in M. arvensis‐based CMS and >90% in D. catholica‐based CMS. The above results are discussed in the light of previous molecular studies which showed association between CMS and atpA in both systems.  相似文献   

5.
Segregation studies following the transfer of the gene wi to different cytoplasm types, which have been distinguished by means of restriction fragment length polymorphism analyses using mitochondrial gene probes, revealed the formation of the wi‐sterility in each of the four cytoplasms examined. The male sterility is therefore only caused by the nuclear wi gene, i.e. an additional factor of a specific cytoplasm can be excluded. Hence, the wi‐sterility proved to be a genic male sterility (GMS) and not a cytoplasmic male sterility (CMS). The expression of the wi‐sterility appears to be stable, since it is not affected by high temperatures or tetracycline. Accordingly, a temporary pollen production, which would allow self‐fertilization for the maintenance of sterile lines, cannot be induced by controlling these environmental factors. In terms of hybrid breeding, this GMS therefore has no advantage over the previously described CMS system.  相似文献   

6.
Cytoplasmic male sterility (CMS) system based on the cytoplasm from Moricandia arvensis (mori) was investigated for fertility restoration and agronomic potential. Fertility restorer gene for mori CMS was introgressed from cytoplasm donor species as all the evaluated Brassica juncea genotypes (155) acted as sterility maintainers. The allosyndetic pairing between Ma and the A/B genome chromosomes in the monosomic addition plants (2n= 18II + 1Ma) facilitated the gene introgression. Partial fertility restoration (43–52% pollen grain stainability) in F1 hybrids and absence of segregation for male sterility in F2 progenies suggested gametophytic control of fertility restoration. The pollen fertility in the F1 hybrids was, however, sufficient to ensure complete seed set upon bag selfing. Introgression from M. arvensis also helped in correction of chlorosis associated with mori cytoplasm in CMS and fertile alloplasmic B. juncea plants. Yield evaluation of thirty F1 hybrids having the same nuclear genotype but varied male sterilizing cytoplasms (mori, oxy, lyr, refined ogu), in comparison to respective euplasmic hand bred control hybrids, allowed an estimate of yield penalty associated with different CMS systems. It ranged from 1.8% to 61.6%. Hybrids based on cytoplasmically refined ogu were most productive followed by those based on cytoplasmically refined mori CMS. The male sterility systems emanating from somatic hybridization were found superior than those developed from sexual hybridization.  相似文献   

7.
Summary Interspecific substitutions of the nucleus of Helianthus annuus (2n=34) cv. Saturn into the cytoplasm of H. petiolaris (2n=34) by successive backcrossing, resulted in progenies with indehiscent anthers containing white, rather than normal yellow, pollen. Further backcrossing by cv. Saturn failed to restore pollen shed, suggesting that the male sterility was cytoplasmic. In vivo germination tests of pollen from 23 such plants from eight BC5 lines, indicated complete pollen sterility for 14 plants, but normal seed set, suggesting that female fertility was not affected. Meiosis in all plants examined was normal.Crosses between seven sources of pollen-fertility restorer, one collection of wild H. annuus, and an existing source of cytoplasmic male sterility, resulted in a high frequency of plants with normal pollen shed in all F1 progenies. However, no normal pollen shed was evident in F1 progenies for similar crosses between BC5 male-steriles and three of the seven restorer sources, nor for the single wild H. annuus evaluated. The foregoing suggests that the backcross substitution lines are a new source of cytoplasmic male sterility. The inheritance of restoration of pollen shed was complex and not fully elucidated. Some data suggested that two independent, complementary, dominant genes were required, but others indicated two to three independent, dominant genes.  相似文献   

8.
Cytoplasmic male sterility (CMS)/restorer-of-fertility (Rf) is an economical and efficient system to produce F1 hybrid seeds. Although the CMS/Rf system has been used to produce hybrid seeds of hot peppers, this system has never been used for sweet pepper seed production, presumably due to the inability to select stable restorer lines during the breeding process. To test the feasibility of the CMS/Rf system in sweet pepper breeding, we investigated the distribution of haplotypes of previously developed, CMS-associated markers (orf456, ψ atp6-2, CRF-SCAR, OPP13-CAPS, PR-CAPS, and PR-SNP) in 27 commercial sweet pepper F1 hybrids and 12 breeding lines. When CMS-associated cytoplasmic markers orf456 and ψ atp6-2 were applied, male sterile cytoplasm was not detected in commercial sweet pepper cultivars. When nuclear haplotype markers linked to Rf were applied, all sweet pepper cultivars showed haplotype 3, haplotype 1, and the rf genotype for OPP13-CAPS, PR-CAPS, and CRF-SCAR, respectively. In contrast, we were able to detect male sterile cytoplasm in some breeding lines, and we were also able to detect polymorphisms for PR-CAPS between stable and unstable maintainer lines. The 17T7-SNP also showed polymorphisms between unstable and stable maintainer (or restorer) lines. In conclusion, we expect that it will be possible to develop stable A, B, and C sweet pepper lines using CMS-associated markers and that this will eventually lead to successful implementation of the CMS/Rf system to produce F1 hybrid sweet pepper seeds.  相似文献   

9.
S. Prakash    I. Ahuja    H. C. Upreti    V. Dinesh  Kumar  S. R. Bhat    P. B. Kirti  V. L. Chopra   《Plant Breeding》2001,120(6):479-482
An alloplasmic mustard, Brassica juncea, has been synthesized by placing its nucleus into the cytoplasm of the related wild species Erucastrum canariense to express cytoplasmic male sterility. To achieve this, the sexual hybrid E. canariense (2n=18, EcEc) ×Brassica campestris (2n= 20, AA) was repeatedly backcrossed to B. juncea (2n= 36, AABB). Cytoplasmic male‐sterile (CMS) plants were recovered in the BC4 generation. These plants are a normal green and the flowers have slender, non‐dehiscing anthers that contain sterile pollen. Nectaries are well developed and female fertility is > 90%. The fertility restoration gene was introgressed to CMS B. juncea from the cytoplasmic donor E. canariense through pairing between chromosomes belonging to B. juncea with those of the E. canariense genome. The restorer plants have normal flowers, with well‐developed anthers containing fertile pollen. Meiosis proceeds normally. Pollen and seed fertility averaged 90% and 82%, respectively. F1 hybrids between CMS and the restorer are fully pollen fertile and show normal seed set. Preliminary results indicate that restoration is achieved by a single dominant gene. The constitution of the organelle genomes of the CMS, restorer and fertility restored plants is identical, as revealed by Southern analysis using mitochondrial and chloroplast probes atp A and psb D, respectively.  相似文献   

10.
In recent years, plant molecular research on genetic mapping, gene tagging and cloning, and marker-assisted selection (MAS) have gained importance in crop improvement programmes. In Capsicum, several inter- and intra-specific genetic maps with wide distribution of markers covering the whole genome have been developed. Recently, whole genome of the hot pepper C. annuum, its wild progenitor C. annuum var. glabriusculum and C. baccatum has been sequenced. The Capsicum genome size has been estimated to be approx. 4× (3.48 Gb) the genome size of cultivated tomato (Solanum lycopersicum L.) (900 Mb). Breeders’ access to the pepper genomic information would facilitate the choice of markers from different linkage groups, thus paving the way for gene cloning and its introgression into the elite breeding lines through MAS. Till date, approx. 20 independently inherited nuclear male sterility (NMS) genes have been reported. Linked markers have been identified for ms1, ms3, ms8, ms10, msk, msc-1 and an undesignated gene. However, markers tightly linked to ms8 and ms10 are still lacking. Except ms1, ms3, ms8 and ms10, the map position of other NMS genes is not known. In cytoplasmic male sterility (CMS), markers for the mitochondrial gene atp6 have been developed and the gene cloned. Number of markers some very tightly linked to the restorer-of-fertility (Rf) gene have been identified. However, the actual map position of the Rf locus is still not determined. Another CMS-associated nuclear gene “pr” responsible for restoring partial fertility has been identified and tagged. In this review, we have compiled up-to-date information about the marker technology relating to the NMS and the CMS-associated genes in Capsicum. This information can be useful when screening Capsicum germplasm, developing NMS lines through MAS, improving efficiency of the NMS system, transferring rf gene for maintainer line breeding and Rf genes for restorer line breeding in CMS and assessing genetic purity of the hybrid seed.  相似文献   

11.
A germplasm collection of 152 diverse rapeseed accessions from Canada, China, France, India, Poland and South Korea was assayed for identifying new fertility restorers and sterility maintainers for a Tournefortii (tour) cytoplasmic male sterility (CMS) system in rape‐seed. Only 16 (10.5%) genotypes showed complete fertility restoration following hybridization with tour CMS line NE 409A. Notable among these were GSL 8851, GSL 8953, Mokpo # 9, Mali, Buk‐wuk‐13, Kuju‐27 and Mokpo # 84. As many as 78 (51.3%) genotypes were perfect maintainers of sterility, the remaining 58 (38.2%) genotypes were classified as partial maintainers. To study the inheritance of fertility restoration, 20 CMS (tour) rapeseed lines were crossed with the four best fertility restorers, namely GSL 8851, GSL 8953, Kuju‐27 and Mokpo # 9, to obtain F2 and test cross populations. Segregation data indicated that fertility restoration for tour CMS was governed by two genes, of which, one is stronger than the other (χ212:3:1). Differences in gene interactions were also observed (χ29:3:4) which could be explained on the basis of influence of female parent genotypes/or modified expression of the restorer gene(s) in different genetic backgrounds. Tests of allelism indicated that the restorer genes present in the four restorers evaluated were allelic.  相似文献   

12.
Search for male sterility-inducing cytoplasm in wild species of the genus Oryza was attempted with a view to diversify the base of the cytoplasmic genetic male sterility system currently used in the development of commercial rice hybrids. A total of 132 interspecific crosses were made involving accessions of four wild and two cultivated species, all belonging to the A genome. Wild accessions possessing sterility-inducing cytoplasms were identified following reciprocal and sterile F2 backcross methods. Sterile segregants were pursued through substitution backcrosses to develop cytoplasmic male-sterile (CMS) lines. CMS lines were developed with the cytoplasm of either O. rufipogon (VNI) or O. nivara (DRW 21018, DRW 21001, DRW 21039, DRW 21030 and RPW 21111). Based on shape, staining, and abortive pattern of pollen and also on type of interaction with a set of restorers and maintainers for known cytoplasmic male steriles of WA source (V 20A), the newly-developed CMS lines were grouped into four classes. Of these, RPMS 1 and RPMS 2 showed gametophytic male sterility with a restorer reaction different from WA cytoplasmic male-sterile stocks.  相似文献   

13.
X. L. Li    L. K. Liu    N. Hou    G. Q. Liu  C. G. Liu 《Plant Breeding》2005,124(4):413-415
‘Yi 4060’ is an elite restorer line of a non‐photoperiod‐sensitive D2‐type cytoplasmic male‐sterile (CMS) line of wheat. Random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers were employed to map one major fertility‐restoring gene (D2Rf1) in ‘Yi 4060′. The sterile and fertile DNA pools were established from individuals in BC6, based on bulked segregant analysis. One RAPD marker E09, linked to D2Rf1, was converted to a SCAR marker and designated as E09‐SCAR865. The genetic distance between E09‐SCAR865 and D2Rf1 is 9.5 cM. Two SSR markers, Xgwm11 and Xgwm18, were also linked to a D2Rf1 and co‐segregated with E09‐SCAR865. The three molecular markers are useful in marker‐assisted breeding of the elite restorer lines for D2 ‐type CMS lines in wheat.  相似文献   

14.
Brassicaceae crops display strong hybrid vigor, and have long been subject to F1 hybrid breeding. Because the most reliable system of F1 seed production is based on cytoplasmic male sterility (CMS), various types of CMS have been developed and adopted in practice to breed Brassicaceae oil seed and vegetable crops. CMS is a maternally inherited trait encoded in the mitochondrial genome, and the male sterile phenotype arises as a result of interaction of a mitochondrial CMS gene and a nuclear fertility restoring (Rf) gene. Therefore, CMS has been intensively investigated for gaining basic insights into molecular aspects of nuclear-mitochondrial genome interactions and for practical applications in plant breeding. Several CMS genes have been identified by molecular genetic studies, including Ogura CMS from Japanese radish, which is the most extensively studied and most widely used. In this review, we discuss Ogura CMS, and other CMS systems, and the causal mitochondrial genes for CMS. Studies on nuclear Rf genes and the cytoplasmic effects of alien cytoplasm on general crop performance are also reviewed. Finally, some of the unresolved questions about CMS are highlighted.  相似文献   

15.
李曙光  赵团结  盖钧镒 《作物学报》2010,36(7):1061-1066
利用大豆质核互作雄性不育系NJMCS3A的质、核供体亲本N21566和N21249构建F2和BC1F1育性分离群体进行雄性育性的遗传分析与基因定位。结果表明, F1正反交可育,F2和BC1F1的可育株与不育株分离比例经χ2测验分别符合3∶1和1∶1,表明NJCMS3A供体亲本雄性育性由一对基因控制,可育等位基因为显性。该基因可能是NJCMS3A的一个恢复基因。选用793对SSR引物对F2和BC1F1群体分别进行育性基因定位,发现该育性基因位于O连锁群上,在Satt331和Satt477标记之间,与Satt331、CSSR133和Satt477标记距离的次序一致,分别为8.1~10.4 cM、11.4~16.4 cM、13.3~19.2 cM。  相似文献   

16.
To identify DNA markers linked to a fertility restorer (Rf) genefor Ogura cytoplasmic male sterility in radish (Raphanus sativus L.),a non-radioactive, amplified fragment length polymorphism (AFLP) analysiswas performed on bulked DNA samples from male-sterile and male-fertileradishes. Ten male-fertile and 10 male-sterile plants selected arbitrarilyfrom an F2 population made by selfing of F1 plant from a crossbetween a male-sterile (`MS-Gensuke') plant and a restorer (`Comet') plantwere used as material. Using 32 AFLP primer pairs, one AFLP fragment(AFLP190) which is specific to the bulked DNA samples from male-fertileF2 plants was identified. AFLP190 was characterized by molecularcloning and nucleotide sequencing, and was converted to a sequence-taggedsite (STS) marker, STS190. A linkage analysis performed in 126individuals of two independent F2 populations showed tight linkageof STS190 to the Rf gene. The rate of recombination between themarker and Rf was estimated to be less than 1%, making STS1901.2 cM from the gene.  相似文献   

17.
Safflower (Carthamus tinctorius L.) possesses the highest amount of linoleic acid among the 10 major vegetable oil crops of the world. Very high linoleic acid content is controlled by recessive alleles at a single locus Li. However, deviated segregations from the expected monogenic inheritance have been observed in crosses involving nuclear male‐sterile (NMS) lines. The present research was undertaken to study the inheritance of very high linoleic acid content in safflower and its relationship with nuclear male sterility. F1, F2, F3, BC1F1 and BC1F2 seed generations were evaluated in a cross between CR‐142 (a line with very high linoleic acid content, 88%) and CL1 (an NMS line with wild‐type linoleic acid content, 74%). The genetics of linoleic acid content in male‐sterile plants was determined by testcrossing with CR‐142. The results confirmed monogenic inheritance. The analysis of the F3 and BC1F2 to CL1 seed generations demonstrated a repulsion‐phase linkage between Li and Ms loci, the latter conferring the NMS trait. The recombination rate between Li and Ms was estimated to be 0.09.  相似文献   

18.
C. G. Liu    N. Hou    L. K. Liu    J. C. Liu    X. S. Kang    A. M. Zhang 《Plant Breeding》2006,125(5):437-440
A new cytoplasmic male‐sterile (CMS) system for hybrid wheat breeding, YA‐type CMS line with the cytoplasmic mutant from the common wheat variety ‘CA8057’, was developed by the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. The pollen sterility of YA‐type CMS line was easily maintained but difficult to restore. Some sterile lines with desirable agronomic performance, such as msYA‐‘CA8057’ (BC17), msYA‐‘Yuandong 6’ (BC9), msYA‐‘Jin 411’ (BC9), msYA‐‘WL1’ (BC10), msYA‐‘Yanshi 9’ (BC10), msYA‐‘BPm16’ (BC9), msYA‐‘Jindong 8’ (BC9) and msYA‐‘Jinmai 33’ (BC9), were bred and a restorer line GR1 was screened with 26 new restorer lines being developed by transferring restorer genes from GR1. It was found that abnormal phenomena occurred at the uninucleate‐pollen stage and the abortive pollen was poor in starch content and other components. The variance analysis of agronomic traits in eight sterile lines indicated that there was no general negative effect of cytoplasm. The genetic analysis for fertility restoration showed that two pairs of independent major genes (designated YARf1YARf1YArf2YArf2) and some minor genes could be involved in the fertility restoration in restorer line GR1, and YARf1 was epistatic over YARf2 for the genetic effect of fertility restoration. As a new CMS system, the YA‐type CMS line was of potential value for hybrid wheat breeding and should be further studied.  相似文献   

19.
Wide crosses were made to identify new cytoplasmic male sterility (CMS) systems in faba beans, based on the interaction of cytoplasm with restorer and maintainer alleles. A total of 330 F1 hybrids were produced in both reciprocal forms. Male sterile segregates were observed in one reciprocal version in the F2 generation of six crosses. Two of these crosses with female parents originating from Afghanistan and Egypt expressed stable male sterility in subsequent backcross generations. Based on the female parents of the two crosses, these two CMS systems were designated CMS 199 and CMS 297. CMS 199 was more stable than CMS 297 during backcross generations and across different environments. Maintainer and restorer lines for both CMS systems were identified. Lower expression of male sterility occurred in CMS 297 in the greenhouse during the winter generations than in isolation cages during the summer generations, which may be utilized to maintain male sterile lines by selfing. Regarding practical applications, the CMS 199 shows great promise for hybrid breeding in faba beans.  相似文献   

20.
T. Komori  N. Nitta 《Plant Breeding》2004,123(6):549-553
Cytoplasmic male sterility (CMS) by the cms‐bo cytoplasm and its restoration by the nuclear restorer gene, Rf‐1, are used for seed production of japonica hybrid rice varieties. To produce pure hybrid seeds, a prerequisite is to properly manage the seed purity of parental lines, especially CMS lines. In this study, three dominant polymerase chain reaction (PCR)‐based markers (M1, M2 and M3) were developed to detect mutual contamination in seed batches of CMS lines, maintainer lines, restorer lines and hybrids. M1 detected the mitochondrial sequence that was present in the cytoplasm of common japonica varieties and absent in the cms‐bo cytoplasm. M2 and M3 detected the chromosomal sequence related to the Rf‐1 allele in restorer lines and the rf‐1 allele in common japonica varieties, respectively. By the strategic use of these markers, japonica hybrids and their parental lines could be efficiently distinguished from each other. Furthermore, sensitivity tests for the three markers with a series of crude DNA samples prepared from polished grains demonstrated that these markers could detect one contaminating grain among 500 or 1000 grains. Therefore, the bulk PCR analyses with the markers developed here probably make it possible to control the seed purity of japonica hybrids properly by selecting appropriate seed batches of their parental lines quickly and efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号