首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Recently in Japan, isolates resistant to boscalid, a succinate dehydrogenase inhibitor (SDHI), have been detected in Corynespora cassiicola (Burk. & Curt.) Wei and Podosphaera xanthii (Castaggne) Braun & Shishkoff, the pathogens causing Corynespora leaf spot and powdery mildew disease on cucumber, respectively. Resistant isolates of C. cassiicola are widely distributed and represent a serious problem in disease control at present. Novel SDHI fungicides, including fluopyram, are now under development. RESULTS: The growth of very highly boscalid‐resistant, highly resistant and sensitive isolates of C. cassiicola was strongly suppressed on fluopyram‐amended YBA agar medium. Although boscalid and another SDHI, penthiopyrad, hardly controlled Corynespora leaf spot and powdery mildew on cucumber plants when very highly or highly boscalid‐resistant isolates were employed for inoculation, fluopyram still exhibited excellent control efficacy against these resistant isolates as well as sensitive isolates of C. cassiicola and P. xanthii. CONCLUSION: Differential sensitivity to boscalid, penthiopyrad and fluopyram, clearly found in these two important pathogens of cucumber, may indicate involvement of a slightly distinct site of action for fluopyram from the two other SDHIs. This finding may lead to the discovery of unique SDHIs in the future. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
3.
4.
The population structure of Alternaria species associated with potato foliar diseases in China has not been previously examined thoroughly. Between 2010 and 2013, a total of 511 Alternaria isolates were obtained from diseased potato leaves sampled in 16 provinces, autonomous regions or municipalities of China. Based on morphological traits and molecular characteristics, all the isolates were identified as Alternaria tenuissima, A. alternata or A. solani. Of the three species, A. tenuissima was the most prevalent (75·5%), followed by A. alternata (18·6%) and A. solani (5·9%). Phylogenetic analysis based on sequences of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) of representative Alternaria isolates showed that Asolani was distinct from the two small‐spored Alternaria species. Phylogenetic analysis of the partial coding sequence of the histone 3 gene divided the same collection of isolates into three main clades representing A. tenuissima, A. alternata and Asolani, respectively. The pathogenicity of the isolates on detached leaves of potato cv. Favorite did not differ significantly between the three species or between isolates from different geographical origins. The results indicate that the population structure of Alternaria species associated with potato foliar diseases differs from that reported previously in China. This is the first report of A. tenuissima causing potato foliar diseases in China.  相似文献   

5.
Tomato chlorosis virus (ToCV) is an emerging crinivirus in Brazil that causes an economically important disease in tomato (Solanum lycopersicum) and other solanaceous species. ToCV is transmitted predominantly by the whitefly Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1, formerly biotype B), in a semipersistent manner. As all cultivated tomato varieties and hybrids are susceptible to this crinivirus, the main alternatives for the control of the disease are the use of healthy seedlings for transplanting and the chemical control of the insect vector. The objective of this work was to evaluate the responses of tomato genotypes to infection with this crinivirus and their tolerance to the disease in order to support the development of other alternatives for disease control. Resistance to infection was evaluated by ToCV inoculation with viruliferous B. tabaciMEAM1 followed by virus detection by RT‐PCR and RT‐qPCR. To measure tolerance to the disease, plant development and fruit yield of ToCV‐infected and healthy plants were compared. Among 56 genotypes, only the lineage IAC‐CN‐RT (S. lycopersicum ‘Angela Gigante’ × S. peruvianum ‘LA 444‐1’) was highly resistant to infection with ToCV. Tolerance to the disease over two trials with different genotypes showed variable results. The effect of ToCV on plant development varied from 2.9% to 71.9% reduction, while yield loss varied from 0.2% to 51.8%. The highly ToCV‐resistant lineage IAC‐CN‐RT, which is also resistant to a Spanish isolate of ToCV, might be useful for tomato breeding programmes.  相似文献   

6.
Phytophthora infestans populations can differ in composition as a result of host specialization on tomato and potato hosts. In Great Britain many amateur gardeners grow outdoor tomatoes but there is little or no commercial tomato production outdoors. This study analysed isolates of P. infestans from British gardens with 12 multiplexed simple sequence repeat markers that are used to monitor the disease on commercial potato crops. Samples of P. infestans from tomato hosts were collected in 3 years and from potato in 1 year from across Great Britain. Seven previously unreported clonal lineages were detected in garden populations and higher frequencies of unique clonal lineages (28–40%) were present compared with populations from British commercial potato crops reported elsewhere. Garden populations had a lower proportion (11–48% less) of the most common lineages (13_A2 and 6_A1) that together made up at least 86% of the commercial potato populations during the sampling period. Host species accounted for only 2·0% of molecular variance detected between garden potato‐ and tomato‐hosted samples. No significant difference in clonal lineage composition was found between host species in Great Britain and this could be due to the whole P. infestans population overwintering on potato. British garden populations on both hosts were much more diverse than those on commercial potato crops; this finding may be influenced by less frequent fungicide use by gardeners and a higher diversity of unsprayed susceptible potato cultivars, enabling metalaxyl‐sensitive and less aggressive genotypes to survive in gardens.  相似文献   

7.
由茄链格孢Alternaria solani引起的马铃薯早疫病是马铃薯生产上的重要病害之一,可导致马铃薯大面积减产,进而造成巨大的经济损失.本研究在获得缺失AsSod基因的茄链格孢突变株(ΔsSod)的基础上,对△sSod进行了不同的胁迫处理.结果 表明,相比于野生型菌株和回复株,突变株ΔAsSod对细胞壁胁迫因子SD...  相似文献   

8.
9.
10.
The plant‐pathogenic fungus Sclerotinia sclerotiorum has a broad host range and a worldwide distribution. Boscalid, an inhibitor of succinate dehydrogenase in the electron transport chain of fungi, is highly effective in controlling sclerotinia stem rot caused by S. sclerotiorum. The current study characterized the S. sclerotiorum boscalid‐resistant (BR) mutants obtained by fungicide induction. Among the bioactive fungicides against S. sclerotiorum, cross‐resistance was not detected between boscalid and dimethachlon, fluazinam or carbendazim; positive cross‐resistance was detected between boscalid and carboxin; and negative cross‐resistance was detected between boscalid and kresoxim‐methyl. Compared to their parental isolates, BR mutants had slower radial growth, no ability to produce sclerotia, lower virulence and oxalic acid content but higher mycelial respiration and succinate dehydrogenase (SDH) activity. Moreover, BR mutants had decreased sensitivity to salicylhydroxamic acid (SHAM) but not to oxidative stress. All the results indicated that the risk of resistance to boscalid in S. sclerotiorum is low to moderate. DNA sequence analysis showed that all of the BR mutants had the same point mutation A11V (GCA to GTA) in the iron sulphur protein subunit (SDHB). Interestingly, expression of the cytochrome b (cytb) gene was reduced to different degrees in the BR mutants, and this might be correlated with the negative cross‐resistance between boscalid and kresoxim‐methyl. Such information is vital in the design of resistance management strategies.  相似文献   

11.
Phytophthora infestans is the causal agent of potato late blight. This pathogen is usually controlled by fungicides, but new European regulations have imposed changes in crop protection management that have led to a search for alternative control measures. The induction of plant defence responses by elicitors is a promising new strategy compatible with sustainable agriculture. This study investigated the effect of eliciting a defence response in potato against P. infestans using a formulation of the COS‐OGA elicitor that combines cationic chitosan oligomers (COS) and anionic pectin oligomers (OGA). Trials were conducted under greenhouse conditions to assess the ability of COS‐OGA to control P. infestans. The results showed that three foliar applications with this elicitor significantly increased potato protection against late blight in controlled conditions. The activation of potato defence genes was also evaluated by RT‐qPCR during these trials. Two pathogenesis‐related proteins, basic PR‐1 and acidic PR‐2, were rapidly and significantly up‐regulated by the elicitor treatment. Therefore, these results suggest that the COS‐OGA elicitor increases the protection of potato against P. infestans and that this protection could be explained by an increase in the expression of potato defence genes rather than by biocide activity.  相似文献   

12.
Pristine® (pyraclostrobin + boscalid) is a fungicide registered for the control of alternaria late blight in pistachio. A total of 95 isolates of Alternaria alternata collected from orchards with and without a prior history of Pristine® sprays were tested for their sensitivity towards pyraclostrobin, boscalid and Pristine® in conidial germination assays. The EC50 values for 35 isolates from orchards without Pristine® sprays ranged from 0·09 to 3·14 µg mL?1 and < 0·01 to 2·04 µg mL?1 for boscalid and Pristine®, respectively. For pyraclostrobin, 27 isolates had EC50 < 0·01 µg mL?1 and six had low resistance (mean EC50 value = 4·71 µg mL?1). Only one isolate was resistant to all three fungicides tested, with EC50 > 100 µg mL?1. Among 59 isolates from the orchard with a history of Pristine® sprays, 56 were resistant to pyraclostrobin; only two were sensitive (EC50 < 0·01 µg mL?1) and one was weakly resistant (EC50 = 10 µg mL?1). For the majority of these isolates EC50 values ranged from 0·06 to 4·22 µg mL?1 for boscalid and from 0·22 to 7·74 µg mL?1 for Pristine®. However, seven isolates resistant to pyraclostrobin were also highly resistant to boscalid and Pristine® and remained pathogenic on pistachio treated with Pristine®. Whereas strobilurin resistance is a common occurrence in Alternaria of pistachio, this is the first report of resistance to boscalid in field isolates of phytopathogenic fungi. No cross resistance between pyraclostrobin and boscalid was detected, suggesting that Pristine® resistance appears as a case of multiple resistance.  相似文献   

13.
Potato early dying (PED) is a disease complex primarily caused by the fungus Verticillium dahliae. Pectolytic bacteria in the genus Pectobacterium can also cause PED symptoms as well as aerial stem rot (ASR) of potato. Both pathogens can be present in potato production settings, but it is not entirely clear if additive or synergistic interactions occur during co‐infection of potato. The objective of this study was to determine if co‐infection by V. dahliae and Pectobacterium results in greater PED or ASR severity using a greenhouse assay and quantitative real‐time PCR to quantify pathogen levels in planta. PED symptoms caused by Pectobacterium carotovorum subsp. carotovorum isolate Ec101 or V. dahliae isolate 653 alone included wilt, chlorosis and senescence and were nearly indistinguishable. Pectobacterium wasabiae isolate PwO405 caused ASR symptoms including water‐soaked lesions and necrosis. Greater Pectobacterium levels were detected in plants inoculated with PwO405 compared to Ec101, suggesting that ASR can result in high Pectobacterium populations in potato stems. Significant additive or synergistic effects were not observed following co‐inoculation with these strains of Vdahliae and Pectobacterium. However, infection coefficients of V. dahliae and Ec101 were higher and premature senescence was greater in plants co‐inoculated with both pathogens compared to either pathogen alone in both trials, and Vdahliae levels were greater in basal stems of plants co‐inoculated with either Pectobacterium isolate. Overall, these results indicate that although co‐infection by Pectobacterium and V. dahliae does not always result in significant additive or synergistic interactions in potato, co‐infection can increase PED severity.  相似文献   

14.
15.
The present survey was conducted to isolate and characterize Streptomyces species from common scab lesions of potato in Norway. Bacteria were isolated from scab lesions on tubers sampled in two consecutive years at different locations in Norway spanning ~1400 km from south to north. In total, 957 independent isolations from individual tubers were performed, with 223 putative pathogenic isolates obtained from 29 different potato cultivars and 130 different fields. Streptomyces europaeiscabiei was the most abundant species isolated from common scab lesions (69%), while 31% of the isolates obtained were S. turgidiscabies. Streptomyces scabies was not found. Pathogenicity of selected Streptomyces isolates was tested on potato. The ability of the bacterial isolates to infect potato was consistent with the presence of the txtAB operon. The results revealed no pattern in geographical distribution of S. europaeiscabiei and S. turgidiscabies; both could be found in the same field and even the same lesion. Four different pathogenicity island (PAI) genotypes were detected amongst the txtAB positive isolates: nec1+/tomA+, nec1–/tomA+, nec1+/tomA? and nec1?/tomA?. The current findings demonstrate that there is genetic variability within species and that the species are not spread solely by clonal expansion. This is thought to be the most comprehensive survey of Streptomyces species that cause common scab of potato in a European country.  相似文献   

16.
The oomycete Phytophthora infestans, the cause of late blight, is one of the most important potato pathogens. During infection, it secretes effector proteins that manipulate host cell function, thus contributing to pathogenicity. This study examines sequence differentiation of two P. infestans effectors from 91 isolates collected in Poland and Norway and five reference isolates. A gene encoding the Avr‐vnt1 effector, recognized by the potato Rpi‐phu1 resistance gene product, is conserved. In contrast, the second effector, AvrSmira1 recognized by Rpi‐Smira1, is highly diverse. Both effectors contain positively selected amino acids. A majority of the polymorphisms and all selected sites are located in the effector C‐terminal region, which is responsible for their function inside host cells. Hence it is concluded that they are associated with a response to diversified target protein or recognition avoidance. Diversification of the AvrSmira1 effector sequences, which existed prior to the large‐scale cultivation of plants containing the Rpi‐Smira1 gene, may reduce the predicted durability of resistance provided by this gene. Although no isolates virulent to plants with the Rpi‐phu1 gene were found, the corresponding Avr‐vnt1 effector has undergone selection, providing evidence for an ongoing ‘arms race’ between the host and pathogen. Both genes remain valuable components for resistance gene pyramiding.  相似文献   

17.
A novel, high‐resolution melting (HRM) analysis was developed to detect single nucleotide polymorphisms (SNPs) associated with resistance to fenhexamid (hydroxyanilides) and boscalid (succinate dehydrogenase inhibitors) in Botrytis cinerea isolates. Thirty‐six single‐spore isolates arising from 13 phenotypes were selected and tested for fungicide sensitivity. Germ tube elongation assays showed two distinct sensitivity levels for each fungicide. Sequencing revealed that resistance to fenhexamid was due to a nucleotide change in the erg27 gene, resulting in an amino acid replacement of phenylalanine (F) with serine (S) or valine (V) at position 412 of the protein, whereas in isolates resistant to boscalid, a nucleotide change in the sdhB gene resulted in the replacement of histidine (H) with arginine (R) or tyrosine (Y) at position 272 of the respective protein. In each case, melting curve analysis generated three distinct profiles corresponding to the presence of each nucleotide in the targeted areas. HRM analysis successfully detected and differentiated the substitutions associated with resistance to both fungicides. In vitro bioassays, direct sequencing and high‐resolution melting analysis showed a 100% correlation with detection of resistance. The results demonstrate the utility of HRM analysis as a potential molecular tool for routine detection of fungicide resistance using known polymorphic genes of B. cinerea populations.  相似文献   

18.
BACKGROUND: Botrytis cinerea Pers.: Fr. is a high‐risk pathogen for fungicide resistance development that has caused resistance problems on many crops throughout the world. This study investigated the fungicide sensitivity profile of isolates from kiwifruits originating from three Greek locations with different fungicide use histories. Sensitivity was measured by in vitro fungitoxicity tests on artificial nutrient media. RESULTS: Seventy‐six single‐spore isolates were tested for sensitivity to the SDHI fungicide boscalid, the QoI pyraclostrobin, the anilinopyrimidine cyprodinil, the hydroxyanilide fenhexamid, the phenylpyrrole fludioxonil, the dicarboxamide iprodione and the benzimidazole carbendazim. All isolates from Thessaloniki showed resistance to both boscalid and pyraclostrobin, while in the other two locations the fungal population was sensitive to these two fungicides. Sensitive isolates showed EC50 values to boscalid and pyraclostrobin ranging from 0.9 to 5.2 and from 0.04 to 0.14 mg L?1 respectively, while the resistant isolates showed EC50 values higher than 50 mg L?1 for boscalid and from 16 to > 50 mg L?1 for pyraclostrobin. All QoI‐resistant isolates carried the G143A mutation in cytb. Sensitivity determinations to the remaining fungicides revealed in total eight resistance phenotypes. No isolates were resistant to the fungicides fenhexamid and fludioxonil. CONCLUSION: This is the first report of B. cinerea field isolates with resistance to both boscalid and pyraclostrobin, and it strongly suggests that there may be a major problem in controlling this important pathogen on kiwifruit. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
20.
In spite of numerous studies on host pathogen interaction, very few address the differences in response in a resistance and a susceptible host. This study investigates the defense responses of resistant versus susceptible variety of tomato against the necrotrophic pathogen Alternaria solani. Various histochemical, biochemical and molecular methods were employed to compare the production and localization of phenolics, hydrogen peroxide, superoxide dismutase, polyphenol oxidases and protein cross-linking. Comet assays showed different rates of apoptosis in the hosts. A. solani transformed with green fluorescent protein gene under a constitutive promoter was used to compare progress of infection in the two varieties. The differential expression profiles of TPK1b gene were obtained over time in the two hosts. The implication of the findings, in the context of mechanism of resistance in plants, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号