首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cryopreservation of testicular tissue is a potential method for preserving male fertility. However, the effect of cryopreservation on bovine calf testicular tissue is scarce. This study investigated the effect of different cryoprotectants on bovine calf testicular tissue at the molecular level. Testicular tissue from ten immature bovine calves (6 months) was collected after slaughter and cryopreserved in an extender containing different concentrations of the following five cryopreservation solutions (CP): bovine serum albumin (BSA) with 5% dimethyl sulfoxide (DMSO), trehalose with 5% DMSO, DMSO and glycerol and ethylene glycol (EG). After 7‐day cryopreservation, the expression levels of three spermatogonial stem cell (SSC)‐related genes, octamer‐4 (OCT4), KIT ligand (MGF/SCF) and kit oncogene (C‐KIT), were investigated by quantitative PCR (qPCR). The cell viability was highest for the tissues preserved with 30 mg/ml BSA (77.82% ± 1.22) and 40 mg/ml trehalose (74.23% ± 1.16) compared with other groups (p < 0.05), and the level of expression of the three genes was highest with 30 mg/ml BSA (p < 0.05). Compared with other CPs, the 30 mg/ml BSA and 40 mg/ml trehalose have the better cryopreserve protection. The 30 mg/ml BSA is the most viable media for the cryopreservation of testicular tissue from cattle.  相似文献   

2.
The aim of this study was to assess a vitrification protocol for asinine ovarian tissue, to preserve preantral follicles using different cryoprotectant solutions, composed of various concentrations (EG 3 M or 6 M) of dimethyl sulfoxide or ethylene glycol isolate, or as a combination (DMSO 3 M + EG 3 M). Ten pairs of ovaries from Brazilian north‐eastern breed jennies were obtained through videolaparoscopy, and cortical fragments were submitted to a solid‐surface vitrification (SSV) using each cryoprotectant solution. The ovarian tissue was evaluated for follicular morphology and viability, DNA integrity (TUNEL technique) and the presence of nucleolar organizing regions in granulosa cells (AgNOR technique). After thawing, the percentage of normal preantral follicles was significantly reduced in the vitrified ovarian tissue fragments compared to the fresh control (p < 0.05). When comparing treatments, the use of DMSO 3 M (81.7 ± 37.5%), EG 3 M (83.7 ± 27.4%) and the combination of both DMSO 3 M + EG 3 M (81.8 ± 46.8%) allowed a greater percentage of follicular survival in contrast to DMSO 6 M (69.8 ± 16.5%) and EG 6 M (72.3 ± 18.0%; p < 0.05). When vitrified using the DMSO + EG combination, a higher percentage (62.5 ± 29.1%) of viable follicles (trypan blue) was observed in relation to the other vitrification treatments (p < 0.05). The TUNEL technique identified that all treatments tested showed DNA fragmentation in the follicular cells, except in the case of the DMSO 3 M + EG 3 M treatment. When evaluating the presence of NORs, no significant differences were observed in the amount of NORs between the fresh and vitrified groups using DMSO 3 M + EG 3 M (p > 0.05). We concluded that the combination DMSO 3 M + EG was more efficient for the vitrification of ovarian tissue taken from Equus asinus, allowing adequate preservation of PAFs morphology, viability, DNA integrity and cell proliferative capacity.  相似文献   

3.
In contributing to the conservation of wild rodents, the aim of this study was to evaluate the use of distinct cryoprotectants, separately or in combination, for solid surface vitrification (SSV) of red-rumped agouti ovarian tissue. Ovarian cortex from nine females was recovered and fragmented. Fresh fragments (control) were used to analyse the pre-antral follicle (PF) morphology using a histologic procedure, viability using the Trypan blue test, cell proliferation by counting the argyrophilic nucleolar organizing regions (Ag-NORs technique) and DNA integrity using the TUNEL assay. The remaining fragments were vitrified using SSV method with 3 M or 6 M ethylene glycol (EG) or dimethyl sulfoxide (DMSO), or in combination (3 M EG/3 M DMSO), and further evaluated as reported for the fresh samples. All cryoprotectants were effective at preserving PFs morphology compared to the control group (80.7 ± 5.21%), except 6 M EG and 3 M DMSO that provoked a significant (p < .05) decrease on the values of morphologically normal primary (60.0 ± 19.0%) and primordial (44 ± 4.5%) follicles, respectively. Regarding viability, all cryoprotectants provided values similar to that verified for the control group (79.0%), but a significant decrease (p < .05) was observed with EG/DMSO combination (59%). Using Ag-NORs technique, the highest (p < .05) cell proliferative capacity was detected when using EG at each tested concentration. The TUNEL proved the preservation of DNA integrity regardless of the cryoprotectant. In summary, we suggest the use of 3 M EG for the solid surface vitrification of red-rumped agouti ovarian tissue.  相似文献   

4.
The aim of this study was to produce cloned caprine embryos using either caprine bone marrow‐derived mesenchymal stem cells (MSCs) or ear fibroblast cells (EFCs) as donor karyoplasts. Caprine MSCs were isolated from male Boer goats of an average age of 1.5 years. To determine the pluripotency of MSCs, the cells were induced to differentiate into osteocytes, chondrocytes and adipocytes. Subsequently, MSCs were characterized through cell surface antigen profiles using specific markers, prior to their use as donor karyoplasts for nuclear transfer. No significant difference (p > 0.05) in fusion rates was observed between MSCs (87.7%) and EFCs (91.3%) used as donor karyoplasts. The cleavage rate of cloned embryos derived with MSCs (87.0%) was similar (p > 0.05) to those cloned using EFCs (84.4%). However, the in vitro development of MSCs‐derived cloned embryos (25.3%) to the blastocyst stage was significantly higher (p < 0.05) than those derived with EFCs (20.6%). In conclusion, MSCs could be reprogrammed by caprine oocytes, and production of cloned caprine embryos with MSCs improved their in vitro developmental competence, but not in their fusion and cleavage rate as compared to cloning using somatic cells such as EFCs.  相似文献   

5.
The present study evaluated the effects of cryoprotectants, semen diluents and thawing temperature during Ghagus chicken semen cryopreservation. Four different experiments were conducted; Experiment 1—semen was cryopreserved using 6% dimethylacetamide (DMA) and 2% dimethylsulphoxide (DMSO) in Sasaki diluent (SD) and Lake and Ravie diluent (LR), Experiment 2 and 3—semen was cryopreserved using 8% ethylene glycol (EG) in SD, LRD and Red Fowl Extender (RFE), Experiment 4—semen was cryopreserved using 6% dimethylformamide (DMF) in SD, LR and Beltsville poultry semen extender (BPSE). Semen was cryopreserved in 0.5 ml French straws. Thawing was done at 5°C for 100 s in ice water in Experiments 1, 2 and 4, whereas in Experiment 3 thawing was done at 37°C for 30 s. The post-thaw sperm motility, viable sperm and acrosome-intact sperm were significantly (p < .05) lower in cryopreserved samples in all the experiments. No fertile eggs were obtained from cryopreserved samples in Experiments 1 and 2, except for 8% EG RFE treatment where the fertility was 0.83%. In Experiments 3 and 4, highest fertility was obtained in LR treatment 48.12 and 30.89%, respectively. In conclusion, using cryoprotectant EG (8%) and thawing at 37°C for 30 s, and DMF(6%) resulted in acceptable level of fertility in Ghagus chicken. Though the diluents influenced post-thaw in vitro semen parameters, the fertility was not affected. In addition, results indicated that thawing temperature may be a critical stage in the cryopreservation protocol.  相似文献   

6.
Glycerol‐based extenders are widely utilized for freezing equine semen, but media combining methylformamide may better preserve sperm motility and mitochondrial function. Semen is cryopreserved utilizing either a Styrofoam box filled with liquid nitrogen or an automatic freezer. The objective of this experiment was to compare the post‐thaw characteristics of the same ejaculates cryopreserved in a Styrofoam box or in an automatic freezer, utilizing a glycerol‐based extender (Gent) and an extender that combines methylformamide and glycerol (BotuCrio®). For that, one ejaculate from 30 stallions collected in two different centres was used. For data analysis, a mixed linear model with laboratory, medium and freezing method and respective interactions as fixed effects was used. Stallion was taken into account as a random effect. There was no influence (p > .05) of laboratory, while stallion effect was marked. Semen frozen in BotuCrio® in the automatic freezer had higher (p < .001) VCL than semen cryopreserved in Gent using the Styrofoam box. VCL was also higher (p = .068) for semen frozen in BotuCrio® in the Styrofoam box than for semen cryopreserved in Gent using the same method. The difference between percentage of sperm with intact plasma membrane frozen in Gent using the Styrofoam box (44.43% ± 2.44%) compared to spermatozoa cryopreserved in BotuCrio® using the same method (40.78% ± 2.42%) approached significance (p = .0507). The percentage of sperm with intact acrosome membrane was higher (p < .05) in semen frozen in BotuCrio® (79.08% ± 1.79%) than semen frozen in Gent (75.15% ± 1.80%). A higher (p = .0125) percentage (32.24% ± 2.18%) of semen extended in Gent and cryopreserved in the Styrofoam box had high mitochondrial membrane potential than semen frozen in BotuCrio® using the same method (26.02% ± 2.15%). Fertility studies are warranted to assess whether differences found have any effect on the fertility of inseminated mares.  相似文献   

7.
The study was designed to evaluate AndroMed® for the freezability and fertility of Nili‐Ravi buffalo semen. Semen was collected from four adult Nili‐Ravi buffalo (Bubalus bubalis) bulls for 3 weeks (replicate). Semen ejaculates from each buffalo bull were divided into three aliquots. One aliquot was used for evaluation of motility, plasma membrane integrity, livability, viability, DNA integrity and normal apical ridge. Remaining two aliquots were diluted (37°C; 50 × 106 spermatozoa/ml) in tris‐citric egg yolk or AndroMed® extender and cryopreserved in 0.5 ml French straws. After thawing, per cent post‐thaw motility (47.9 ± 0.8, 49.2 ± 1.7), plasma membrane integrity (44.4 ± 1.2, 46.8 ± 1.8) and normal apical ridge (81.4 ± 0.3, 83.2 ± 0.3) were recorded similar (p > .05) in tris‐citric egg yolk and AndroMed® extender. Higher (p < .05) percentage of sperm livability (70.5 ± 1.4 and 64.4 ± 1.0), viability (67.5 ± 1.5 and 61.5 ± 0.6) and DNA integrity (97.0 ± 0.3 and 93.4 ± 0.21) were recorded in AndroMed® compared to tris‐citric egg yolk post‐thaw. Values for all the aforementioned spermatozoal quality parameters were observed lower (p < .05) in frozen‐thawed compared to fresh semen irrespective of the experimental extenders. Fertility rates of buffalo semen did not differ (p > .05) either cryopreserved in tris‐citric egg yolk or AndroMed® extender (45.5% vs. 49%). It is concluded that AndroMed® is capable in protecting the buffalo bull sperm during freeze‐thawing process and can be adopted safely for routine use replacing the tris‐citric egg yolk extender in artificial insemination programme.  相似文献   

8.
The present study evaluated the effect of supplementation of retinol in the vitrification solution on the viability, apoptosis and development-related gene expression in vitrified buffalo preantral follicles. Preantral follicles isolated from cortical slices of ovaries were randomly assigned into three groups: Group1—Control fresh preantral follicles; Group 2—Vitrification treatment (Vitrification solution 1 (VS1) –TCM-199 + 25 mM HEPES + Foetal bovine serum (FBS) 10%, Ethylene glycol (EG): 10%, Dimethyl sulphoxide (DMSO): 10%, Sucrose-0.3 M for 4 min; VS2- TCM-199 + 25 mM HEPES + FBS10%, EG:25%, DMSO: 25%, Sucrose:0.3 M for 45 s); Group3—vitrification treatment +5 μM of Retinol. Preantral follicles were placed in corresponding vitrification medium and plunged into liquid nitrogen (−196°C). After a week, the follicles were thawed and analysed for follicular viability and gene expression. There was no significant difference in the viability rates among the Group 1(Fresh preantral follicles) (91.46 ± 2.39%), Group 2 (89.59 ± 2.46%) and Group 3 (87.19 ± 4.05%). There was a significantly (p < .05) higher mRNA expression of BCL2L1, GDF-9 and BMP-15 in the vitrification + retinol group compared with the control group. There was a significantly (p < .05) higher expression of Caspase-3 and Annexin-5 in the vitrification group and Vitrification + retinol group compared with control group of follicles. It is concluded that the supplementation of 5 μM of Retinol in Vitrification solution was an efficient vitrification procedure for the vitrification of buffalo preantral follicles.  相似文献   

9.
This study was designed to evaluate effects of different combinations of cryoprotectants on the ability of vitrified immature buffalo oocytes to undergo in vitro maturation. Straw and open‐pulled straw (OPS) methods for vitrification of oocytes at the germinal vesicle stage also were compared. The immature oocytes were harvested from ovaries of slaughtered animals and were divided into three groups: (i) untreated (control); (ii) exposed to cryoprotectant agents (CPAs); or (iii) cryopreserved by straw and OPS vitrification methods. The vitrification solution (VS) consisted of 6 m ethylene glycol (EG) as the standard, control vitrification treatment, and this was compared with 3 m EG + 3 m dimethyl sulfoxide (DMSO), 3 m EG + 3 m glycerol, and 3 m DMSO + 3 m glycerol. Cryoprotectants were added in two steps, with the first step concentration half that of the second (and final) step concentration. After warming, oocyte samples were matured by standard methods and then fixed and stained for nuclear evaluation. Rates of MII oocytes exposed to CPAs without vitrification were lower (54.3 ± 1.9% in EG, 47.5 ± 3.4% in EG + DMSO, 36.8 ± 1.2% in EG + glycerol and 29.9 ± 1.0% in DMSO + glycerol; p < 0.05) than for the control group (79.8 ± 1.3%). For all treatments in each vitrification experiment, results were nearly identical for straws and OPS, so all results presented are the average of these two containers. The percentages of oocytes reaching telophase‐I or metaphase‐II stages were lower in oocytes cryopreserved using all treatments when compared with control. However, among the vitrified oocytes, the highest maturation rate was seen in oocytes vitrified in EG + DMSO (41.5 ± 0.6%). Oocytes cryopreserved in all groups with glycerol had an overall low maturation rate 19.0 ± 0.6% for EG + glycerol and 17.0 ± 1.1% for DMSO + glycerol. We conclude that the function of oocytes was severely affected by both vitrification and exposure to cryoprotectants without vitrification; the best combination of cryoprotectants was EG + DMSO for vitrification of immature buffalo oocytes using either straw or OPS methods.  相似文献   

10.
Astaxanthin is a member of the carotenoid family well known for its anti-cancer, anti-diabetic, anti-inflammatory and antioxidant nature. This study was designed to investigate the effects of astaxanthin supplementation of the extender (buffer 2) on post-thaw dog semen quality. Semen from four healthy dogs was collected by digital manipulation twice a week. The ejaculates were pooled, washed, divided into four equal aliquots, diluted with the extender supplemented with different concentrations of astaxanthin (0, 0.5, 1 and 2 µM) and cryopreserved. The results showed that 1 µM astaxanthin was the optimum concentration that led to significantly higher (p < .05) post-thaw motility, kinematic parameters and viability than the other groups. In comparison with the control group, sperm samples supplemented with 1 µM astaxanthin showed significantly higher (p < .05) sperm counts with intact membranes (55.7 ± 0.6% vs. 51.3 ± 0.9%), intact acrosome (58.4 ± 0.7% vs. 53.5 ± 0.6%), active mitochondria (54.9 ± 0.5% vs. 42.6 ± 0.6%) and normal chromatin (67.6 ± 0.9% vs. 61.7 ± 0.6%). Furthermore, astaxanthin-supplemented samples showed significantly lower expression levels (p < .05) of pro-apoptotic (BAX), oxidative induced DNA damage repair (OGG1), oxidative stress-related (ROMO1) genes and higher expression levels of anti-apoptotic (BCL2), and sperm acrosome-associated (SPACA3) genes compared to the control. Thus, supplementation of 1 µM astaxanthin in semen extender results in improved freeze-thaw sperm quality of the dog.  相似文献   

11.
Urospermia is a major ejaculatory dysfunction affecting stallions. It has been thought that urine-contaminated semen should not be cryopreserved; however, on select cases, urine contamination of semen cannot be avoided. A recent study suggested that urospermic semen can be cryopreserved after cushion centrifugation and extension. Thus, this study aimed to assess the use of single-layer colloid centrifugation (SLC) to process frozen-thawed urine-contaminated stallion semen. Raw ejaculates (n = 55) from eight stallions were split into three groups: no urine, low (20%), or high (50%) urine contamination. Semen was extended 1:1, cushion-centrifuged, and resuspended at 200 million sperm/mL in BotuCrio. Resuspended semen was loaded in 0.5 mL straws and cryopreserved in liquid nitrogen. Samples were thawed (37°C for 30 seconds) and processed by SLC (400 g/30 minutes). Percentages of total motility (TM) and progressive motility (PM) were assessed with computer-assisted semen analyzer. Sperm viability (%VIAB) and yield were assessed with a NucleoCounter before and after gradient centrifugation. Data were analyzed with two-way ANOVA and Tukey’s test. The motility parameters TM before SLC (control: 35 ± 2; low: 33 ± 0.7; high: 22 ± 1.8) after SLC (control: 51 ± 3.6; low: 42 ± 2.2; high: 25 ± 2.8) and PM before SLC (control: 24 ± 1.8; low: 21 ± 1.14; high: 12 ± 1.5) and after SLC (control: 40.3 ± 3.2; low: 31 ± 3.9; high: 14 ± 2) significantly decreased with increasing urine contamination. Urine contamination marginally reduced (P < .05) sperm viability after cryopreservation before SLC (control: 45 ± 0.7; low: 27 ± 0.2; high: 27 ± 0.3) and after SLC (control: 54 ± 0.5; low: 49 ± 0.7; high: 38 ± 0.6). Recovery rates of sperm after centrifugation were not significantly different between groups. In conclusion, urine contamination affects sperm motility parameters in a dose-dependent manner. Post-thaw SLC selected sperm with higher motility and viability in control and low groups but only selected sperm with higher viability in the high group.  相似文献   

12.
This study was carried out to compare the post‐thaw cryosurvival rate and the level of apoptosis in vitro produced zona‐free cloned buffalo blastocysts subjected to slow freezing or vitrification in open‐pulled straws (OPS). Zona‐free cloned embryos produced by handmade cloning were divided into two groups and were cryopreserved either by slow freezing or by vitrification in OPS. Cryosurvival of blastocysts was determined by their re‐expansion rate following post‐thaw culture for 22–24 h. The post‐thaw re‐expansion rate was significantly (p < 0.05) higher following vitrification in OPS (71.2 ± 2.3%) compared with that after slow freezing (41.6 ± 4.8%). For examining embryo quality, the level of apoptosis in day 8 frozen‐thawed blastocysts was determined by TUNEL staining. The total cell number was not significantly different among the control non‐cryopreserved cloned embryos (422.6 ± 67.8) and those cryopreserved by slow freezing (376.4 ± 29.3) or vitrification in OPS (422.8 ± 36.2). However, the apoptotic index, which was similar for embryos subjected to slow freezing (14.8 ± 2.0) or OPS vitrification (13.3 ± 1.8), was significantly (p < 0.05) higher than that for the control non‐cryopreserved cloned embryos (3.4 ± 0.6). In conclusion, the results of this study demonstrate that vitrification in OPS is better than slow freezing for the cryopreservation of zona‐free cloned buffalo blastocysts because it offers a much higher cryosurvival rate.  相似文献   

13.
This study aims to investigate the effect of different cooling rates on the semen cryopreservation of curimba (Prochilodus lineatus). Nineteen ejaculates were obtained from adults males and cryopreserved at 15°C/min (CR15), 30°C/min (CR30) (controlled temperature inside and outside straw, speed was stable during freezing) and direct freezing in liquid nitrogen vapour (~35.6°C/min) (CRNV). The straws were thawed and seminal parameters evaluated. DNA fragmentation through the comet assay was assessed. A fresh sperm sample was not frozen and used for analyses. Data were submitted to an analysis of variance (ANOVA), and means were compared by Scott–Knott test (p < 0.05) using the R Software. Mean motility percentage was 100%, and motility duration was 39.5 ± 5.7 s for the fresh sperm (subjective analysis); 58.9 ± 8.0% and 24.5 ± 5.7 s for CR15; 64.8 ± 4.8% and 26.5 ± 7.1 s for CR30; and 50.1 ± 16% and 25.7 ± 4.7 s for CRNV, respectively. Motility percentages were higher and equal between CR15 and CR30 compared to CRNV (p < 0.05). Some sperm motion kinetics, namely average path velocity (VAP) and straight line velocity (VAS), were higher for CR30 (p < 0.05), while curvilinear velocity (VCL) and velocity progression (PRO) were lower for CRNV (p < 0.05). Straightness (STR) and wobble (WOB) were the same among treatments (p > 0.05). Sperm morphology results indicated higher means for total morphological sperm alterations in CRNV. All cooling rates caused sperm DNA fragmentation, although CR30 provided a less harmful effect. This is the first report for cryopreserved P. lineatus sperm preserved under different controlled cooling rates. The cooling rate of 30°C/min is indicated for the cryopreservation of this fish sperm as it led to the lowest detrimental spermatozoa effects.  相似文献   

14.
The cryopreserved camel semen is often associated with poor quality and fertility. This study aimed to improve the dromedary frozen semen quality by comparing the efficiency of four cryoprotectant agents (CPAs) on sperm freezability. Semen samples were collected from seven male Maghrabi camels, diluted with Shotor diluent supplemented with glycerol (Sh‐G), dimethyl formamide (DMF, Sh‐DF), dimethyl sulfoxide (DMSO, Sh‐DS) or ethylene glycol (EG, Sh‐EG), all at 6% final concentration, and the samples were subjected to cryopreservation. The results revealed the superiority of Sh‐DF over Sh‐G and Sh‐DS in terms of post‐thaw motility (55.83 ± 2.20 vs. 47.50 ± 4.33 and 45.00 ± 2.89%, respectively), sperm membrane (49.00 ± 0.58, 39.33 ± 3.33 and 42.67 ± 1.45%, respectively) and acrosomal integrities (53.00 ± 0.58, 57.33 ± 0.88 and 52.33 ± 1.45%, respectively). Sh‐EG group showed the lowest post‐thaw motility, plasma membrane and acrosome integrities (12.50 ± 1.44, 22.67 ± 1.45 and 30.67 ± 1.45, respectively). In conclusion, the protocols of dromedary camel semen cryopreservation could be enhanced using 6% DMF as a cryoprotectant agent.  相似文献   

15.
The objective of the present study was to investigate the influence of different sucrose‐based extenders on the motility, morphology, viability and acrosomal integrity of epididymal cat spermatozoa cryopreserved by ultra‐rapid freezing method. Nine cats were castrated, and collected semen was diluted 1 : 1 with Dulbecco`s phosphate‐buffered saline‐BSA1%‐based extender supplemented with different sucrose concentrations (0, 0.25, 0.4 and 0.6 m ). After ultra‐rapid freezing, samples were thawed and sperm motility, morphology, viability and acrosome status were assessed. At thawing, the number of progressively motile (p < 0.01) and morphologically normal (p < 0.01) sperm was higher in the sucrose‐supplemented groups than in the sucrose‐free group. Viability of spermatozoa cryopreserved without sucrose was significantly reduced. In extender supplemented with 0.4 m sucrose, spermatozoa viability showed higher values (57.0 ± 4.7; p < 0.01). No significant differences were detected among groups for sperm acrosome integrity. Results support that cat sperm survive after ultra‐rapid freezing using sucrose as a cryoprotectant, and the best results were achieved when 0.4 m of sucrose was used. This is the first report on sperm ultra‐rapid freezing of cat sperm and further studies on extenders, sperm management or cryovials should be carried out to improve sperm cryosurvival.  相似文献   

16.
This study aimed to evaluate the effect of five salt solutions in the maintenance of morphological features of cortical alveolus, hydration and fertilization capacity of Prochilodus lineatus oocytes. For this purpose, five saline solutions were tested: Ringer's solution, Ringer's lactate solution, Hank's balanced salt solution (HBSS), Hank's balanced salt solution without calcium (HBSS without calcium) and solution for salmonid eggs. Oocytes were maintained for 2 hr in saline solution with controlled temperature subsequently evaluated for hydration, cortical activation and fertilization ability. In the evaluation of the fertilization ability, two controls were used: C1—fertilized oocytes after extrusion—and C2—oocytes kept in ovarian fluid and fertilized after 2 hr. There was a significant reduction in the viability of oocytes C2 (28.8% ± 12.9%) compared to C1 (65.3% ± 26.7%), and no significant differences were found between treatments HBSS and HBSS without calcium and C2. Only HBSS and HBSS without calcium maintained the non‐activated state of the gametes, with a fertilization rate of 16.4% ± 6.7% and 5.6% ± 2.3%, respectively; however, they did not extend the viability of oocytes, such that they continued to undergo degradation during the storage period, similar to oocytes retained only in ovarian fluid.  相似文献   

17.
The aim of this study was to evaluate the treatment of bovine semen with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK), before or after freezing on semen quality. After the initial assessment, sperm from 4 bulls were pooled (Experiment 1) and cryopreserved in BioXcell containing 0, 20 and 100 μM Z-VAD-FMK. After thawing semen viability, motility, membrane integrity, as well as DNA fragmentation and ΔΨm were evaluated. In Experiment 2, bovine frozen/thawed sperm were incubated for 1 hr with 0, 20 and 100 µM Z-VAD-FMK before assessing the semen quality. The treatment with Z -VAD-FMK before cryopreservation improved post-thawing sperm motility compared to the control group (p < .05), while no differences were recorded in sperm viability and membrane integrity among groups (on average 86.8 ± 1.5 and 69.1 ± 1.4, respectively). Interestingly, at the highest concentration, DNA fragmentation decreased (p < .05), while the percentage of spermatozoa with high ΔΨm increased (p < .05). The results of Experiment 2 showed that 1-hr treatment with Z-VAD-FMK did not affect sperm motility and viability (on average 63.4 ± 5.8 and 83.7.1 ± 1.2, respectively). However, Z-VAD-FMK improved sperm membrane integrity (p < .05) and at the highest concentration tested decreased the proportion of sperm showing DNA fragmentation (p < .05). No differences were recorded in the percentage of spermatozoa with high ΔΨm (on average 57.0 ± 11.4). In conclusion, the treatment with 100 µM of the caspase inhibitor Z-VAD-FMK before freezing increased bovine sperm mass motility and ΔΨm, while decreasing sperm DNA fragmentation. Treatment of semen after thawing with 100 µM Z-VAD-FMK improved sperm membrane integrity and reduced DNA fragmentation.  相似文献   

18.
1. This study was designed to identify a suitable protocol for freezing turkey semen in straws exposed to nitrogen vapour by examining the effects of dimethylacetamide (DMA) or dimethylsulfoxide (DMSO) as cryoprotectant (CPA), CPA concentration, freezing rate and thawing rate on in vitro post-thaw semen quality.

2. Pooled semen samples were diluted 1:1 (v:v) with a freezing extender composed of Tselutin diluent containing DMA or DMSO to give final concentrations of 8% or 18% DMA and 4% or 10% DMSO. The semen was packaged in 0.25 ml plastic straws and frozen at different heights above the liquid nitrogen (LN2) surface (1, 5 and 10 cm) for 10 min. Semen samples were thawed at 4°C for 5 min or at 50°C for 10 s. After thawing, sperm motility, viability and osmotic tolerance were determined.

3. Cryosurvival of turkey sperm was affected by DMSO concentration. Freezing rate affected the motility of sperm cryopreserved using both CPAs, while thawing rates showed an effect on the motility of sperm cryopreserved using DMA and on the viability of sperm cryopreserved using DMSO. Significant interactions between freezing rate × thawing rate on sperm viability in the DMA protocol were found.

4. The most effective freezing protocol was the use of 18% DMA or 10% DMSO with freezing 10 cm above the LN2 surface and a thawing temperature of 50°C. An efficient protocol for turkey semen would improve prospects for sperm cryobanks and the commercial use of frozen turkey semen.  相似文献   


19.
Habitat degradation leads to small and fragmented populations, lower genetic variability and fertility overtime. Assisted reproductive techniques represent important tools to cope with the dramatic loss of biodiversity. Fallow deer (Dama dama), beyond its high commercial value and wide distribution, may represent the most suitable model to study endangered cervids. In this study, oocytes were recovered post-mortem from fallow deer during the breeding and no breeding seasons and were in vitro matured (IVM). The ability of cryopreserved thawed sperm samples recovered by electroejaculation from four adult males was tested by in vitro fertilization of IVM oocytes. The number of oocytes collected per ovary did significantly vary across seasons from 6.2 ± 0.92 during breeding season to 10.4 ± 1.26 during no breeding season (p = .006). Oocytes collected during the breeding season showed higher in vitro fertilization rate compared to the no breeding season (p = .045). However, no embryos reached the blastocyst stage. Semen samples obtained by electroejaculation were successfully cryopreserved, although the cryopreservation process negatively affected most kinetic parameters, mainly at 2 hr post-thawing. Moreover, the percentage of rapid spermatozoa significantly decreased between fresh samples and at 2 hr post-thawing, whereas the percentage of slow spermatozoa increased across the same period (p < .05). Our study provides the logistic steps for the application of assisted reproductive techniques in fallow deer and might be of great interest for genetic resource bank planning.  相似文献   

20.
The objective of this study was to compare different extenders for post‐thaw in vitro sperm function and in vivo fertility of buffalo semen. Accordingly, sperm of 30 ejaculates extended in egg yolk (TRIS with 20% egg yolk; EY), two soya lecithin‐based (SL‐1; AndroMed® and SL‐2; Bioxcell®) and a liposome‐based extender (LS; OptiXcell®) were tested. The post‐thaw semen was evaluated for computer‐assisted sperm analysis (CASA), sperm viability, membrane and acrosome integrity, DNA integrity and acrosome reaction and first service pregnancy rate (FSPR) in a fixed‐time artificial insemination programme. Total motility and VCL were the only CASA‐based parameters that exhibited significantly higher (p < .05) percentage in LS among these extenders. Post‐thaw percentage of acrosome integrity (55.9 ± 1.4, 58.1 ± 2.0, 55.8 ± 2.0, 56.6 ± 2.3) and DNA integrity (68.8 ± 2.0, 69.2 ± 2.3, 71.3 ± 2.1, 69.1 ± 2.1) did not differ (p > .05) in EY, SL‐1, SL‐2 and LS extender, respectively. However, a variable response in terms of efficacy of different extenders for sperm viability and plasma membrane integrity was observed. Assessment of inducibility of acrosome reaction showed significant differences between extenders (51.9 ± 2.1, 44.3 ± 2.4, 46.1 ± 2.3 and 58.1 ± 3.1%, respectively, for EY, SL‐1, SL‐2 and LS). Furthermore, field trials revealed significantly higher (p < .05) FSPR of LS‐extended semen as compared to that for EY, SL‐1 and SL‐2 extender (46.3%, 41.2%, 31.2% and 29.7%, respectively). It is concluded that the liposome‐based extender is more effective than egg yolk‐ and soya lecithin‐based extenders and may be used for cryopreservation of buffalo semen in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号