首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fusarium species complex of maize kernels and stem pieces as well as mycotoxin contamination of commercial grain maize hybrids for animal feed were evaluated in Switzerland. Throughout 2 years, natural Fusarium infection varied significantly between the years and the locations and it ranged from 0.4% to 49.7% for kernels and from 24.2% to 83.8% for stem pieces. Using the agar plate method, 16 different Fusarium species were isolated from kernels and 15 from stem pieces. The Fusarium species composition, prevalence and impact differed between the north and the south and between kernel and stem piece samples. The dominant species on kernels in the north were F. verticillioides (32.9%), F. graminearum (31.3%), F. proliferatum (7.3%) and F. crookwellense (7.1%), in the south F. verticillioides (57.1%), F. subglutinans (24.6%), F. proliferatum (14.8%) and F. graminearum (1.5%) and on stem pieces F. equiseti (36.0%), F. verticillioides (20.1%), F. graminearum (9.5%), F. crookwellense (6.2%) and F. subglutinans (6.2%). In the south, fumonisin concentration of most hybrids exceeded guidance values for animal feed. Other Fusarium species isolated were F. avenaceum, F. culmorum, F. oxysporum, F. poae, F. sambucinum, F. semitectum, F. sporotrichioides, F. solani, F. tricinctum and F. venenatum. Maize hybrids varied in their susceptibility to Fusarium infection. Because of the high diversity of Fusarium species encountered in Switzerland representing a high toxigenic potential, we propose to screen maize hybrids for resistance against various Fusarium species and examine maize produce for several mycotoxins in order to ensure feed safety.  相似文献   

2.
The distribution and co‐occurrence of four Fusarium species and their mycotoxins were investigated in maize samples from two susceptible cultivars collected at 14 localities in South Africa during 2008 and 2009. Real‐time PCR was used to quantify the respective Fusarium species in maize grain, and mycotoxins were quantified by multi‐toxin analysis using HPLC‐MS. In 2008, F. graminearum was the predominant species associated with maize ear rot in the eastern Free State, Mpumalanga and KwaZulu‐Natal provinces, while F. verticillioides was predominant in the Northwest, the western Free State and the Northern Cape provinces. In 2009, maize ear rot infection was higher and F. graminearum became the predominant species found in the Northwest province. Fusarium subglutinans was associated with maize ear rot in both years at most of the localities, while F. proliferatum was not detected from any of the localities. Type B trichothecenes, especially deoxynivalenol, and zearalenone were well correlated with the amount of F. graminearum, fumonisins with F. verticillioides, and moniliformin and beauvericin with F. subglutinans. This information is of great importance to aid understanding of the distribution and epidemiology of Fusarium species in South Africa, and for predicting mycotoxin contamination risks and implementing preventative disease management strategies.  相似文献   

3.
High year-to-year variability in the incidence of Fusarium spp. and mycotoxin contamination was observed in a two-year survey investigating the impact of maize ear rot in 84 field samples from Germany. Fusarium verticillioides, F. graminearum, and F. proliferatum were the predominant species infecting maize kernels in 2006, whereas in 2007 the most frequently isolated species were F. graminearum, F. cerealis and F. subglutinans. Fourteen Fusarium-related mycotoxins were detected as contaminants of maize kernels analyzed by a multi-mycotoxin determination method. In 2006, a growth season characterized by high temperature and low rainfall during anthesis and early grain filling, 75% of the maize samples were contaminated with deoxynivalenol, 34% with fumonisins and 27% with zearalenone. In 2007, characterized by moderate temperatures and frequent rainfall during the entire growth season, none of the 40 maize samples had quantifiable levels of fumonisins while deoxynivalenol and zearalenone were detected in 90% and 93% of the fields, respectively. In addition, 3-acetyldeoxynivalenol, 15-acetyldeoxnivalenol, moniliformin, beauvericin, nivalenol and enniatin B were detected as common contaminants produced in both growing seasons. The results demonstrate a significant mycotoxin contamination associated with maize ear rots in Germany and indicate, with regard to anticipated climate change, that fumonisins-producing species already present in German maize production may become more important.  相似文献   

4.
Breeding efforts have been undertaken to increase resistance of maize to fusarium ear rot (FER) and to fumonisin accumulation. Flavonoids in the pericarp of the kernels are considered particularly able to reduce the fumonisin accumulation. The aim of this 2‐year field study was to assess the effect of flavonoids on FER symptoms and fumonisin contamination in maize kernels using two isogenic hybrids, one providing pigmentation in the pericarp (P1‐rr) and the other without it (P1‐wr). FER incidence (FERi), FER severity (FERs), the incidence of infections caused by Fusarium spp. in symptomless kernels (FF) and fumonisin contamination (FUM) were assessed in both hybrids. Significant differences between the two hybrids were detected mainly in 2012 trials where P1‐rr showed lower FERi (< 0·01), FF (< 0·05) and FUM (< 0·1) than P1‐wr. Site, characterized by local temperature and precipitation, played a relevant role in modelling all the measured variables, as its effect was highly significant in both years, whether they were considered individually or altogether. The interaction of hybrid with location was a significant (< 0·001) source of variation only for FF. FF, together with FERi, was also significantly (< 0·001) influenced by the interaction of hybrid with year. In general, FUM was more influenced by year and location parameters, such as temperatures during late ripening, than by flavonoid presence in kernel pericarp. The results indicate that flavonoid pigments alone may not be an important component in the resistance of maize to fumonisin accumulation.  相似文献   

5.
Fusarium species causing maize kernel rot are major threats to maize production, due to reduction in yield as well as contamination of kernels by mycotoxins that poses a health risk to humans and animals. Two-hundred maize kernel samples, collected from 20 major maize growing areas in Ethiopia were analyzed for the identity, species composition and prevalence of Fusarium species and fumonisin contamination. On average, 38 % (range: 16 to 68 %) of maize kernels were found to be contaminated by different fungal species. Total of eleven Fusarium spp. were identified based on morphological characteristics and by sequencing the partial region of translation elongation factor 1-alpha (EF-) gene. Fusarium verticillioides was the dominant species associated with maize kernels (42 %), followed by F. graminearum species complex (22.5 %) and F. pseudoanthophilium (13.4 %). The species composition and prevalence of Fusarium species differed among the areas investigated. Fusarium species composition was as many as eight and as few as four in some growing area. The majority of the maize samples (77 %) were found positive for fumonisin, with concentrations ranging from 25 μg kg?1 to 4500 μg kg?1 (mean: 348 μg kg?1 and median: 258 μg kg?1). Slight variation in fumonisin concentration was also observed among areas. Overall results indicate widespread occurrence of several Fusarium species and contamination by fumonisin mycotoxins. These findings are useful for intervention measures to reduce the impact of the main fungal species and their associated mycotoxins, by creating awareness and implementation of good agricultural practices.  相似文献   

6.
The development of new maize hybrids with resistance to Fusarium infection is an effective means of minimizing the risk of mycotoxin contamination. Several maize hybrids have been investigated for Fusarium ear rot and accumulation of fumonisin B1 (FB1), fumonisin B2 (FB2), beauvericin (BEA) and fusaproliferin (FP) after artificial inoculation in the field with toxigenic strains of Fusarium verticillioides and Fusarium proliferatum. The year of inoculation had a significant influence on the disease severity and mycotoxin accumulation in maize kernels. Of all the hybrids tested, only Mona exhibited resistance to ear rot caused by F. verticillioides and produced low levels of fumonisins during three years of experiments. In Fusarium-damaged kernels (FDK), fumonisin B1, fumonisin B2, beauvericin and fusaproliferin were detected at concentrations much higher (up to 10–20 times) than in healthy-looking kernels (HLK). Animal and human exposure to these mycotoxins can be drastically reduced by removing mouldy and visibly damaged kernels from the commodity.  相似文献   

7.
Several Fusarium species occurring worldwide on maize as causal agents of ear rot, are capable of producing mycotoxins in infected kernels, some of which have a notable impact on human and animal health. The main groups of Fusarium toxins commonly found are: trichothecenes, zearalenones, fumonisins, and moniliformin. In addition, beauvericin and fusaproliferin have been found in Fusarium-infected maize ears. Zearalenone and deoxynivalenol are commonly found in maize red ear rot, which is essentially caused by species of the Discolour section, particularly F. graminearum. Moreover, nivalenol and fusarenone-X were often found associated with the occasional occurrence of F. cerealis, and diacetoxyscirpenol and T-2 toxin with the occurrence of F. poae and F. sporotrichioides, respectively. In addition, the occurrence of F. avenaceum and F. subglutinans usually led to the accumulation of moniliformin. In maize pink ear rot, which is mainly caused by F. verticillioides, there is increasing evidence of the wide occurrence of fumonisin B1. This carcinogenic toxin is usually found in association with moniliformin, beauvericin, and fusaproliferin, both in central Europe due to the co-occurrence of F. subglutinans, and in southern Europe where the spread of F. verticillioides is reinforced by the widespread presence of F. proliferatum capable of producing fumonisin B1, moniliformin, beauvericin, and fusaproliferin.  相似文献   

8.
Fungal interactions of Fusarium verticillioides and F. graminearum in maize ears and the impact on fungal development and toxin accumulation were investigated in a 2‐year field study at two locations in France. Maize ears were inoculated either with a spore mixture of F. graminearum and F. verticillioides or using a sequential inoculation procedure consisting of a first inoculation with F. graminearum followed by a second with F. verticillioides 1 week later. Toxin and fungal biomass were assessed on mature kernels, using HPLC and quantitative PCR. Correlation between the levels of DNA and toxin was high concerning F. graminearum DNA and deoxynivalenol (R² = 0·73) and moderate for F. verticillioides DNA and fumonisin (R² = 0·44). Fusarium graminearum DNA either decreased in mixed inoculations or was not influenced by subsequent inoculations with F. verticillioides, compared to single inoculations. In contrast, F. verticillioides DNA either significantly increased or was not affected in mixed and sequential inoculations. In two of the replicates, it can be assumed that natural contamination by F. verticillioides was favoured by previous contamination with F. graminearum. Overall, the results suggest that F. verticillioides has competitive advantages over the F. graminearum strains. Additionally, the data provide, for the first time, key evidence that previous contamination by F. graminearum in maize ears can facilitate subsequent infections by F. verticillioides.  相似文献   

9.
The objective of this study was to investigate the stability, across well‐differentiated environments, of genetic control of maize resistance to Fusarium graminearum and Fusarium verticillioides ear rots and mycotoxin contamination, found in genotypes of diverse origin and adapted to different environments. This knowledge will help to design the most appropriate breeding programme to reduce mycotoxin content across a wide range of environments. Although maize genetics involved in resistance to ear rots and mycotoxin contamination greatly depended on the environment, additive and dominance effects were the predominant genetic effects in most environments. The stability across environments for resistance to ear rots and deoxynivalenol and fumonisin contamination was low, and recommended target areas of breeding programmes for either Fusarium species are different based on the different nature of genetic effect × environment interactions for each species. In general, the classification of inbreds and hybrids according to their resistance levels was similar across environments, suggesting that the same sources of resistance could be suitable for different environments, and breeding for resistance to one species would affect resistance to the other one.  相似文献   

10.
The biocontrol effect of Clonostachys rosea (strains 016 and 1457) on Fusarium graminearum, F. avenaceum, F. verticillioides, F. langsethiae, F. poae, F. sporotrichioides, F. culmorum and Microdochium nivale was evaluated on naturally infected wheat stalks exposed to field conditions for 180 days. Experiments were conducted at two locations in Argentina, Marcos Juarez and Río Cuarto. Antagonists were applied as conidial suspensions at two inoculum levels. Pathogens were quantified by TaqMan real‐time qPCR. During the first year at Marcos Juarez, biocontrol was observed in one antagonist treatment for F. graminearum after 90 days (73% reduction) but after 180 days, the pathogen decreased to undetectable levels. During the second year, biocontrol was observed in three antagonist treatments for F. graminearum and F. avenaceum (68·3% and 98·9% DNA reduction, respectively, after 90 days). Fusarium verticillioides was not controlled at Marcos Juarez. At Río Cuarto, biocontrol effects were observed in several treatments at different intervals, with a mean DNA reduction of 88·7% for F. graminearum and F. avenaceum, and 100% reduction for F. verticillioides in two treatments after 180 days. Populations of F. avenaceum and F. verticillioides were stable; meanwhile, F. graminearum population levels varied during the first 90 days, and low levels were observed after 180 days. The other pathogens were not detected. The study showed that wheat stalks were important reservoirs for F. avenaceum and F. verticillioides populations but less favourable for F. graminearum survival. Clonostachys rosea (strain 1457) showed potential to reduce the Fusarium spp. on wheat stalks.  相似文献   

11.
Historical records report Fusarium moniliforme sensu lato as the pathogen responsible for Fusarium diseases of sorghum; however, recent phylogenetic analysis has separated this complex into more than 25 species. During this study, surveys were undertaken in three major sorghum‐producing regions in eastern Australia to assess the diversity and frequency of Fusarium species associated with stalk rot‐ and head blight‐infected plants. A total of 523 isolates were collected from northern New South Wales, southern Queensland and central Queensland. Nine Fusarium species were isolated from diseased plants. Pathogenicity tests confirmed F. andiyazi and F. thapsinum were the dominant stalk rot pathogens, whilst F. thapsinum and species within the F. incarnatumF. equiseti species complex were most frequently associated with head blight.  相似文献   

12.
A large collection (= 539) of Fusarium graminearum species complex (FGSC) isolates was obtained from Brazilian maize, and collections formed according to geography and maize part: (i) kernel (= 110) from south and south‐central Brazil; (ii) stalk (= 134) from Paraná state (south); and (iii) stubble (= 295) from Rio Grande do Sul state (south). Species composition, identified using a multilocus genotype approach, was assessed separately in each collection due to differences in geographic sampling. Overall, three species were found: F. meridionale (Fmer; 67% prevalence) with the nivalenol (NIV) genotype, F. graminearum (Fgra; 19%) with the 15‐acetyl (A) deoxynivalenol (DON) genotype, and F. cortaderiae (Fcor; 14%) with the NIV (49/74) or the 3‐ADON (25/74) genotype. In kernels, Fmer was spread across all locations and Fgra and Fcor were found mostly at high elevation (>800 m a.s.l.). The majority (97·8%) of stalk isolates was assigned to Fmer; three were assigned to Fgra. In the stubble, Fmer was less dominant (53%), with a shift towards Fcor as the most frequent species at high elevation sites (>600 m a.s.l.). No differences in the mycelial growth rate were observed among isolates from each species grown at 15°C. Fgra grew faster at 25°C and Fmer showed the widest range of variation across the isolates at both temperatures. The survey data suggest that Fmer may outcompete other species on ears and stalks in comparison to stubble. Additional sampling that controls for other factors, as well as direct testing of aggressiveness on ears and stalk tissue, will be needed to fully evaluate this hypothesis.  相似文献   

13.
Different sets of wheat genotypes were tested under field conditions by spraying inocula of isolates of seven Fusarium spp. and Microdochium nivale (formerly F. nivale) in the period 1998–2002. The severity of Fusarium head blight (FHB), Fusarium-damaged kernels (FDK), the yield reduction and the deoxynivalenol (DON) contamination were also measured to describe the nature of the resistance. The degrees of FHB severity of genotypes to F. graminearum, F. culmorum, F. avenaceum, F. sporotrichioides, F. poae, F.␣verticillioides, F. sambucinum and M. nivale were very similar, indicating that the resistance to F.␣graminearum was similar to that for other Fusarium spp. listed. This is an important message to breeders as the resistance relates not only to any particular isolate of F. graminearum, but similarly to isolates of other Fusarium spp. This holds true for all the parameters measured. The DON contamination refers only to DON-producers F. graminearum and F. culmorum. Highly significant correlations were found between FHB, FDK, yield loss and DON contamination. Resistance components such as resistance to kernel infection, resistance to DON and tolerance were identified in the more susceptible genotypes. As compared with western European genotypes which produced up to 700 mg kg−1 DON, the Hungarian genotypes produced only 100 mg kg−1 at a similar FDK level. This research demonstrates the importance of measuring both FDK and DON in the breeding and selection of resistant germplasm and cultivars.  相似文献   

14.
This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in rice seeds produced in southern Brazil. Four species and two trichothecene genotypes were detected among 89 FGSC isolates, based on a multilocus genotyping assay: F. asiaticum (69·6%) with the nivalenol (NIV) genotype, F. graminearum (14·6%) with the 15‐acetyldeoxynivalenol (ADON) genotype, and F. cortaderiae (14·6%) and F. meridionale (1·1%), both with the NIV genotype. Seven selected F. asiaticum isolates from rice produced NIV in rice‐based substrate in vitro, at levels ranging from 4·7 to 84·1 μg g?1. Similarly, two F. graminearum isolates from rice produced mainly 15‐ADON (c. 15–41 μg g?1) and a smaller amount of 3‐ADON (c. 6–12 μg g?1). One F. meridionale and two F. cortaderiae isolates did not produce detectable levels of trichothecenes. Two F. asiaticum isolates from rice and two from wheat (from a previous study), and one F. graminearum isolate from wheat, were pathogenic to both crops at various levels of aggressiveness based on measures of disease severity in wheat spikes and rice kernel infection in a greenhouse assay. Fusarium asiaticum and the reference F. graminearum isolate from wheat produced NIV, and deoxynivalenol and acetylates, respectively, in the kernels of inoculated wheat heads. No trichothecene was produced in kernels from inoculated rice panicles by any of the isolates. These findings constitute the first report of FGSC composition in rice outside Asia, and confirm the dominance of F. asiaticum in rice agroecosystems.  相似文献   

15.
Silk infection by Fusarium verticillioides is caused by conidia produced on maize crop residues and results in kernel infection and consequent accumulation of fumonisins. Studies were carried out in both controlled and field conditions to understand the dynamics of sporulation on maize residues. The effect of temperature (5°C to 45°C) and incubation time (3 to 41 days) on spore production on maize meal agar was described by a logistic model that accounted for 85% of variability. The rate parameter depended on the length of incubation and the asymptote on temperature. Maximum sporulation occurred at 27°C, with a progressive increase between 5°C and 27°C and then a rapid decline, with no sporulation at 45°C. Fusarium verticillioides strains from different geographic origins showed different sporulation capabilities, with similar optimum temperatures. Pieces of stalk residues inoculated with F. verticillioides and placed above the soil between rows of maize crops, in 2003 to 2005, produced conidia continuously and abundantly for some weeks, particularly during the period after silk emergence, with an average of 1.59 × 107 conidia g−1 of stalk, over a wide range of environmental conditions. Sixty-seven percent of variability of the spore numbers found on stalks was accounted for by a multiple regression model. Precipitation (rain or overhead irrigation) in the 14 days before stalk sampling decreased the number of spores, whilst the number of days with conducive conditions of moisture (i.e. days with rainfall, average relative humidity >85% or vapour pressure deficit <4 hPa) and greater degree-days (base 0°C) in the 14 and 3 days before sampling, respectively, increased sporulation.  相似文献   

16.
The phytotoxicity of the Fusarium trichothecene and fumonisin mycotoxins has led to speculation that both toxins are involved in plant pathogenesis. This subject has been addressed by examining virulence of trichothecene and fumonisin-nonproducing mutants of Fusarium in field tests. Mutants were generated by transformation-mediated disruption of genes encoding enzymes that catalyze early steps in the biosynthesis of each toxin. Two economically important species of Fusarium were selected for these studies: the trichothecene-producing species Fusarium graminearum, which causes wheat head blight and maize ear rot, and the fumonisin-producing species F. verticillioides, which causes maize ear rot. Trichothecene-non-producing mutants of F. graminearum caused less disease than the wild-type strain from which they were derived on both wheat and maize, although differences in virulence on maize were not observed under hot and dry environmental conditions. Genetic analyses of the mutants demonstrated that the reduced virulence on wheat was caused by the loss of trichothecene production rather than by a non-target mutation induced by the gene disruption procedure. Although the analyses of virulence of fumonisin-non-producing mutants of F. verticillioides are not complete, to date, the mutants have been as virulent on maize ears as their wild-type progenitor strains. The finding that trichothecene production contributes to the virulence of F. graminearum suggests that it may be possible to generate plants that are resistant to this fungus by increasing their resistance to trichothecenes. As a result, several researchers are trying to identify trichothecene resistance genes and transfer them to crop species.  相似文献   

17.
18.
Fusarium proliferatum, F. subglutinans and F. verticillioides are the most important Fusarium species occurring on maize world-wide, capable of producing a wide range of mycotoxins which are a potential health hazard for animals and humans. The ribosomal internal transcribed spacer and a portion of the calmodulin gene were sequenced and analysed in order to design species-specific primers useful for diagnosis. The primer pairs were based on a partial calmodulin gene sequence. Three pairs of primers (PRO1/2, SUB1/2 and VER 1/2) produced PCR products of 585, 631 and 578bp for F. proliferatum, F. subglutinans and F. verticillioides, respectively. Primer specificity was confirmed by analyzing DNA of 150 strains of these species, mostly isolated from maize in Europe and USA. The sensitivity of primers was 12.5 pg when the pure total genomic DNA of each species was analyzed. The developed PCR assay should provide a powerful tool for the detection of toxigenic fungi in maize kernels.  相似文献   

19.
In order to investigate the pre-harvest contamination of maize plants by Fusarium species in Belgium, a three-year survey has been performed in five fields in which three hybrids differing in susceptibility to maize stalk rot were sampled at four different physiological stages. An extensive collection of 5,659 Fusarium isolates characterized at the species level was established during the 2005, 2006, and 2007 growing seasons, with a total of 23 different Fusarium species identified to occur on ears and stalks. A high number of plants was already contaminated by Fusarium spp. at the anthesis stage, although no symptoms were visible on ears or on stalks. As the season progressed, the incidence of Fusarium-infected maize plants reached 100% in several fields. At the end of the growing season, the most frequently isolated species in maize ears were F. graminearum, sometimes associated with F. avenaceum, F. crookwellense, F. culmorum, F. poae, and F. temperatum, a new species recently described on maize. The predominant Fusarium species detected in stalks at the end of the growing season were F. graminearum and F. crookwellense, often associated with F. culmorum and F. temperatum. Year-to-year variability observed for the incidence of F. graminearum can most likely be associated with differences in climatic conditions among the three years.  相似文献   

20.
黄淮海夏玉米主产区穗腐病病原菌的分离鉴定   总被引:6,自引:0,他引:6  
为明确我国黄淮海夏玉米主产区玉米穗腐病的病原菌种类、优势种群及虫害、年度、省份对病原菌的影响,以形态学为基础,结合分子生物学方法对2013、2015年随机采自河南、河北、山东3省的155份玉米穗腐病样品进行分离鉴定。结果表明,引起黄淮海夏玉米主产区玉米穗腐病的主要致病菌为镰孢菌Fusarium spp.,包括拟轮枝镰孢F.verticillioides、禾谷镰孢F.graminearum、层出镰孢F.proliferatum、木贼镰孢F.equiseti及藤仓镰孢F.fujikuroi,分离频率分别为49.7%、28.4%、12.3%、3.9%和1.3%;其次为木霉菌Trichoderma spp.,包括哈茨木霉T.harzianum、绿色木霉T.viride和棘孢木霉T.asperellum,分离频率分别为8.4%、3.2%和5.2%;青霉菌Penicillium spp.分离频率较低,为14.2%;曲霉菌Aspergillus spp.包括黑曲霉A.niger和黄曲霉A.flavus,分离频率分别为2.6%和1.9%。研究表明,黄淮海主产区玉米穗腐病优势病原菌为拟轮枝镰孢、禾谷镰孢和木霉菌,不同省份不同年度间病原菌种类及优势病原菌存在差异,虫害能加重玉米穗腐病的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号