首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth room experiments were conducted to assess the interaction of soil type, biofungicides, soil compaction and pathotype/host on infection and symptom development caused by Plasmodiophora brassicae, the cause of clubroot on Brassica spp. In two initial experiments, four soil types (peat soil, mineral soil, non‐calcareous sand, soil‐less mix), two biofungicides (Bacillus subtilis, Clonostachys rosea), and two pathotypes (3 and 6, Williams’ differential set) were assessed. Differences in clubroot severity associated with soil type were unexpectedly small and variable. Prestop (C. rosea) was often more effective than Serenade (B. subtilis) at reducing clubroot levels on peat and mineral soils, but less effective than Serenade on sand. Inoculation with pathotype 3 often resulted in a slightly higher mean severity than pathotype 6. The interaction of soil type × biofungicide was similar on both canola (B. napus) and Shanghai pak choy (B. rapa subsp. chinensis), whether the soil was kept saturated or allowed to drain after inoculation. The impact of soil type on biofungicide efficacy might explain, in part, why biofungicides are more effective in one location than another. The observation that clubroot severity in soil‐less mix was affected by compaction led to an investigation of soil bulk density. Severity was higher in soil‐less mix that was more compacted than in the initial experiments, and was lower in peat and mineral soils when soil bulk density was reduced by adding soil‐less mix. In this study, soil bulk density had a larger impact on clubroot than soil type, organic matter or pathotype.  相似文献   

2.
Clubroot, caused by Plasmodiophora brassicae, has become a serious threat to canola (Brassica napus) production in western Canada. Experiments were conducted under greenhouse and field conditions to assess the effect of Vapam fumigant (dithiocarbamate; sodium N‐methyldithiocarbamate) on primary and secondary infection by P. brassicae, clubroot severity, and growth parameters in canola. Preliminary trials showed a 12–16‐fold reduction in primary and secondary infection and clubroot severity at all of the Vapam application rates (0·4–1·6 mL L?1 soil) assessed. Vapam was also found to be effective in reducing clubroot severity and improving seed yield of canola under field conditions. Application of Vapam at soil moisture levels in the range of 10–30% (v:v) had a large effect on both disease severity and infection rates and plant growth parameters. The results suggest that Vapam can effectively reduce clubroot severity and may be useful for the treatment of transplant propagation beds in brassica vegetable production, and for the containment of small, localized clubroot infestations in commercial canola crops.  相似文献   

3.
The early stages of infection of canola roots by the clubroot pathogen Plasmodiophora brassicae were investigated. Inoculation with 1 × 105 resting spores mL?1 resulted in primary (root hair) infection at 12 h after inoculation (hai). Secondary (cortical) infection began to be observed at 72 hai. When inoculated onto plants at a concentration of 1 × 104 mL?1, secondary zoospores produced primary infections similar to those obtained with resting spores at a concentration of 1 × 105 mL?1. Secondary zoospores caused secondary infections earlier than resting spores. When the plants were inoculated with 1 × 107 resting spores mL?1, 2 days after being challenged with 1 × 104 or 1 × 105 resting spores mL?1, secondary infections were observed on the very next day, which was earlier than the secondary infections resulting from inoculation with 1 × 107 resting spores mL?1 alone and more severe than those produced by inoculation with 1 × 104 or 1 × 105 resting spores mL?1 alone. Compared with the single inoculations, secondary infections on plants that had received both inoculations remained at higher levels throughout a 7‐day time course. These data indicate that primary zoospores can directly cause secondary infection when the host is under primary infection, helping to understand the relationship and relative importance of the two infection stages of P. brassicae.  相似文献   

4.
Clubroot, a disease of Brassicaceae species, is caused by the soilborne pathogen Plasmodiophora brassicae. High soil water content was previously described to favour the motility of zoospores and their penetration into root cells. In this study, the effect of irrigation regimes on clubroot development during the post‐invasive secondary phase of infection was investigated. Three irrigation regimes (low, standard, high) were tested on two Arabidopsis accessions, Col‐0 (susceptible) and Bur‐0, a partially resistant line. In Col‐0, clubroot symptoms and resting spore content were higher under the ‘low irrigation’ regime than the other two regimes, thus enhancing the phenotypic contrast between the two Arabidopsis accessions. Clubroot severity under high and low irrigation regimes was evaluated in near‐isogenic lines derived from a Col‐0 ×  Bur‐0 cross, to assess the effect of soil moisture on the expression of each of four quantitative trait loci (QTL) controlling partial resistance. The presence of the Bur‐0 allele at the QTL PbAt5.2 resulted in reduced severity only under low irrigation, whereas the Bur‐0 allele at QTL PbAt5.1 was associated with partial resistance only under high irrigation. QTL PbAt4 reduced the number of resting spores in infected roots, but was not associated with reduced clubroot symptoms. The results indicated that soil moisture could have consequences for the secondary phase of clubroot development, depending on plant genotype. Future genetic studies may benefit from using combinations of watering conditions during the secondary stage of infection, thus opening up the possibility of identifying genetic factors expressed under specific environmental conditions.  相似文献   

5.
Clubroot, caused by Plasmodiophora brassicae, has become a serious threat to canola (Brassica napus) production in western Canada. Experiments were conducted to assess the effect of growing resistant and susceptible canola genotypes on P. brassicae soil resting spore populations under greenhouse, mini‐plot and field conditions. One crop of susceptible canola contributed 1·4 × 108 spores mL?1 soil in mini‐plot experiments, and 1 × 1010 spores g?1 gall under field conditions. Repeated cropping of susceptible canola resulted in greater gall mass compared to resistant canola lines. It also resulted in reduced plant height, increased clubroot severity in susceptible canola, and increased numbers of resting spores in the soil mix.  相似文献   

6.
Clubroot of oilseed rape (OSR), caused by Plasmodiophora brassicae, is a disease of increasing economic importance worldwide. Previous studies indicated that OSR volunteers, Brassica crops and weeds play a critical role in the predisposition of the disease. To determine the effect of timing of foliar application of the herbicide glyphosate or mechanical destruction of OSR volunteers in reduction of clubroot severity and resting spore production, a series of studies was conducted under controlled conditions with a susceptible OSR cultivar and an isolate of P. brassicae. Plants were inoculated by injecting a spore suspension beside the root hairs at growth stage 11–12 (BBCH scale) and were terminated at 7 (early) or 21 (late) days post‐inoculation (dpi). Under controlled conditions, the first symptoms on roots were observed as early as 7 dpi. The early application of glyphosate as well as early mechanical destruction resulted in significant ( 0.05) reduction in the development of clubroot symptoms, root fresh weight and the number of resting spores?g root. Furthermore, the effect of volunteer management on clubroot severity in the succeeding OSR was studied by inoculating plants with the resting spores obtained from treated clubbed roots. Inoculated OSR exhibited root clubs similar to the initial symptoms after 35 dpi. Plants that were inoculated with spore suspension from early treated roots resulted in significant reductions in clubroot incidence and severity. Conversely, plants inoculated with the spore suspension from the late treated roots displayed levels of clubroot similar to the plants inoculated with the spore solutions of positive controls.  相似文献   

7.
A study was conducted to assess the effect of temperature on infection and development of Plasmodiophora brassicae in root hairs of Shanghai pak choi (Brassica rapa subsp. chinensis) and on initiation of clubroot symptoms. Ten‐day‐old seedlings were grown in liquid‐sand culture, inoculated with resting spores and maintained in growth cabinets at 10, 15, 20, 25 and 30°C. Seedlings were harvested at 2‐day intervals, starting 2 days after inoculation (DAI) and continuing until swelling of the tap root was observed (maximum 28 days). Roots were assessed for root hair infection (RHI), stage of development of infection (primary plasmodia, zoosporangia, release of zoospores, secondary plasmodia), symptom development, and for clubroot severity at 24 DAI. Temperature affected every stage of clubroot development; RHI was highest and visual symptoms initiated earliest at 25°C, intermediate at 20 and 30°C, and lowest and latest at 15 and 10°C. Root hair infection was observed at every temperature, but clubroot symptoms developed only above 15°C. A substantial delay in the development of the pathogen was observed at 10 and 15°C. No symptoms were observed at 28 DAI in plants grown at 10°C. Swelling of the tap root was visible at 28 DAI in plants at 15°C, 14 DAI at 20 and 30°C, and 10 DAI at 25°C. These results support and explain the observation in companion studies that cool temperatures result in slower development of clubroot symptoms in brassica crops.  相似文献   

8.
Clubroot, caused by Plasmodiophora brassicae, is a worldwide disease affecting Brassica. Until now, the detection of genetic factors (QTLs) implicated in clubroot resistance has been based on estimates of disease index. However, as the amount of resting spores released in soil after club disintegration influences clubroot epidemics and resistance‐breaking dynamics, its genetic control may deserve specific attention. In a previous report, it was shown that nitrogen fertilization modulated quantitative partial resistance toward clubroot symptom development in rapeseed. The present work aimed to identify genetic factors involved in the control of resting spore production and to assess their regulation by nitrogen supply. A flow cytometer method was adapted for rapidly estimating resting spore content in a large series of samples. Linkage analysis was conducted to detect QTLs implicated in resting spore production in a Brassica napus doubled haploid progeny from the cross Darmor‐bzh × Yudal. DH lines inoculated with the P. brassicae isolate eH were grown under low‐ and high‐nitrogen supply. Under low‐nitrogen conditions, resting spore production was reduced compared to high‐nitrogen conditions, regardless of genotypes. Genetic architecture controlling resting spore production and clubroot symptom development was similar. Under high‐nitrogen conditions, resting spore production was controlled by one major QTL (C09a) and a few small‐effect QTLs. By contrast, two major QTLs (C02 and C09a) controlled resting spore production under low‐nitrogen conditions. This work highlighted a large see‐saw effect between the relative contribution of the C09a QTL (high effect under high‐nitrogen conditions) and the C02 QTL (high effect under low‐nitrogen conditions), with possible implications in resistance breeding.  相似文献   

9.
Using quantitative PCR, DNA of Plasmodiophora brassicae, the causal agent of clubroot, was detected and quantified on canola, pea and wheat seeds, as well as on potato tubers, all harvested from clubroot‐infested fields in Alberta, Canada. Quantifiable levels of infestation were found on seven of the 46 samples analysed, and ranged from <1·0 × 103 to 3·4 × 104 resting spores per 10 g seeds; the vast majority (80–100%) of resting spores on these samples were viable, as determined by Evan’s blue vital staining. However, the levels of infestation found were generally lower than that required to cause consistent clubroot symptoms in greenhouse plant bioassays. While the occurrence of P. brassicae resting spores on seeds and tubers harvested from clubroot‐infested fields suggests that seedborne dissemination of this pathogen is possible, practices such as commercial seed cleaning may be sufficient to effectively mitigate this risk.  相似文献   

10.
Plasmodiophora brassicae, causal agent of clubroot of crucifers, poses a serious threat to Canadian canola production. The effects of fallow (F) periods and bait crops (clubroot‐susceptible canola (B) and perennial ryegrass (R)) on clubroot severity and P. brassicae resting spore populations were evaluated in five sequences: R–B, B–R, R–F, B–F and F–F. Both host and non‐host bait crops reduced clubroot severity in a subsequent crop of a susceptible canola cultivar compared with fallow. Resting spore and P. brassicae DNA concentrations decreased in all treatments, but were lowest for the R–B and B–R bait crop sequences. In addition, two studies were conducted in mini‐plots under field conditions to assess the effect of rotation of susceptible or resistant canola cultivars on clubroot severity and P. brassicae resting spore populations. One study included three crops of susceptible canola compared with a 2‐year break of oat–pea, barley–pea, wheat–wheat or fallow–fallow. The other study assessed three crops of resistant canola, two crops of resistant canola with a 1‐year break, one crop of resistant canola and a 2‐year break, and a 3‐year break with barley followed by a susceptible canola. The rotations that included non‐host crops of barley, pea or oat reduced clubroot severity and resting spore concentrations, and increased yield, compared with continuous cropping of either resistant or susceptible canola. Growing of a susceptible canola cultivar contributed 23–250‐fold greater gall mass compared with resistant cultivars.  相似文献   

11.
To mitigate the impact and dissemination of clubroot in western Canada, canola (Brassica napus) producers have relied on clubroot resistance traits. However, in 2013 and 2014, new strains of the clubroot pathogen, Plasmodiophora brassicae, emerged that are virulent on most clubroot‐resistant (CR) canola genotypes. Novel strains of the pathogen were inoculated onto two susceptible canola cultivars, one resistant line and six CR cultivars. Although all cultivars/lines showed a susceptible response to inoculation with the new strains of P. brassicae, the severity of disease reaction, root hair infection rates and the amount of P. brassicae DNA present in each canola genotype varied depending on the strain. In addition, the effect of inoculum density on disease severity and gall formation was recorded for one of these new strains on a universally susceptible Chinese cabbage cultivar and one susceptible and 10 resistant canola genotypes. Although root galls were observed at an inoculum density of 103 spores per mL of soil, clear differentiation of susceptible and resistant reactions among canola cultivars/lines was not observed until the inoculum density reached 105 spores mL?1. At a spore density of 106 spores mL?1 and above, all cultivars/lines developed susceptible reactions, although there was some differentiation in the degree of reaction. This study shows the potential to develop a unique disease profile for emergent clubroot pathotypes and shows a useful range of spore densities at which to study new P. brassicae strains.  相似文献   

12.
The impact of cultivar resistance and inoculum density on the incidence of primary infection of canola root hairs by Plasmodiophora brassicae, the causal agent of clubroot, was assessed by microscopy. The incidence of root hair infection in both a resistant and a susceptible cultivar increased with increasing inoculum density, but was two‐ to threefold higher in the susceptible cultivar; the relationship between root hair infection and inoculum density was also substantially stronger and more consistent in the susceptible cultivar. In the susceptible cultivar, the root hair infection rate peaked between 6 and 8 days after sowing and then declined. In the resistant cultivar, it increased over the 14‐day duration of each study. It appears that examination of root hair infection by microscopy in a bait crop of susceptible canola could serve as a useful tool for estimating P. brassicae inoculum levels in soil. In a separate trial, the relationship between inoculum density and clubroot severity, plant growth parameters, and seed yield was assessed under greenhouse conditions. Inoculum density in the susceptible genotype was strongly and positively correlated with clubroot severity and negatively correlated with plant height and seed yield. In addition, a single cropping cycle of the susceptible cultivar contributed significantly higher levels of resting spores to the soil in a greenhouse test than did a cycle of the resistant cultivar, as assessed by quantitative PCR and microscope analysis.  相似文献   

13.
The present study was performed to investigate whether Plasmodiophora brassicae can be disseminated by livestock manure. A quantitative PCR (qPCR) assay was developed and used to detect and quantify P. brassicae in manure samples from naturally and artificially infested chickens and pigs. In naturally infested manure, quantifiable levels of infestation were observed in 7 out of the 28 samples, ranging from 103 to 107 resting spores per g of manure. The vast majority of the resting spores (76–91%) were viable, as determined by a dual fluorescence viability assay. Clubroot symptoms developed on plants inoculated with P. brassicae resting spores isolated from all seven qPCR‐positive samples. Artificially infested manure samples were produced by feeding chickens and pigs on P. brassicae‐contaminated feed. The levels of infestation were 103 resting spores per g of manure for both chicken and pig manure sampled 24 and 48 h after feeding, respectively. Spore viability was >80% for both samples, and the disease severity indices were both >40 as indicated by bioassay. This showed that resting spores can survive the digestive tracts of chickens and pigs, and retain strong pathogenicity. The findings indicate that manure dissemination is possible for P. brassicae. Farmers should avoid feeding livestock on P. brassicae‐contaminated feed or applying infested manure as fertilizer on land intended for crucifer crops.  相似文献   

14.
The soilborne pathogen Plasmodiophora brassicae, causal agent of clubroot of canola (Brassica napus), is difficult to manage due to the longevity of its resting spores, ability to produce large amounts of inoculum, and the lack of effective fungicides. The cropping of clubroot resistant (CR) canola cultivars is one of the few effective strategies for clubroot management. This study evaluated the impact of the cultivation of CR canola on P. brassicae resting spore concentrations in commercial cropping systems in Alberta, Canada. Soil was sampled pre-seeding and post-harvest at multiple georeferenced locations within 17 P. brassicae-infested fields over periods of up to 4 years in length. Resting spore concentrations were measured by quantitative PCR analysis, with a subset of samples also evaluated in greenhouse bioassays with a susceptible host. The cultivation of CR canola in soil with quantifiable levels of P. brassicae DNA resulted in increased inoculum loads. There was a notable lag in the release of inoculum after harvest, and quantifiable P. brassicae inoculum peaked in the year following cultivation of CR canola. Rotations that included a ≥2-year break from P. brassicae hosts resulted in significant declines in soil resting spore concentrations. A strong positive relationship was found between the bioassays and qPCR-based estimates of soil infestation. Results suggest that CR canola should not be used to reduce soil inoculum loads, and crop rotations in P. brassicae infested fields should include breaks of at least 2 years away from B. napus, otherwise the risk of selecting for virulent pathotypes may increase.  相似文献   

15.
Clubroot caused by Plasmodiophora brassicae is an emerging threat to canola (Brassica napus) production in western Canada, and a serious disease on crucifer vegetable crops in eastern Canada. In this study, seven biological control agents and two fungicides were evaluated as soil drenches or seed treatments for control of clubroot. Under growth cabinet conditions, a soil‐drench application of formulated biocontrol agents Bacillus subtilis and Gliocladium catenulatum reduced clubroot severity by more than 80% relative to pathogen‐inoculated controls on a highly susceptible canola cultivar. This efficacy was similar to that of the fungicides fluazinam and cyazofamid. Under high disease pressure in greenhouse conditions, the biocontrol agents were less effective than the fungicides. Additionally, all of the treatments delivered as a seed coating were less effective than the soil drench. In field trials conducted in 2009, different treatments consisting of a commercial formulation of B. subtilis, G. catenulatum, fluazinam or cyazofamid were applied as an in‐furrow drench at 500 L ha?1 water volume to one susceptible and one resistant cultivar at two sites seeded to canola in Alberta and one site of Chinese cabbage in Ontario. There was no substantial impact on the susceptible canola cultivar, but all of the treatments reduced clubroot on the susceptible cultivar of Chinese cabbage, lowering disease severity by 54–84%. There was a period of 4 weeks without rain after the canola was seeded, which likely contributed to the low treatment efficacy on canola. Under growth cabinet conditions, fluazinam and B. subtilis products became substantially less effective after 2 weeks in a dry soil, but cyazofamid retained its efficacy for at least 4 weeks.  相似文献   

16.
L. Ma  J. Li  L. Ma  J. Wu  J. Wu 《Plant pathology》2017,66(2):277-284
The phytohormone ethylene plays an important role in plant defence responses to pathogen attack. When infected by the necrotrophic fungal pathogen Alternaria alternata (tobacco pathotype), which causes severe diseases in Nicotiana species, the wild tobacco plant Nicotiana attenuata accumulates a high amount of the jasmonate (JA)‐dependent phytoalexin scopoletin to defend itself against this fungal pathogen. However, it is still not known whether ethylene signalling is also involved in scopoletin biosynthesis and the resistance of N. attenuata. After infection, ethylene biosynthetic genes were highly elicited. Furthermore, plants strongly impaired in ethylene biosynthesis or perception had dramatically decreased scopoletin levels, and these plants became more susceptible to the fungus, while A. alternata‐elicited JA levels were increased, indicating that the decreased defence responses were not due to lower JA levels. Thus, it is concluded that after infection, ethylene signalling is activated together with JA signalling in N. attenuata plants and this subsequently regulates scopoletin biosynthesis and plant resistance.  相似文献   

17.
Bacterial wilt is a serious problem affecting many important food crops. Recent studies have indicated that treatment with biotic or abiotic stress factors may increase the resistance of plants to bacterial infection. This study investigated the effects of magnesium oxide nanoparticles (MgO NP) on disease resistance in tomato plants against Ralstonia solanacearum, as well as its antibacterial activity. The roots of tomato seedlings were inoculated with R. solanacearum and then immediately treated with MgO NP; the treated plants showed very little inhibition of bacterial wilt. In contrast, when roots were drenched with a MgO NP suspension prior to inoculation with the pathogen, the incidence of disease was significantly reduced. Rapid generation of reactive oxygen species such as O2 radicals was observed in tomato roots treated with MgO NP. Further O2 was rapidly generated when tomato plant extracts or polyphenols were added to the MgO NP suspension, suggesting that the generation of O2 in tomato roots might be due to a reaction between MgO NP and polyphenols present in the roots. Salicylic acid‐inducible PR1, jasmonic acid‐inducible LoxA, ethylene‐inducible Osm, and systemic resistance‐related GluA were up‐regulated in both the roots and hypocotyls of tomato plants after treatment of the plant roots with MgO NP. Histochemical analyses showed that β‐1,3‐glucanase and tyloses accumulated in the xylem and apoplast of pith tissues of the hypocotyls after MgO NP treatment. These results indicate that MgO NP induces systemic resistance in tomato plants against R. solanacearum.  相似文献   

18.
Recently, flavonoids were shown to modulate the outcome of clubroot development in Arabidopsis thaliana after infection with the obligate biotrophic pathogen Plasmodiophora brassicae. Therefore, the development of clubroot disease was investigated in Arabidopsis after treatment with prohexadione‐calcium (ProCa), an inhibitor of ascorbic acid/2‐oxoglutaric acid‐dependent dioxygenases such as flavanone‐3‐hydroxylase. The treatment resulted in a reduction of the flavonols quercetin and kaempferol in clubroots, whereas the precursor naringenin highly accumulated. The root system of ProCa‐treated plants was better developed although galls were still visible. Thus, ProCa treatment resulted in reduced gall size. Flavonoids are thought to inhibit polar auxin transport by modulating auxin efflux carriers. It was investigated whether the auxin response might change as a consequence of the accumulation of naringenin in ProCa‐treated plants. In the areas of gall development an auxin response was indicated by the auxin‐responsive promoter DR5 coupled to the reporter β‐glucuronidase (GUS), whereas very little staining was found in healthy root parts. No differences in GUS activity were found between P. brassicae‐infected and ProCa‐treated plants, and plants only infected with P. brassicae, indicating that the effect of ProCa treatment on clubroot reduction is not via changes in auxin responses. As ProCa is also an inhibitor of late steps in gibberellin biosynthesis, a specific gibberellin biosynthesis inhibitor, chlormequatchloride (CCC), was tested on club development. However, CCC did not reduce disease symptoms, indicating that the observed reduced gall development was not because of gibberellin biosynthesis inhibition by ProCa.  相似文献   

19.
Controlled‐environment studies were conducted on two Brassica crops (canola, Brassica napus; and Shanghai pak choi, B. rapa subsp. chinensis var. communis) to examine the effects of temperature on infection and subsequent development of clubroot caused by Plasmodiophora brassicae. In the first experiment, canola seedlings were grown in infested soil for 3 weeks at 14–26°C to assess the impact on primary and secondary infection and transferred to 20°C for 3 weeks to assess symptom development under uniform conditions, or started at 20°C for 3 weeks and then placed at the treatment temperatures for the final 3 weeks to assess the impact of temperature on symptom development. A second experiment examined a wider range of temperatures (10–30°C). Similar experiments were also conducted on Shanghai pak choi. The studies demonstrated that clubroot severity was affected by temperature during both infection and vegetative development of the crop. Both early and late in crop development, little or no clubroot developed at temperatures at or below 17°C, and development was slower above 26°C than at 23–26°C for both crops throughout the study. In canola, the high levels of inoculum used in the study resulted in a high incidence of clubroot irrespective of temperature, but in pak choi incidence showed the same pattern as severity. This is the first study to demonstrate under controlled conditions that temperature during vegetative growth of the crop affects symptom development of clubroot.  相似文献   

20.
Clubroot (Plasmodiophora brassicae) is an important disease of canola (Brassica napus) and other brassica crops. Accurate estimation of inoculum load in soil is important for evaluating producer risk in planting a susceptible crop, but also for evaluation of management practices such as crop rotation. This study compared five molecular techniques for estimating P. brassicae resting spores in soil: quantitative polymerase chain reaction (qPCR), competitive positive internal control PCR (CPIC-PCR), propidium monoazide PCR (PMA-PCR), droplet digital PCR (ddPCR) and loop-mediated isothermal DNA amplification (LAMP). For ddPCR and LAMP, calibrations were developed using spiked soil samples. The comparison was carried out using soil samples collected from a long-term rotation study at Normandin, Québec, with replicated plots representing 0-, 1-, 2-, 3-, 5- and 6-year breaks following susceptible canola infested with clubroot. CPIC-PCR and ddPCR provided repeatable estimates of resting spore numbers in soil compared with estimates from qPCR or LAMP alone. CPIC-PCR provided the most robust measurement of spore concentration, especially in the 2 years following a crop of susceptible canola, because it corrected for effects of PCR inhibitors. PMA-PCR demonstrated that a large proportion of the DNA of P. brassicae detected in soil after the susceptible canola crop was derived from spores that were immature or otherwise not viable. Each assay provided a similar pattern of spore concentration in soil, which supported the conclusion of a previous study at this site that resting spore numbers declined rapidly in the first 2 years after a susceptible crop, but much more slowly subsequently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号