首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When the biocontrol agent Pythium oligandrum (PO) colonizes the rhizosphere, it suppresses bacterial wilt disease in tomato (Solanum lycopersicum cv. Micro‐Tom) caused by Ralstonia solanacearum, and a homogenate of its mycelia exhibits elicitor activity, inducing an ethylene (ET)‐dependent defence response in Micro‐Tom. Since salicylic acid (SA) and jasmonic acid (JA) play an important role in plant defence responses to pathogens, the involvement of SA‐ and JA‐dependent signal transduction pathways in resistance to R. solanacearum was investigated in tomato roots treated with a mycelial homogenate of PO. Bacterial wilt disease was also suppressed in tomato cv. Moneymaker treated with the PO homogenate. However, the SA‐inducible PR‐1(P6) gene was not up‐regulated in either Micro‐Tom or Moneymaker. SA did not accumulate in homogenate‐treated roots in comparison with distilled water‐treated controls, even 24 h after inoculation. Induced resistance against R. solanacearum was not compromised in SA‐non‐accumulating NahG transgenic plants treated with the PO homogenate. On the other hand, the expression of the JA‐responsive gene for the basic PR‐6 protein was induced in both tomato cultivars treated with the PO homogenate. Furthermore, quantitative disease assays showed that the induced resistance against R. solanacearum was compromized in PO homogenate‐treated jai1‐1 mutant plants defective in JA signalling. These results indicated that the JA‐dependent signalling pathway is required for PO‐induced resistance against R. solanacearum in tomato.  相似文献   

2.
The soilborne pathogen Verticillium dahliae invades its host via the root, and spreads systemically throughout the plant. Although a functional root system of appropriate size is essential for water and nutrient uptake, to date, effects of pathogens on root morphology have not been frequently investigated. Therefore, this study aims to improve knowledge of how V. dahliae infection impairs root morphological characteristics of tomato, considering plant growth and physiological responses, particularly those involved in defence in roots and leaves over a growing period of up to 28 days post‐inoculation. Verticillium dahliae infection suppressed the growth of both shoot and root. Diseased plants developed a smaller leaf area, and exhibited a reduction in the rate of photosynthesis and stomatal conductance. An early response to pathogen invasion in the host root was the up‐regulation of several defence‐related genes, such as proteinase inhibitor II (Pin2), β‐1,3‐glucanase A (GluA) and two pathogenesis‐related genes (PR‐1a, PR‐1b). However, this response did not prevent colonization of the roots by the pathogen. Although a high variability in pathogen density was found within the root system, a significant increase of both the specific root length and surface area was observed in response to pathogen invasion; these traits correlated with water use efficiency. Morphological changes of the root may represent an adaptive response evolved to sustain the supply of both water and nutrients in the presence of the pathogen.  相似文献   

3.
4.
Tomato and transgenic oilseed rape plants expressing the Cf-9 resistance gene develop a hypersensitive response (HR) after injection of the corresponding Avr9 gene product. It was investigated whether induction of a HR conferred resistance to different fungal pathogens in tomato and oilseed rape. Induction of an AVR9 mediated HR at the pathogen infection site delayed the development of the biotrophs Oidium lycopersicum in tomato and Erysiphe polygoni in oilseed rape, but enhanced the development of the necrotrophs Botrytis cinerea and Alternaria solani in tomato and Sclerotinia sclerotiorum in oilseed rape. Interestingly, delayed fungal disease development was observed in plant tissues surrounding the HR lesion regardless of whether a necrotrophic or biotrophic pathogen was used. In tomato, AVR9 injection induced systemic expression of PR1, PR2 and PR3 defence genes but did not induce systemic resistance to O. lycopersicum, B. cinerea or A. solani. In oilseed rape, AVR9 injection temporarily induced systemic resistance to Leptosphaeria maculans and E. polygoni, but did not induce detectable systemic expression of PR1, PR2 or Cxc750. These results give new insights into the potential uses of an induced HR to engineer disease resistance.  相似文献   

5.
6.
Upon infection byCladosporium fulvum, tomato plants start to produce pathogenesis-related (PR) proteins. The PR proteins 1,3-β-glucanase, chitinase, and PR-1b accumulated near the stomata in the lower epidermis ofC. fulvum-inoculated tomato leaves as could be determined by immunolocalization with polyclonal antibodies. However, no differences in accumulation of PR proteins between a compatible and an incompatible interaction were found. Results obtained from enzyme activity measurements of 1,3-β-glucanase and chitinase on similar leaf material as used for the immunolocalization did not fully reflect the immunolocalization data. The antibodies possibly detect only the extracellular but not the intracellular enzymes. The accumulation of PR proteins near the stomata might be part of a general defence response of plants against pathogens and potential pathogens.  相似文献   

7.
Minimizing losses to pests and diseases is essential for producing sufficient food to feed the world's rapidly growing population. The necrotrophic fungus Botrytis cinerea triggers devastating pre‐ and post‐harvest yield losses in tomato (Solanum lycopersicum). Current control methods are based on the pre‐harvest use of fungicides, which are limited by strict legislation. This investigation tested whether induction of resistance by β‐aminobutyric acid (BABA) at different developmental stages provides an alternative strategy to protect post‐harvest tomato fruit against B. cinerea. Soil‐drenching plants with BABA once fruit had already formed had no impact on tomato susceptibility to B. cinerea. However, BABA application to seedlings significantly reduced post‐harvest infection of fruit. This resistance response was not associated with a yield reduction; however, there was a delay in fruit ripening. Untargeted metabolomics revealed differences between fruit from water‐ and BABA‐treated plants, demonstrating that BABA triggered a defence‐associated metabolomics profile that was long lasting. Targeted analysis of defence hormones suggested a role of abscisic acid (ABA) in the resistance phenotype. Post‐harvest application of ABA to the fruit of water‐treated plants induced susceptibility to B. cinerea. This phenotype was absent from the ABA‐exposed fruit of BABA‐treated plants, suggesting a complex role of ABA in BABA‐induced resistance. A final targeted metabolomic analysis detected trace residues of BABA accumulated in the red fruit. Overall, it was demonstrated that BABA induces post‐harvest resistance in tomato fruit against B. cinerea with no penalties in yield.  相似文献   

8.
A 2‐year comprehensive field survey was conducted across major tomato‐growing areas of Iran. Two hundred and thirty‐four tomato fields and six tomato‐producing greenhouses were surveyed for the potential presence of bacterial spot disease. Five hundred and ninety‐six tomato samples with and without symptoms were analysed. While Xanthomonas spp. were found in association with tomato plants both with and without symptoms from five surveyed counties, the bacterial spot disease was observed only in plants from three of them. Only strains isolated from plants with symptoms induced disease symptoms on tomato, while those isolated from symptomless plants caused symptoms only on cabbage and common bean. None of the isolates caused disease symptoms on pepper and eggplant. Phylogenetic analysis showed that X. perforans is the causal agent of tomato bacterial spot in Iran, although X. campestris and X. axonopodis were also associated with symptomless tomato plants. All X. perforans isolates in this study were sensitive to streptomycin, copper sulphate and copper oxychloride at concentrations of 50 mg L?1, 200 mg L?1 and 0.8 g L?1, respectively. Unlike the type strain of X. perforans, isolates in this study did not produce bacteriocin against other Xanthomonas spp., nor were they detected using the usual species‐specific primer pair Bs‐XpF/Bs‐XpR. This suggests an atypical nature of X. perforans strains in Iran, which leads to the hypothesis that X. perforans strains in Iran may have a separate origin to those causing disease epidemics elsewhere. The aggregated dispersal pattern of the diseased tomato fields signifies the seedborne introduction of the pathogen into the country.  相似文献   

9.
The effect of soil solarization and Trichoderma harzianum on induced resistance to grey mould (Botrytis cinerea) and powdery mildew (Podosphaera xanthii) was studied. Plants were grown in soils pretreated by solarization, Tharzianum T39 amendment or both, and then their leaves were inoculated with the pathogens. There was a significant reduction in grey mould in cucumber, strawberry, bean and tomato, and of powdery mildew in cucumber, with a stronger reduction when treatments were combined. Bacillus, pseudomonad and actinobacterial communities in the strawberry rhizosphere were affected by the treatments, as revealed by denaturing gradient gel electrophoresis fingerprinting. In tomato, treatments affected the expression of salicylic acid (SA)‐, ethylene (ET)‐ and jasmonic acid (JA)‐responsive genes. With both soil treatments, genes related to SA and ET – PR1a, GluB, CHI9 and Erf1 – were downregulated whereas the JA marker PI2 was upregulated. Following soil treatments and B. cinerea infection, SA‐, ET‐, and JA‐related genes were globally upregulated, except for the LOX genes which were downregulated. Upregulation of the PR genes PR1a, GluB and CHI9 in plants grown in solarized soil revealed a priming effect of this treatment on these genes' expression. The present study demonstrates the capacity of solarization and T. harzianum to systemically induce resistance to foliar diseases in various plants. This may be due to either a direct effect on the plant or an indirect one, via stimulation of beneficial microorganisms in the rhizosphere.  相似文献   

10.
Bacterial wilt is a serious problem affecting many important food crops. Recent studies have indicated that treatment with biotic or abiotic stress factors may increase the resistance of plants to bacterial infection. This study investigated the effects of magnesium oxide nanoparticles (MgO NP) on disease resistance in tomato plants against Ralstonia solanacearum, as well as its antibacterial activity. The roots of tomato seedlings were inoculated with R. solanacearum and then immediately treated with MgO NP; the treated plants showed very little inhibition of bacterial wilt. In contrast, when roots were drenched with a MgO NP suspension prior to inoculation with the pathogen, the incidence of disease was significantly reduced. Rapid generation of reactive oxygen species such as O2 radicals was observed in tomato roots treated with MgO NP. Further O2 was rapidly generated when tomato plant extracts or polyphenols were added to the MgO NP suspension, suggesting that the generation of O2 in tomato roots might be due to a reaction between MgO NP and polyphenols present in the roots. Salicylic acid‐inducible PR1, jasmonic acid‐inducible LoxA, ethylene‐inducible Osm, and systemic resistance‐related GluA were up‐regulated in both the roots and hypocotyls of tomato plants after treatment of the plant roots with MgO NP. Histochemical analyses showed that β‐1,3‐glucanase and tyloses accumulated in the xylem and apoplast of pith tissues of the hypocotyls after MgO NP treatment. These results indicate that MgO NP induces systemic resistance in tomato plants against R. solanacearum.  相似文献   

11.
Ralstonia solanacearum is a phytopathogenic bacterium that colonizes the xylem vessels of host plants leading to a lethal wilt disease. Although several studies have investigated the virulence of R. solanacearum on adult host plants, infection studies of this pathogen on the seedling stages of hosts are less common. In a preliminary observation, inoculation of R. solanacearum F1C1 on 6‐ to 7‐day‐old tomato seedlings by a simple leaf‐clip strategy resulted in a lethal pathogenic condition in seedlings that eventually killed these seedlings within a week post‐inoculation. This prompted testing of the effect of this inoculation technique in seedlings from different cultivars of tomato and similar results were obtained. Colonization and spread of the bacteria throughout the infected seedlings was demonstrated using gus‐tagged R. solanacearum F1C1. The same method of inoculating tomato seedlings was used with R. solanacearum GMI1000 and independent mutants of R. solanacearum GMI1000, deficient in the virulence genes hrpB, hrpG, phcA and gspD. Wildtype R. solanacearum GMI1000 was found to be virulent on tomato seedlings, whereas the mutants were found to be non‐virulent. This leaf‐clip technique, for inoculation of tomato seedlings, has the potential to be a valuable approach, saving time, space, labour and costs.  相似文献   

12.
The defence responses of grapefruit and lemon to treatment with pomegranate extract (PGE) were investigated. PGE, an alcoholic extract from pomegranate peel, was recently proposed as a means of effective alternative control against postharvest rots. In in vivo experiments, a significant reduction of rots caused by Penicillium digitatum and P. italicum was achieved on artificially inoculated fruits without direct contact between PGE and pathogens. On lemons both pathogens were completely inhibited by PGE at 12 g dry matter L?1 applied 12 and 24 h before the pathogen but a significant reduction of rots was also achieved by inoculating the pathogen immediately after PGE (0 h), indicating a very quick activation of defence responses. Lower, but significant, reductions were also obtained on grapefruits. An increase in reactive oxygen species (ROS) activity, reaching its peak after 24 h, was observed, in agreement with in vivo efficacy trials. Similarly, the expression of five genes involved in activation of defence responses in plants (CHI, CHS, MAPK, MAPKK and PAL) increased following PGE application. Based on the results of the present study, the high efficacy demonstrated for PGE in previous studies can be partially attributed to the induction of resistance in host tissues.  相似文献   

13.
14.
Peach gummosis, caused by Botryosphaeria spp. fungi, is the process of gum accumulation and exudation in plants. Ethephon (2‐chloroethylphosphonic acid) has profound effects on plants, including enhanced production of secondary metabolites and regulation of plant diseases. This study investigates the effects of application of ethephon before and after inoculation with Lasiodiplodia theobromae on gum formation. Gum formation was promoted by ethephon treatment prior to pathogen inoculation, but inhibited by ethephon applied after the pathogen. The inhibitory effect was counteracted by 1‐methylcyclopropane, which is an ethylene signal inhibitor. 1‐methylcyclopropane also promoted gum formation. Exposure of three isolates of Botryosphaeria to ethephon inhibited mycelial growth. Both treatment methods increased the sugar content at 12 and 24 h post‐inoculation (hpi). However, the sucrose, glucose and fructose contents were significantly higher in shoots with ethephon post‐treatment (application of ethephon after the pathogen inoculation) than those in shoots with ethephon pre‐treatment (application of ethephon prior to pathogen inoculation) at 48 and 72 hpi. The expression of two putative senescence‐related genes, SEN2 and SEN4, were significantly enhanced in pre‐ and post‐treated shoots with ethephon at 24, 48 and 72 hpi. Ethephon application also up‐regulated expression of the pathogenesis‐related protein PR4 while down‐regulating PR1a and PR10. The results show that ethephon has a dual function in regulating gum formation by affecting both the peach shoots and the pathogen.  相似文献   

15.
As a major component of the cell wall, lignin has been suggested to play an important role in the plant defence response to various pathogens. However, how lignin is involved in plant pathogen interaction is still unclear. Here, a series of transgenic tobacco lines were cultivated with a range of differences in lignin content and composition. Evaluation of pathogen resistance in these plants indicated that lower total lignin content aggravated the severity of tobacco black shank and bacterial wilt diseases, while increased sinapyl lignin (S) alleviated the disease symptoms. The regression analysis indicated both lignin content and S lignin were positively correlated with disease resistance. These two factors had additive effects, exhibiting stronger correlation with disease resistance when they were combined. Neither guaiacyl lignin (G) nor S/G ratio showed close correlation with disease resistance. The expression of pathogenesis‐related protein genes PR2 and PR3 was induced after pathogen inoculation. However, the up‐regulation of PR2 and PR3 was not associated with a disease resistance‐induced increase in lignin content. These data collectively suggest that both total lignin content and S lignin are main factors that contribute to the basic defence response in tobacco.  相似文献   

16.
Auxin signalling and transport participate in plant–microbe interactions as positive or negative regulators of disease resistance. The present study investigated the responses of Arabidopsis thaliana plants impaired in the auxin receptors TIR1, AFB1 and AFB3 and the auxin transporter AXR4, upon infection by the soilborne root pathogen Verticillium dahliae. Fewer symptoms were recorded in afb1, afb3 and axr4 plants compared to the wild type (wt). qPCR analysis revealed that the decrease in symptom severity in afb1, afb3 and axr4 was correlated with reduction in the growth of the pathogen in the plants. Therefore, afb1, afb3 and axr4 are partially resistant to V. dahliae. Upon V. dahliae infection, the expression of TIR1, AFB1, AFB3 and AXR4 was up‐regulated in roots, while indole‐3‐acetic acid levels were similar to mocks. The partial resistance of afb1, afb3 and axr4 against V. dahliae can be attributed in part to the up‐regulation of defence‐related genes, as it was observed that afb1 and axr4 had higher PR1 levels than wt, while afb3 had higher PDF1.2 levels than wt. The findings of the present study suggest that the auxin signalling defective mutants afb1, afb3 and axr4 show increased resistance against V. dahliae.  相似文献   

17.
The identification of effectors from pathogenic microbes is one of the most important subjects for elucidating infection mechanisms. Wheat blue dwarf (WBD) phytoplasma causes dwarfism, witches' broom, and yellow leaf tips in wheat plants, resulting in severe yield loss in northwestern China. In this study, 37 candidate effector proteins were transiently expressed in Nicotiana benthamiana. Plants expressing the SAP11‐like protein SWP1 exhibited typical witches' broom. Interestingly, another protein, SWP11, induced both cell death and defence responses, including H2O2 accumulation and callose deposition. Analysis by qRT‐PCR was used to show that a marker gene of the hypersensitive response, HIN1, and three pathogenesis‐related genes, PR1, PR2 and PR3, were significantly up‐regulated in leaves of N. benthamiana expressing SWP11. In addition, SWP12 and SWP21 (TENGU‐like) were shown to suppress SWP11‐, BAX‐, and/or INF1‐induced cell death. These results indicated that SWP21 has a distinct role in virulence compared with TENGU and that WBD phytoplasma possesses effectors that target plant proliferation and defence responses. The ability of these effectors to trigger or suppress plant immunity provides new insights into the phytoplasma–plant interaction.  相似文献   

18.
In this study peroxynitrite (ONOO?) is proposed as an important player in defence responses during the interaction of potato (Solanum tuberosum) and the oomycete pathogen Phytophthora infestans. The potato–avr P. infestans model system exhibited a transient programme of boosted ONOO? formation correlated in time with the burst of nitric oxide (NO) and superoxide during the first 6 h post‐inoculation (hpi). The early ONOO? over‐accumulation was not accompanied by TPx gene expression. In contrast, the compatible interaction revealed a 24 h delay of ONOO? formation; however, an enhanced level of NO and superoxide correlated with TPx up‐regulation was recorded within the earlier stages of pathogen infection. Peroxynitrite over‐accumulation in the susceptible potato coincided with an enhanced level of protein tyrosine nitration starting from 24 hpi. Surprisingly, the nitroproteome profile of the resistant potato did not show any visible difference after inoculation, apart from one band containing subtilisin‐like protease‐like proteins, which appeared 48 h after pathogen attack. An additional pharmacological approach showed that treatment of the susceptible genotype with ONOO? followed by inoculation with P. infestans contributed to slowing down of the colonization of host tissues by the pathogen via a faster and stronger up‐regulation of the key defence markers, including the PR‐1 gene. Taken together, the results obtained indicate that a precise control of emitted NO and superoxide in cooperation with thioredoxin‐dependent redox sensors in sites of pathogen ingress could generate a sufficient threshold of ONOO?, triggering defence responses.  相似文献   

19.
This study showed that various rhizosphere bacteria producing the enzyme 1‐aminocyclopropane‐1‐carboxylate (ACC) deaminase (ACCD), which can degrade ACC, the immediate precursor of ethylene in plants, and thereby lower plant ethylene levels, can act as promising biocontrol agents of pathogenic strains of Agrobacterium tumefaciens and A. vitis. Soaking the roots of tomato (Solanum lycopersicum) seedlings in a suspension of the ACCD‐producing Pseudomonas putida UW4, Burkholderia phytofirmans PsJN or Azospirillum brasilense Cd1843 transformed by plasmid pRKTACC carrying the ACCD‐encoding gene acdS from UW4, significantly reduced the development of tumours on tomato plants injected 4–5 days later with pathogenic Agrobacterium strains via wounds on the plant stem. The fresh mass of tumours formed by plants pretreated with ACCD‐producing strains was typically four‐ to fivefold less than that of tumours formed on control plants inoculated only with a pathogenic Agrobacterium strain. Simultaneously, the level of ethylene evolution per amount of tumour mass on plants pretreated with ACCD‐producing bacteria decreased four to eight times compared with that from tumours formed on control plants or plants pretreated with bacteria deficient in ACCD production. Moreover, transgenic tomato plants expressing a bacterial ACCD were found to be highly resistant to crown gall formation relative to the parental, non‐transformed tomato plants. The results support the hypothesis that ethylene is a crucial factor in Agrobacterium tumour formation, and that ACCD‐produced rhizosphere bacteria may protect plants infected by pathogenic Agrobacteria from crown gall disease.  相似文献   

20.
The soilborne fungi Sclerotinia sclerotiorum, Rhizoctonia solani and the oomycete Pythium ultimum are among the most destructive pathogens for lettuce production. The application of the biocontrol agent Paenibacillus alvei K165 to the transplant soil plug of lettuce resulted in reduced S. sclerotiorum, R. solani and P. ultimum foliar symptoms and incidence compared to untreated controls, despite the suppressive effect of the pathogens on the rhizosphere population of K165. In vitro, K165 inhibited the growth of S. sclerotiorum and R. solani but not P. ultimum. Furthermore, the expression of the pathogenesis‐related (PR) gene PR1, a marker gene of salicylic acid (SA)‐dependent plant defence, and of the Lipoxygenase (LOX) and Ethylene response factor 1 (ERF1) genes, markers of ethylene/jasmonate (ET/JA)‐dependent plant defence was recorded. K165‐treated plants challenged with P. ultimum showed up‐regulation of PR1, whereas challenge with R. solani resulted in up‐regulation of LOX and ERF1, and challenge with S. sclerotiorum resulted in up‐regulation of PR1, LOX and ERF1. This suggests that K165 triggers the SA‐ and the ET/JA‐mediated induced systemic resistance against P. ultimum and R. solani, respectively, while the simultaneous activation of the SA and ET/JA signalling pathways is proposed for S. sclerotiorum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号