首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Summary Mycorrhizal infection in the roots of 10 sweet potato cultivars was assessed 7 weeks after planting in three soils collected from Ibadan, Fashola and Onne in southern Nigeria, three soils which contained 21.0, 7.8 and 54.8 mg P kg–1, respectively. Mycorrhizal infection averaged 17% in the soil from Ibadan, 24% in the soil from Fashola and 7% in the acid soil from Onne. The plants grown in the Fashola soil contained the same percentage of P as plants grown in the Onne soil. Although the percentage of P in sweet potato was lowest in the Ibadan soil, shoot dry weights were 35% higher in this soil than in the other two soils. There was no correlation between the level of mycorrhizal infection and plant dry weight in the partially sterilized soil from Ibadan. Sweet potato inoculated in this soil with infected roots of Leucaena leucocephala showed a higher level of mycorrhizal infection than uninoculated plants. Dry-matter production was, however, the same for all treatments. The sweet potato cultivars differed in their level of mycorrhizal infection and in their response to applied P. Cultivars TIS 2498 and TIS 70357 consistently showed the lowest percentage of infection; and TIb 4, TIS 8441 and TIS 8524 showed infection levels above 20% in the Fashola and Ibadan soils. When the low-yielding cultivar, TIb 4, and an improved clone, TIS 9265, were grown in the presence of 50 and 100 mg single superphosphate per kg soil, TIb 4 produced more dry matter in the presence of P fertilizer than it did without the fertilizer. Growth and mycorrhizal infection of TIS 9265 were not affected by the fertilizer.  相似文献   

2.
Soil compaction is of great importance, due to its adverse effects on plant growth and the environment. Mechanical methods to control soil compaction may not be economically and environmentally friendly. Hence, we designed experiments to test the hypothesis that use of plant symbiotic fungi, arbuscular mycorrhiza (AM) may alleviate the stressful effects of soil compaction on corn (Zea mays L.) growth through enhancing nutrient uptake. AM continuously interact with other soil microorganisms and its original diversity may also be important in determining the ability of the fungi to cope with the stresses. Hence, the objectives were: (1) to determine the effects of soil compaction on corn nutrient uptake in unsterilized (S1) and sterilized (S2) soils, and (2) to determine if inoculation of corn with different species of AM with different origins can enhance corn nutrient uptake in a compacted soil. Using 2 kg weights, soils (from the field topsoil) of 10 kg pots were compacted at three and four levels (C1, C2, C3 and C4) (C1 = non-compacted control) in the first and second experiment, respectively. Corn (cv. 704) seeds were planted in each pot and were inoculated with different AM treatments including control (M1), Iranian Glomus mosseae (M2), Iranian G. etunicatum (M3), and Canadian G. mosseae, received from GINCO (Glomales In Vitro Collection), Canada (M4). Corn leaf nutrient uptake of N, P, K, Fe, Mn, Zn and Cu were determined. Higher levels of compaction reduced corn nutrient uptake, however different species of AM and soil sterilization significantly increased it. The highest increase in nutrient uptake was related to P (60%) and Fe (58%) due to treatment M4S2C3. Although it seems that M3 and M4 may be the most effective species on corn nutrient uptake in a compacted soil, M2 increased nutrient uptake under conditions (C3 and C4 in unsterilized soil) where the other species did not. Through increasing nutrient uptake AM can alleviate the stressful effects of soil compaction on corn growth.  相似文献   

3.
Summary The influence of vesicular-arbuscular mycorrhizae on the efficiency of triple superphosphate and rock phosphate fertilizers was compared in two tropical, acid, P-fixing soils (Ivory Coast) in which the available P was labelled with 32PO inf4 sup3- . Both soils were planted with micropropagated oil palms. The growth reponses to the fertilizer applications were low unless accompanied by VAM inoculation, but both fertilizers were equally available to plants. Isotopic-dilution kinetics analyses indicated that the rock phosphate was solubilized in both soils and there was an enrichment of the labile pool of plant-available P, similar to that with superphosphate. The specific activity and the fraction of P derived from either fertilizer was similar in both mycorrhizal and non-mycorrhizal plants, showing that both absorbed P from the same labile pool of P in the fertilized soils. However, VAM inoculation increased the fertilizer utilization coefficient of plants 2.7- to 5.6-fold, depending on the soil and fertilizer. We conclude that VAM inoculation increases fertilizer efficiency, as much of rock phosphate as of superphosphate, for plants growing in acid, P-fixing soils, and the processes involved are not different for the two fertilizers.  相似文献   

4.
Summary The effect of inoculation with a selected isolate of Glomus etunicatum Becker and Gerdemann and one of G. intraradices Schenck and Smith on the growth and nutrient content of Macroptilium atropurpureum Urb. cv. Siratro and Aeschynomene americana L., at applied P levels of 10, 30, 60, and 120 kg ha-1, was studied under field conditions. At all P levels and for all harvests, the shoot dry mass of Siratro and A. americana were greater for the plants inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungi than the control plants. Differences between the VAM fungus-inoculated and the control plants were most marked between 30 and 90 kg ha-1 of applied P and diminished at 120 kg ha-1. At the first harvest of Siratro, the plants inoculated with G. etunicatum had a greater shoot dry mass than those inoculated with G. intraradices, for all levels of applied P. However, for subsequent harvest of Siratro and for the one harvest of A. americana the response of shoot dry mass to the two VAM fungi was equivocal. Fungal inoculation gave at least a 30% saving in the amount of P fertilizer required (40 kg ha-1) for the maximum yield. The plants inoculated with VAM fungi had a greater tissue concentration and total content of P and N than the control plants at low and intermediate levels of applied P. The percentage of root colonized by VAM fungi for the inoculated plants of the two legumes increased linearly with P additions up to 60 kg ha-1. The conclusion is that under amended (limed and fertilized) soil conditions, inoculation with selected VAM fungi can improve the establishement and growth of forage legumes in fields that contain ineffective populations of native VAM fungi.  相似文献   

5.
Summary Five selected vesicular-arbuscular mycorrhizal (VAM) fungi and the native population of a cambisol were tested in sterilized soil conditions, with Trifolium pratense as host plant. Indigenous fungi were the most effective in enhancing plant growth and P uptake, which were correlated with a higher root colonization. Selected fungi did not spread further in the root after 4 months from sowing, occupying less than 10% at the end of the experiment; inoculation with Glomus fasciculatum E3 yielded a higher dry-matter production than any other VAM species, but did not significantly increase shoot P concentration above that of the non-mycorrhizal control. Interactions between indigenous and introduced VAM fungi were studied in unsterilized soil. Results from fresh and dry weights of shoots and the percentage of fungal infection showed that the native endophytes competed more efficiently in colonizing the root. Inoculation with selected VAM species did not improve plant growth. Sterilization altered the inorganic P fractions of the soil, particularly those extracted with NH4F and NaOH. Sterilized soil contained less inorganic P than unsterilized soil, but more soluble P. By the end of the experiment in sterilized soil, P extracted with NH4Cl, NH4F and NaOH and total inorganic P were significantly different among inoculation treatments, suggesting that VAM fungi may differ in their ability to take up P.  相似文献   

6.
丛枝菌根对芘污染土壤修复及植物吸收的影响   总被引:4,自引:0,他引:4  
采用温室盆栽试验方法,研究了两种丛枝菌根真菌Glomus mosseae和 Glomus etunicatum对三叶草(Trifolium subterraneum L.)和辣椒(Capsicum annuum L.)修复芘污染土壤的影响。供试土样中芘初始浓度为0 ~ 75.18 mg/kg。结果表明,接种AMF可促进供试植物对土壤中芘的吸收,并且显著提高三叶草根的芘含量、根系富集系数、根和茎叶的芘积累量,但对辣椒根和茎叶芘含量、根系富集系数的影响不显著,这主要与植物的菌根侵染率和“菌根依赖度”不同有关。接种AMF土壤中芘的削减率高于普通植物修复,但植物吸收积累对修复的贡献率小于0.2%;因此推测,AM作用下良好的根际环境对土壤微生物数量和活性的提高、进而对土壤中芘降解的促进可能是菌根修复的主要机理。  相似文献   

7.
Summary Rye-grass (Lolium perenne) is known to be a strong competitor to red clover (Trifolium pratense) for soil K+ under conditions of low K availability in the soil. The objective of this study was to clarify whether this competitive behaviour of the two species can be explained by root morphology. Total K+ uptake ofL. perenne andT. pratense was studied under field conditions in relation to root fresh weight, root density, root cation exchange capacity, root surface and root length. The soil was an Alfisol, Udalf. All root parameters, when calculated per unit soil surface (M2), were higher inL. perenne than inT. pratense. In addition,L. perenne had longer root hairs and a denser root hair system thanT. pratense. The greatest difference in root morphology between species was root length, withL. perenne roots averaging 4–6 times longer than those ofT. pratense.Significant correlations were found between the total K+ uptake and all root parameters examined, with highest correlationsforroot fresh weight (r,0.92***T. pratense; 0.94***L. perenne) and root length (r, 0.91***T. pratense;r, 0.93***L. perenne). Potassium uptake per unit root fresh weight, root surface and root length were all significantly higher forT. pratense than for L. perenne. Differences in the rate of K+ uptake between species were particularly high when expressed per unit root length. Because of its greater root length and surface area,L. perenne can take up more soil K+ thanT. pratense, particularly where there is a low K supply in the soil. Under such conditionsL. perenne will be a particularly strong competitor toT. pratense.  相似文献   

8.
We investigated the feeding preferences of six species of mites and collembolans for three fungi commonly associated with roots of Acer saccharum (Glomus macrocarpum, Alternaria alternata and Trichoderma harzianum), from a maple-forest soil in southern Ontario, Canada. Experiments were also conducted in vitro to determine animal feeding responses to (1) increasing quantities of hyphal biomass, (2) the presence of root vs. litter fungal substrates, and (3) hyphae of different widths of Glomus macrocarpum. The results indicate that arthropods prefer to graze in the litter region rather than in the deeper soil layers. Under ideal moisture/temperature conditions, animals are forced to the lower regions by interspecific interactions. They prefer to graze on hyphae of conidial fungi rather than on those of arbuscular mycorrhizal fungi. When arbuscular mycorrhizal fungal hyphae are grazed, there is a clear preference for the narrower hyphae, which are those further away from the root. The thicker hyphal segments, commonly found connecting absorptive hyphal fans to roots, were less preferred. These data are not consistent with the hypothesis that microarthropods are detrimental to arbuscular mycorrhizal associations, and suggest that Glomalean fungi may have evolved mechanisms to deter grazing by microarthropods.  相似文献   

9.
Summary In a greenhouse study we examined the effects of vesicular-arbuscular mycorrhizae (VAM) inoculation, using Glomus macrocarpum and of Zn application on dry matter production and Zn uptake by greengram in two mollisols. The VAM inoculation significantly increased the dry weight of different plant parts and the Zn uptake in both soils. Inoculated plants showed a greater response to the application of Zn at 2.5 and 5.0 mg kg-1 soil in a Zn deficient clay loam soil. The inoculated plants also absorbed — more water than the uninoculated plants. Mass flow and diffusion were the principal processes by which Zn reached the plant roots; mass flow was particularly important in the absence of VAM in a sandy soil fertilized with higher Zn doses (5 and 10 mg kg-1 soil). The greater supply of Zn to inoculated roots was attributed to an apparent diffusion process rather than to mass flow of Zn.  相似文献   

10.
To investigate the effects of arbuscular mycorrhiza (AM) and phosphorus (P) source on the uptake of major nutrients by Acacia mangium seedlings, three P sources were used: (1) Gafsa phosphate rock (GPR), (2) China phosphate rock (CPR), and (3) triple superphosphate (TSP). The plant samples were analyzed at 60, 75, 90, 105, 120, and 135 days after planting (DAP) for their N, P, K, Ca, and Mg contents. The uptake of these nutrients was significantly influenced by AM inoculation. Nutrient use efficiency in the AM-inoculated seedlings was also significantly higher than that in uninoculated seedlings. The effect of P sources on the uptake of these nutrients decreased in the order of TSP>GPR>CPR>control. There was a significant (P<0.05) interaction effect of AM and P source on P and K uptake by A. mangium. The uptake of P and K by mycorrhizal seedlings supplemented with TSP was significantly higher than that provided with other sources of P treatments. As a natural and cheaper P source, GPR might be used in combination with AM for growing A. mangium seedlings on degraded tin tailings.  相似文献   

11.
Summary The effects of P, N and Ca+Mg fertilization on biomass production, leaf area, root length, vesiculararbuscular mycorrhizal (VAM) colonization, and shoot and root nutrient concentrations of pretransplant rice (Oryza sativa L.) plants were investigated. Mycorrhizal plants generally had a higher biomass and P, N, K, Ca, Mn, Fe, Cu, Na, B, Zn, Al, Mg, and S shoot-tissue nutrient concentrations than non-mycorrhizal plants. Although mycorrhizal plants always had higher root-tissue nutrient concentrations than non-mycorrhizal plants, they were not significantly different, except for Mn. N fertilization stimulated colonization of the root system (colonized root length), and increased biomass production and nutrient concentrations of mycorrhizal plants. Biomass increases due to N were larger when the plants were not fertilized with additional P. P fertilization reduced the colonized root length and biomass production of mycorrhizal plants. The base treatment (Ca+Mg) did not significantly affect biomass production but increased the colonized root length. These results stress the importance of evaluating the VAM rice symbiosis under various fertilization regimes. The results of this study suggest that pretransplant mycorrhizal rice plants may have a potential for better field establishment than non-mycorrhizal plants.  相似文献   

12.
This study evaluated the interactive effect of arbuscular mycorrhizal fungi (AMF) inoculation and exogenous phosphorus supply on soil phosphotases, plant growth, and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong). We aimed to explore the ecophysiological function of AMF in mangrove wetland ecosystems, and to clarify the possible survival mechanism of mangrove species against nutrient deficiency. K. obovata seedlings with or without AMF inoculation (mixed mangrove AMF), were cultivated for six months in autoclaved sediment medium which was supplemented with KH2PO4 (0, 15, 30, 60, 120 mg kg−1). Then the plant growth, nitrogen and phosphorus content, root vitality, AMF colonization and soil phosphatase activity were analyzed. The inoculated AMF successfully infected K. obovata roots, developed intercellular hyphae, arbuscular (Arum-type), and vesicle structures. Arbuscular mycorrhizal fungi colonization ranged from 9.04 to 24.48%, with the highest value observed under 30 and 60 mg kg−1 P treatments. Soil P supply, in the form of KH2PO4, significantly promoted the height and biomass of K. obovata, enhanced root vitality and P uptake, while partially inhibiting soil acid (ACP) and alkaline phosphotase (ALP) activities. Without enhancing plant height, the biomass, root vitality and P uptake were further increased when inoculated with AMF, and the reduction on ACP and ALP activities were alleviated. Phosphorus supply resulted in the decrease of leaf N–P ratio in K. obovata, and AMF inoculation strengthened the reduction, thus alleviating P limitation in plant growth. Arbuscular mycorrhizal fungi inoculation and adequate P supply (30 mg kg−1 KH2PO4) enhanced root vitality, maintained soil ACP and ALP activities, increased plant N and P uptake, and resulted in greater biomass of K. obovata. Mutualistic symbiosis with AMF could explain the survival strategies of mangrove plants under a stressed environment (waterlogging and nutrient limitation) from a new perspective.  相似文献   

13.
通过田间小区试验,研究了磷钾肥滴灌追施对玉米干物质、产量及养分吸收的影响。结果表明,磷钾肥部分基施、部分滴灌追施玉米的生物量和产量要优于磷钾肥全部基施,其中磷肥75%基施和25%滴灌追施比磷肥全部基施的玉米干物质提高4.36%,产量增加8.14%;钾肥50%基施和50%滴灌追施比钾肥全部基施的玉米干物质增加4.86%,产量增加4.98%。磷钾肥部分基施、部分滴灌追施显著提高了玉米氮、磷、钾的吸收量和利用率,其中磷肥75%基施和25%滴灌追施的氮、磷、钾肥的利用率分别为46.65%、28.42%、46.33%,比磷肥全部基施分别提高了6.0、8.44和8.95个百分点;钾肥50%基施和50%滴灌追施的氮、磷、钾肥的利用率分别为45.46%、27.92%、46.95%,比钾肥全部基施分别提高了4.26、0.99和11.89个百分点。  相似文献   

14.
With the aim of determining whether the arbuscular mycorrhizal (AM) inoculation would give an advantage to overcome salinity problems and if the phosphorus (P) concentration can profoundly influence zucchini (Cucurbita pepo L.) plant responses to AM, a greenhouse experiment was carried out with AM (+AM) and non-AM (−AM). Plants were grown in sand culture with two levels of salinity (1 and 35 mM NaCl, giving electrical conductivity values of 1.8 and 5.0 dS m−1) and P (0.3 and 1 mM P) concentrations. The percentages of marketable yield and shoot biomass reduction caused by salinity were significantly lower in the plants grown at 0.3 mM P, compared to those grown at 1 mM P. However, even at high P concentration, the absolute value of yield and shoot biomass of +AM zucchini plants grown under saline conditions was higher than those grown at low P concentration. The +AM plants under saline conditions had higher leaf chlorophyll content and relative water content than −AM. Mycorrhizal zucchini plants grown under saline conditions had a higher concentration of K and lower Na concentration in leaf tissue compared to −AM plants. The P content of zucchini leaf tissue was similar for +AM and −AM treatments at both low and high P concentrations in the saline nutrient solution. The beneficial effects of AM on zucchini plants could be due to an improvement in water and nutritional status (high K and low Na accumulation).  相似文献   

15.
This factorial experiment consists of four levels of sulfur+Thiobacillus and three levels of triple superphosphate arranged in a completely randomized block design in three regions. With an increased sulfur+Thiobacillus and phosphorus (P), grain yield, phosphorus, iron (Fe), and zinc (Zn) uptake of canola increased in Qom and Mazandaran. Combined treatments of S2000T40 and P100% showed these properties most. In Safiabad, S1000T20 resulted in a significant increase of P, Fe, and Zn uptake of canola, and no significant effect was found on the grain yield. The highest Fe and Zn concentrations in Qom soil was measured in S2000T40. In Safiabad, maximum Fe concentration in soil was registered by S1000T20 and P65%. The minimum soil pH of Qom and Mazandaran was recorded by S1000T20 and S2000T40, respectively. The effect of sulfur and Thiobacillus on nutrients uptake and canola yield was good and indicates its potential for alleviating the impacts of calcareous soils.  相似文献   

16.
Summary A greenhouse experiment was carried out to evaluate the influence of vesicular-arbuscular mycorrhiza (VAM) on growth and nutrient uptake of cocoa seedlings treated with five levels of palm oil mill effluent, in an unsterilized Oxisol and an Ultisol, either with or without addition of the VAM fungus Scutellospora calospora (Nicol. & Gred.) Walker and Sanders. Inoculation with the VAM fungi significantly increased nutrient uptake and plant growth in both soils. The dry matter yield, and the tissue N and K concentration in the plant tops increased significantly with increasing levels of palm oil mill effluent applied to both the Oxisol and the Ultisol. The maximum tissue P concentration, however, was obtained from plants grown in the Ultisol that was given 50.0 g palm oil mill effluent per kg while the maximum P recovery of 26% was obtained from plants given only 16.7 g effluent per kg. Overall, the percentage of P recovery decreased with the addition of increasing levels of palm oil mill effluent. In the Oxisol, the tissue P concentration increased with the addition of increasing levels of palm oil mill effluent, but the maximum recovery of P was recorded from plants given only 0.3 g effluent per kg. The percentage P recovery decreased with subsequent additions of the effluent.  相似文献   

17.
We investigated the influence of vesicular-arbuscular mycorrhizal (VAM) inoculation on growth and nutrient relationships in two alley-cropping trials, one at the top and the other at the base of a hillslope. Each trial involved three woody hedgerow legumes with cassava (Manihot esculenta Crantz) as the sole intercrop. The hedgerow trees at the base of the slope showed greater survival and higher leaf dry weights than those at the top of the slope, although these parameters were not affected by VAM inoculation, either at the top or the base of the slope. In contrast to survival, the uptake of nutrients, particularly P and N, was higher for inoculated than uninoculated hedgerow trees, both at the top and at the base of slope. Increases in stem and leaf biomass and the uptake of nutrients by the trees were strongly correlated with increases in P uptake, indicating that the improvements were attributable to VAM inoculation. Cassava tuber yields at the base of the slope, from inoculated or uninoculated plants, were significantly greater than the corresponding cassava yields at the top of the slope. These increases at the base of the slope compared to the top of the slope were not attributed to available soil nutrients but to greater VAM spore density. Higher available soil moisture may have been another factor. Increasing the VAM spore density of effective mycorrhiza through proper agronomic practices at the top of a slope may bring about comparable yields on different parts of the slope.  相似文献   

18.
We studied the persistence of an introduced vesicular-arbuscular mycorrhizal (VAM) fungus in the field under the influence of a mycorrhizal host, a non-mycorrhizal host, and when the field was left fallow. There was a significantly greater, build-up of the mycorrhizal fungus in plots cropped with mycorrhizal hosts (finger millet or field beans) compared to plots cropped with a nonmycorrhizal host (mustard) or left fallow. Glomus intraradices, the introduced fungus, was further monitored by the electrophoretic mobility of the isozymes of malate dehydrogenase extracted from the resting spores of the fungus. The zymogram from G. intraradices spores showed three distinct isozyme bands: 1,3 and 7. A zymogram of malate dehydrogenase spores isolated from plots inoculated with G. intraradices for three seasons exhibited similar bands. Spores isolated from plots inoculated with G. intraradices for one or two seasons showed only one weak band, corresponding to isozyme band 7. The results indicated that the introduced fungus persisted in the field for only one season.  相似文献   

19.
The main objective of this study was to investigate the effects of co-inoculation with different strains of Bradyrhizobium japonicum (i.e. Helinitro, Rizoking, and Nitragin) and arbuscular mycorrhizal fungi (AMF) species (i.e. Glomus fasciculatum, Glomus versiforme, Glomus intraradices, Glomus mosseae, and Glomus etunicatum) on soybean growth, fungal root colonization, and nutrient uptake of nitrogen (N), phosphorus (P), zinc (Zn), iron (Fe), and copper (Cu). Co-inoculation with various AMF species and rhizobia significantly (p<0.01) increased the soybean biomass production as compared to the non-inoculated controls. Furthermore, AMF colonization of roots of soybean plants increased by 79, 70.1, 67, 63, 57.5, and 50.1% in the presence of G. fasciculatum (GF), G. versiforme (GV), G. intraradices (GI), G. mosseae (GM), and G. etunicatum (GE), and Gmix (a mixed culture of fungi), respectively. Higher nutrient contents were observed in plants co-inoculated with Helinitro and GF. More insight into these results will enable optimization of the effective use of AM fungi in combination with their bacterial partners as a tool for increasing soybean yields in Iran; however, its general analytical framework could be applied to other parts of the world.  相似文献   

20.
随着全球范围内磷矿资源短缺问题的日益严重,间作或菌根技术强化作物对土壤磷(P)的利用及增产增收的效应受到越来越多的关注。通过三室隔网盆栽模拟试验研究了分室磷处理[不添加磷(P0)、添加有机磷(OP50)、添加无机磷(IOP50)]和根室不接种(NM)、根室接种丛枝菌根真菌Glomus mosseae(GM)对与大豆间作的玉米的生长及磷素利用的影响。研究结果表明:所有复合处理中,以间作?GM?IOP50组合处理下的玉米根系最短和地上部生物量最高;OP50处理下,间作玉米的菌根侵染率显著高于单作处理。间作条件下,无论分室磷添加与否,接种GM处理的玉米地上部生物量明显高于NM处理;接种GM处理的玉米根系生物量和株高均显著高于NM处理,且根系生物量以间作?GM?OP50组合处理下最高。接种GM条件下,P0、IOP50、OP50处理下的间作植株生物量较单作处理分别提高45.98%、111.33%、33.56%。单作条件下,无论分室磷添加与否,接种GM处理的玉米地上部磷含量均显著高于NM处理;无论何种种植模式及分室磷添加与否,接种GM处理的植物根系磷含量均显著高于NM处理。无论磷添加与否,间作?GM组合条件下的玉米地上部磷吸收量均显著较高,其中IOP50处理下的地上部磷吸收量显著高于OP50处理。间作?GM组合条件下,IOP50处理玉米根系的磷吸收效率均显著高于OP50处理。可见,接种GM、分室磷添加和间作各自在一定程度上促进了玉米的生长。综合菌根侵染、生物量及磷含量与吸收量、磷吸收效率等指标,所有复合处理中以间作?GM?IOP50组合对玉米地上部的促生作用最好,玉米磷素吸收最多,可望有效强化滇池流域红壤坡耕地磷素的利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号