首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The four Pioneer Venus entry probes transmitted data of good quality on the structure of the atmosphere below the clouds. Contrast of the structure below an altitude of 50 kilometers at four widely separated locations was found to be no more than a few degrees Kelvin, with slightly warmer temperatures at 30 degrees south latitude than at 5 degrees or 60 degrees north. The atmosphere was stably stratified above 15 or 20 kilometers, indicating that the near-adiabatic state is maintained by the general circulation. The profiles move from near-adiabatic toward radiative equilibrium at altitudes above 40 kilometers. There appears to be a region of vertical convection above the dense cloud deck, which lies at 47.5 to 49 kilometers and at temperature levels near 360 K. The atmosphere is nearly isothermal around 100 kilometers (175 to 180 K) and appears to exhibit a sizable temperature wave between 60 and 70 kilometers. This is where the 4-day wind is believed to occur. The temperature wave may be related to some of the wavelike phenomena seen in Mariner 10 ultraviolet photographs.  相似文献   

2.
We used three-dimensional inverse scattering of core-reflected shear waves for large-scale, high-resolution exploration of Earth's deep interior (D') and detected multiple, piecewise continuous interfaces in the lowermost layer (D') beneath Central and North America. With thermodynamic properties of phase transitions in mantle silicates, we interpret the images and estimate in situ temperatures. A widespread wave-speed increase at 150 to 300 kilometers above the coremantle boundary is consistent with a transition from perovskite to postperovskite. Internal D' stratification may be due to multiple phase-boundary crossings, and a deep wave-speed reduction may mark the base of a postperovskite lens about 2300 kilometers wide and 250 kilometers thick. The core-mantle boundary temperature is estimated at 3950 +/- 200 kelvin. Beneath Central America, a site of deep subduction, the D' is relatively cold (DeltaT = 700 +/- 100 kelvin). Accounting for a factor-of-two uncertainty in thermal conductivity, core heat flux is 80 to 160 milliwatts per square meter (mW m(-2)) into the coldest D' region and 35 to 70 mW m(-2) away from it. Combined with estimates from the central Pacific, this suggests a global average of 50 to 100 mW m(-2) and a total heat loss of 7.5 to 15 terawatts.  相似文献   

3.
The Mars Global Surveyor (MGS) z-axis accelerometer has obtained over 200 vertical structures of thermospheric density, temperature, and pressure, ranging from 110 to 170 kilometers, compared to only three previous such vertical structures. In November 1997, a regional dust storm in the Southern Hemisphere triggered an unexpectedly large thermospheric response at mid-northern latitudes, increasing the altitude of thermospheric pressure surfaces there by as much as 8 kilometers and indicating a strong global thermospheric response to a regional dust storm. Throughout the MGS mission, thermospheric density bulges have been detected on opposite sides of the planet near 90 degreesE and 90 degreesW, in the vicinity of maximum terrain heights. This wave 2 pattern may be caused by topographically-forced planetary waves propagating up from the lower atmosphere.  相似文献   

4.
Seiff A  Kirk DB 《Science (New York, N.Y.)》1976,194(4271):1300-1303
The Viking 2 entry science data on the structure of Mars' atmosphere up to 100 kilometers define a morning atmosphere with an isothermal region near the surface; a surface pressure 10 percent greater than that recorded simultaneously at the Viking 1 site, which implies a landing site elevation lower by 2.7 kilometers than the reference ellipsoid; and a thermal structure to 100 kilometers at least qualitatively consistent with pre-Viking modeling of thermal tides. The temperature profile exhibits waves whose amplitude grows with altitude, to approximately 25 degrees K at 90 kilometers. These waves are believed to be a consequence of layered vertical oscillations and associated heating and cooling by compression and expansion, excited by the daily thermal cycling of the planet surface. As is necessary for gravity wave propagation, the atmosphere is stable against convection, except possibly in some very local regions. Temperature is everywhere appreciably above the carbon dioxide condensation boundary at both landing sites, precluding the occurrence of carbon dioxide hazes in northern summer at latitudes to at least 50 degrees N. Thus, ground level mists seen in these latitudes would appear to be condensed water vapor.  相似文献   

5.
Large-scale, electric currents flowing along magnetic field lines into the polar regions of Earth are thought to be the main contributors of the energy that powers the ionospheric aurora. However, we have found evidence for global contributions from electromagnetic waves (Alfvén waves). Data that were collected from the Polar spacecraft over the course of 1 year show that the flow of wave electromagnetic energy at altitudes of 25,000 to 38,000 kilometers delineates the statistical auroral oval. The Poynting flux of individual events distributed along the auroral oval was larger than 5 ergs per square centimeter per second, which is sufficient to power auroral acceleration processes. This evidence suggests that in addition to magnetic field-aligned currents, the dayside and nightside aurora is globally powered by the energy flow of these high-altitude Alfvén waves.  相似文献   

6.
As surface waves from the 26 December 2004 earthquake in Sumatra swept across Alaska, they triggered an 11-minute swarm of 14 local earthquakes near Mount Wrangell, almost 11,000 kilometers away. Earthquakes occurred at intervals of 20 to 30 seconds, in phase with the largest positive vertical ground displacements during the Rayleigh surface waves. We were able to observe this correlation because of the combination of unusually long surface waves and seismic stations near the local earthquakes. This phase of Rayleigh wave motion was dominated by horizontal extensional stresses reaching 25 kilopascals. These observations imply that local events were triggered by simple shear failure on normal faults.  相似文献   

7.
Relative travel time delays of teleseismic P and S waves, recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment, have been inverted tomographically for upper-mantle structure beneath the southern East Pacific Rise. A broad zone of low seismic velocities extends beneath the rise to depths of about 200 kilometers and is centered to the west of the spreading center. The magnitudes of the P and S wave anomalies require the presence of retained mantle melt; the melt fraction near the rise exceeds the fraction 300 kilometers off axis by as little as 1%. Seismic anisotropy, induced by mantle flow, is evident in the P wave delays at near-vertical incidence and is consistent with a half-width of mantle upwelling of about 100 km.  相似文献   

8.
Data from western United States short-period seismic networks reveal a conversion from an S to a P wave within a low seismic velocity layer (greater than or equal to the 4 percent velocity difference compared to the surrounding mantle) in the mid-lower mantle (1400 to 1600 kilometers deep) east of the Mariana and Izu-Bonin subduction zones. The low-velocity layer (about 8 kilometers thick) dips 30 degrees to 40 degrees southward and is at least 500 kilometers by 300 kilometers. Its steep dip, large velocity contrast, and sharpness imply a chemical rather than a thermal origin. Ancient oceanic crust subducted into the lower mantle is a plausible candidate for the low-velocity layer because of its broad thin extent.  相似文献   

9.
During the Galileo probe's descent through Jupiter's atmosphere, under the ionosphere, the lightning and radio emission detector measured radio frequency signals at levels significantly above the probe's electromagnetic noise. The signal strengths at 3 and 15 kilohertz were relatively large at the beginning of the descent, decreased with depth to a pressure level of about 5 bars, and then increased slowly until the end of the mission. The 15-kilohertz signals show arrival direction anisotropies. Measurements of radio frequency wave forms show that the probe passed through an atmospheric region that did not support lightning within at least 100 kilometers and more likely a few thousand kilometers of the descent trajectory. The apparent opacity of the jovian atmosphere increases sharply at pressures greater than about 4 bars.  相似文献   

10.
Surface imagery of ocean waves under Hurricane Gloria (September 1976) has been obtained with an airborne synthetic-aperture imaging radar. Observations were obtained over most of the area within a radius of 150 kilometers around the center of the eye. These direct observations made it possible to derive the wave patterns in the region around a hurricane eye.  相似文献   

11.
Two distinct groups of infrasonic waves from Saturn V, 1967, were recorded at Palisades, New York, 1485 kilometers from the launch site. The first group, of 10-minute duration, began about 70 minutes after launch time; the second, having more than twice the amplitude and a duration of 9 minutes, commenced 81 minutes after launch time. From information on the Saturn V trajectory and analysis of recorded data, it is established that the first group represents sound emitted either by the first stage reentry or by the second stage when its elevation was above 120 kilometers. The second, more intense wave group represents the sound from the powered first stage. A reversal of signal occurs because the rocket outran its own sound. Fourier analyses indicate that the energy extends to relatively long periods-10 seconds for the first stage and 7 seconds for the second. Trapping of sound in the upper atmospheric sound channel can be the cause of the separation of the signal into two distinct groups.  相似文献   

12.
The Voyager 2 plasma wave instrument detected many familiar plasma waves during the encounter with Neptune, including electron plasma oscillations in the solar wind upstream of the bow shock, electrostatic turbulence at the bow shock, and chorus, hiss, electron cyclotron waves, and upper hybrid resonance waves in the inner magnetosphere. Low-frequency radio emissions, believed to be generated by mode conversion from the upper hybrid resonance emissions, were also observed propagating outward in a disklike beam along the magnetic equatorial plane. At the two ring plane crossings many small micrometer-sized dust particles were detected striking the spacecraft. The maximum impact rates were about 280 impacts per second at the inbound ring plane crossing, and about 110 impacts per second at the outbound ring plane crossing. Most of the particles are concentrated in a dense disk, about 1000 kilometers thick, centered on the equatorial plane. However, a broader, more tenuous distribution also extends many tens of thousands of kilometers from the equatorial plane, including over the northern polar region.  相似文献   

13.
Unusually long reverberations were recorded from two lunar impacts by a seismic station installed on the lunar surface by the Apollo 12 astronauts. Seismic data from these impacts suggest that the lunar mare in the region of the Apollo 12 landing site consists of material with very low seismic velocities near the surface, with velocity increasing with depth to 5 to 6 kilometers per second (for compressional waves) at a depth of 20 kilometers. Absorption of seismic waves in this structure is extremely low relative to typical continental crustal materials on earth. It is unlikely that a major boundary similar to the crustmantle interface on earth exists in the outer 20 kilometers of the moon. A combination of dispersion and scattering of surface waves probably explains the lunar seismic reverberation. Scattering of these waves implies the presence of heterogeneity within the outer zone of the mare on a scale of from several hundred meters (or less) to several kilometers. Seismic signals from 160 events of natural origin have been recorded during the first 7 months of operation of the Apollo 12 seismic station. At least 26 of the natural events are small moonquakes. Many of the natural events are thought to be meteoroid impacts.  相似文献   

14.
Shanks AL 《Science (New York, N.Y.)》1987,235(4793):1198-1200
Internal waves generated by tidal currents concentrated and transported an oil spill (liquid asphalt) onshore. Plankton net samples were collected in front of and behind a set of internal waves as well as in the convergence and divergence zones over the waves. Tar "balls" were most abundant (greater than 30-fold) in the samples from the convergence zone. Comparison of the abundance of tar balls in front of and behind the set of waves suggests that the internal waves "caught" about 68% of the asphalt encountered and concentrated and swept shoreward tar balls from almost 8 kilometers of ocean.  相似文献   

15.
Subduction zones play critical roles in the recycling of oceanic lithosphere and the generation of continental crust. Seismic imaging can reveal structures associated with key dynamic processes occurring in the upper-mantle wedge above the sinking oceanic slab. Three-dimensional images of reflecting interfaces throughout the upper-mantle wedge above the subducting Tonga slab were obtained by migration of teleseismic recordings of underside P- and S-wave reflections. Laterally continuous weak reflectors with tens of kilometers of topography were detected at depths near 90, 125, 200, 250, 300, 330, 390, 410, and 450 kilometers. P- and S-wave impedances decreased at the 330-kilometer and 450-kilometer reflectors, and S-wave impedance decreased near 200 kilometers in the vicinity of the slab and near 390 kilometers, just above the global 410-kilometer increase. The pervasive seismic reflectivity results from phase transitions and compositional zonation associated with extensive metasomatism involving slab-derived fluids rising through the wedge.  相似文献   

16.
Directional ocean wave spectra derived from Shuttle Imaging Radar-B (SIR-B) L-band imagery collected off the coast of southern Chile on 11 and 12 October 1984 were compared with independent spectral estimates from two airborne scanning radars. In sea states with significant wave heights ranging from 3 to 5 meters, the SIR-B-derived spectra at 18 degrees and 25 degrees off nadir yielded reasonable estimates of wavelengths, directions, and spectral shapes for all wave systems encountered, including a purely azimuth-traveling system. A SIR-B image intensity variance spectrum containing predominantly range-traveling waves closely resembles an independent aircraft estimate of the slope variance spectrum. The prediction of a U.S. Navy global spectral ocean wave model on 11 October 1984 exhibited no significant bias in dominant wave number but contained a directional bias of about 30 degrees espect to the mean of the aircraft and spacecraft estimates.  相似文献   

17.
Radio emissions from Uranus were detected by the Voyager 2 plasma wave instrument about 5 days before closest approach at frequencies of 31.1 and 56.2 kilohertz. About 10 hours before closest approach the bow shock was identified by an abrupt broadband burst of electrostatic turbulence at a radial distance of 23.5 Uranus radii. Once Voyager was inside the magnetosphere, strong whistler-mode hiss and chorus emissions were observed at radial distances less than about 8 Uranus radii, in the same region where the energetic particle instruments detected intense fluxes of energetic electrons. Various other plasma waves were also observed in this same region. At the ring plane crossing, the plasma wave instrument detected a large number of impulsive events that are interpreted as impacts of micrometer-sized dust particles on the spacecraft. The maximum impact rate was about 30 to 50 impacts per second, and the north-south thickness of the impact region was about 4000 kilometers.  相似文献   

18.
The 660-kilometer discontinuity, which separates Earth's upper and lower mantle, has been detected routinely on a global scale in underside reflections of precursors to SS shear waves. Here, we report observations of this discontinuity in many different regions, using precursors to compressional PP waves. The apparent absence of such precursors in previous studies had posed major problems for models of mantle composition. We find a complicated structure, showing single and double reflections ranging in depth from 640 to 720 kilometers, that requires the existence of multiple phase transitions at the base of the transition zone. The results are consistent with a pyrolite mantle composition.  相似文献   

19.
Data from a magnetic mass spectrometer flown on the Explorer 31 satellite show that the ionosphere above 1000 kilometers usually consists of hydrogen ions as the predominant species. Between this altitude and perigee (500 kilometers) the dominant ion species shifts to atomic oxygen, with a significant amount of atomic nitrogen ions also present. Helium ions are present in small quantities at all altitudes. Other minor ions observed are those of 2, 7, 8, 15, 18, and 20 atomic mass units.  相似文献   

20.
The plasma wave instrument on the International Cometary Explorer (ICE) detected bursts of strong ion acoustic waves almost continuously when the spacecraft was within 2 million kilometers of the nucleus of comet Giacobini-Zinner. Electromagnetic whistlers and low-level electron plasma oscillations were also observed in this vast region that appears to be associated with heavy ion pickup. As ICE came closer to the anticipated location of the bow shock, the electromagnetic and electrostatic wave levels increased significantly, but even in the midst of this turbulence the wave instrument detected structures with familiar bow shock characteristics that were well correlated with observations of localized electron heating phenomena. Just beyond the visible coma, broadband waves with amplitudes as high as any ever detected by the ICE plasma wave instrument were recorded. These waves may account for the significant electron heating observed in this region by the ICE plasma probe, and these observations of strong wave-particle interactions may provide answers to longstanding questions concerning ionization processes in the vicinity of the coma. Near closest approach, the plasma wave instrument detected broadband electrostatic noise and a changing pattern of weak electron plasma oscillations that yielded a density profile for the outer layers of the cold plasma tail. Near the tail axis the plasma wave instrument also detected a nonuniform flux of dust impacts, and a preliminary profile of the Giacobini-Zinner dust distribution for micrometer-sized particles is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号