首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet laser microprobe analyses of a calcium-aluminum-rich inclusion (CAI) from the Allende meteorite suggest that a line with a slope of exactly 1.00 on a plot of delta17O against delta18O represents the primitive oxygen isotope reservoir of the early solar nebula. Most meteorites are enriched in 17O and 18O relative to this line, and their oxygen isotope ratios can be explained by mass fractionation or isotope exchange initiating from the primitive reservoir. These data establish a link between the oxygen isotopic composition of the abundant ordinary chondrites and the primitive 16O-rich component of CAIs.  相似文献   

2.
We have determined the abundances of 16O, 17O, and 18O in 31 lunar samples from Apollo missions 11, 12, 15, 16, and 17 using a high-precision laser fluorination technique. All oxygen isotope compositions plot within +/-0.016 per mil (2 standard deviations) on a single mass-dependent fractionation line that is identical to the terrestrial fractionation line within uncertainties. This observation is consistent with the Giant Impact model, provided that the proto-Earth and the smaller impactor planet (named Theia) formed from an identical mix of components. The similarity between the proto-Earth and Theia is consistent with formation at about the same heliocentric distance. The three oxygen isotopes (delta17O) provide no evidence that isotopic heterogeneity on the Moon was created by lunar impacts.  相似文献   

3.
Nitrogen isotope fractionation in the Hoering-Moore experiment, injection of N2 into CO2 carrier and flow through sandstone, is due to diffusion in the gas phase rather than to surface interaction. This process, called "carrier diffusion," produces a characteristic fractionation pattern relative to a fraction coordinate, with points of zero fractionation at 16 and 84 percent and heavy isotope enrichment between these points. Carrier diffusion is an efficient enrichment process for low-abundance isotopes lighter than the abundant species and for helium and hydrogen in gas mixtures.  相似文献   

4.
The Archean sulfur cycle and the early history of atmospheric oxygen   总被引:1,自引:0,他引:1  
The isotope record of sedimentary sulfides can help resolve the history of oxygen accumulation into the atmosphere. We measured sulfur isotopic fractionation during microbial sulfate reduction up to 88 degrees C and show how sulfate reduction rate influences the preservation of biological fractionations in sediments. The sedimentary sulfur isotope record suggests low concentrations of seawater sulfate and atmospheric oxygen in the early Archean (3.4 to 2.8 billion years ago). The accumulation of oxygen and sulfate began later, in the early Proterozoic (2.5 to 0.54 billion years ago).  相似文献   

5.
Nonbiological fractionation of iron isotopes   总被引:2,自引:0,他引:2  
Laboratory experiments demonstrate that iron isotopes can be chemically fractionated in the absence of biology. Isotopic variations comparable to those seen during microbially mediated reduction of ferrihydrite are observed. Fractionation may occur in aqueous solution during equilibration between inorganic iron complexes. These findings provide insight into the mechanisms of iron isotope fractionation and suggest that nonbiological processes may contribute to iron isotope variations observed in sediments.  相似文献   

6.
The size of the marine sulfate reservoir has grown through Earth's history, reflecting the accumulation of oxygen into the atmosphere. Sulfur isotope fractionation experiments on marine and freshwater sulfate reducers, together with the isotope record, imply that oceanic Archean sulfate concentrations were <200 microM, which is less than one-hundredth of present marine sulfate levels and one-fifth of what was previously thought. Such low sulfate concentrations were maintained by volcanic outgassing of SO2 gas, and severely suppressed sulfate reduction rates allowed for a carbon cycle dominated by methanogenesis.  相似文献   

7.
Metamorphic rocks on Santa Catalina Island, California, afford examination of fluid-related processes at depths of 15 to 45 kilometers in an Early Cretaceous subduction zone. A combination of field, stable isotope, and volatile content data for the Catalina Schist indicates kilometer-scale transport of large amounts of water-rich fluid with uniform oxygen and hydrogen isotope compositions. The fluids were liberated in devolatilizing, relatively low-temperature (400 degrees to 600 degrees C) parts of the subduction zone, primarily by chlorite-breakdown reactions. An evaluation of pertinent phase equilibria indicates that chlorite in mafic and sedimentary rocks and melange may stabilize a large volatile component to great depths (perhaps >100 kilometers), depending on the thermal structure of the subduction zone. This evidence for deep volatile subduction and large-scale flow of slab-derived, water-rich fluids lends credence to models that invoke fluid addition to sites of arc magma genesis.  相似文献   

8.
植物吸收和利用水分的模式决定了生态系统对环境水分的响应,示踪不同条件下植物水分来源,可以为植物水分利用策略研究提供科学依据。在土壤-植被-大气连续体系统水分传输研究中,传统方法越来越不能满足学者对水分传输机理的了解,而稳定氢氧同位素示踪技术因其高灵敏度和示踪性等特点已成为研究水分运动机制的重要手段。国内外相关学者已从多时间尺度、不同层次方向来研究,但对不同区域植物水分来源的定量区分、不同植物的水分利用策略及叶片水同位素分馏机制尚未达成共识。在简述氢氧同位素示踪原理的基础上,系统阐述了定量区分植物水分来源的方法,讨论了不同生境、不同季节、不同生长期、降雨前后的植物水分利用策略和植物叶片水同位素动力分馏过程及其影响因素,旨在为区域生态用水研究提供新的研究手段和理论依据。  相似文献   

9.
Iron isotope fractionation and the oxygen fugacity of the mantle   总被引:3,自引:0,他引:3  
The oxygen fugacity of the mantle exerts a fundamental influence on mantle melting, volatile speciation, and the development of the atmosphere. However, its evolution through time is poorly understood. Changes in mantle oxidation state should be reflected in the Fe3+/Fe2+ of mantle minerals, and hence in stable iron isotope fractionation. Here it is shown that there are substantial (1.7 per mil) systematic variations in the iron isotope compositions (delta57/54Fe) of mantle spinels. Spinel delta57/54Fe values correlate with relative oxygen fugacity, Fe3+/sigmaFe, and chromium number, and provide a proxy of changes in mantle oxidation state, melting, and volatile recycling.  相似文献   

10.
Experimental evidence is presented which demonstrates a chemically produced, mass-independent isotopic fractionation of oxygen. The effect is thought to result from self-shielding by the major isotopic species (16)O(2), but other possible mechanisms such as molecular symmetry cannot be ruled out. In a three-isotope plot, the experimentally produced fractionation line is essentially equal in slope to the observed carbonaceous chondrite mixing line. The implications for the early history of the solar system are discussed.  相似文献   

11.
Cellulose from plants having crassulacean acid metabolism was enriched in deuterium but not in oxygen-18 in relation to cellulose from C(3) and C(4) plants growing in the same area, indicating that the deuterium enrichment is due to isotopic fractionation during biochemical reactions rather than during evapotranspiration. Hydrogen and oxygen stable isotope ratios of cellulose from the plants in this restricted area showed more variability than that observed in samples collected across an entire continent. Biological factors appear to be as important as environmental factors in determining the isotope ratios of plant cellulose.  相似文献   

12.
本研究优化了采用反硝化细菌法同时测定土壤浸提液中硝酸盐氮氧同位素组成的方法。在已有研究结果的基础上,通过采用5000~8000 r·min-1的转速离心、高纯氮气吹扫1 h、减少加样量及改造仪器自动进样器等措施对已发表方法进行了优化。对国际标准样品USGS34的分析表明,0.1~0.8μg NO-3-N样品量即可以得到较稳定、准确的测定值和校正值;同一时间内制备的硝酸盐δ15N的SD介于0.05‰~0.09‰之间,δ18O的SD介于0.28‰~0.48‰之间;在三个月之内δ15N和δ18O的测定值基本一致,表明该方法具有较好的准确度、精密度和稳定性。通过研究浸提剂、保存条件以及加热对测定土壤浸提液中硝酸盐氮氧同位素组成的影响,结果表明:常用的去离子水、KCl、Ca Cl2可能都含有微量的硝酸盐,随着加样量增大,浸提剂中含有的硝酸盐可能就会影响δ15N和δ18O的测定;对于土壤硝酸盐的浸提液,冷冻保存效果较好,保证了土壤硝酸盐氮氧同位素的准确性和稳定性;尽管加热对硝酸盐标准样品USGS34和IAEA-NO3的δ15N没有显著影响,但δ18O显著升高,说明加热易引起氧同位素分馏;而土壤硝酸盐浸提液样品加热前后的δ15N和δ18O的测定值没有显著变化,因此为避免产生氧同位素分馏和节省测试时间,建议同时测定土壤浸提液硝酸盐δ15N和δ18O时直接和反硝化细菌反应。应用本方法对不同肥料处理田间土壤浸提液硝酸盐的氮氧同位素组成进行了测定。  相似文献   

13.
Through ultraviolet laser argon-argon dating of potassium feldspar cements containing fluid inclusions, we determined temperature-composition-time data for paleofluids in a sedimentary basin, including data for an evolving episode of fluid flow recorded in distinct phases of cement. The fluid evolved from mixed aqueous oil 83 million years ago to purely aqueous by 76 million years ago, thus dating the time of oil charge in this reservoir.  相似文献   

14.
The iron isotope composition of sedimentary pyrite has been proposed as a potential proxy to trace microbial metabolism and the redox evolution of the oceans. We demonstrate that Fe isotope fractionation accompanies abiotic pyrite formation in the absence of Fe(II) redox change. Combined fractionation factors between Fe(II)(aq), mackinawite, and pyrite permit the generation of pyrite with Fe isotope signatures that nearly encapsulate the full range of sedimentary δ(56)Fe(pyrite) recorded in Archean to modern sediments. We propose that Archean negative Fe isotope excursions reflect partial Fe(II)(aq) utilization during abiotic pyrite formation rather than microbial dissimilatory Fe(III) reduction. Late Proterozoic to modern sediments may reflect greater Fe(II)(aq) utilization and variations in source composition.  相似文献   

15.
Heterogeneous oxygen isotope compositions of plagioclase from the Boehls Butte anorthosite include some of the most oxygen-18-depleted values (to -16 per mil) reported for plagioclase in meta-igneous rocks and indicate high-temperature (T > 500 degrees C) isotopic exchange between plagioclase and nearly pristine meteoric fluid. Retrograde reaction-enhanced permeability assisted influx of meteoric-hydrothermal fluids into the deep-seated anorthosite. Isotopic gradients of about 14 per mil over 600 micrometers in single crystals require short-lived (about 10(4) years) diffusional exchange of oxygen and locally large effective water:rock ratios, followed by rapid loss of water and cessation of oxygen diffusion in the anorthosite.  相似文献   

16.
Oxygen isotope zoning in garnet   总被引:1,自引:0,他引:1  
Oxygen isotope zoning was examined within garnet with the use of the stable isotope laser probe. Four metamorphic garnets from the regional metamorphic terrane in Vermont and the skarn deposit at Carr Fork, Utah, were examined and were found to be concentrically zoned in delta(18)O values. The largest variations in delta(18)O values were observed in the regional metamorphic garnets, where delta(18)O values change by 3 per mil from core to rim. These oxygen isotope zoning profiles reflect the changes in the delta(18)O values of the rocks during garnet growth, which are caused by infiltration of fluids and by dehydration reactions during metamorphism.  相似文献   

17.
Secular variation of iron isotopes in north atlantic deep water   总被引:3,自引:0,他引:3  
A high-precision iron isotope time series for a ferromanganese crust demonstrates that the iron isotope composition in North Atlantic Deep Water has changed substantially over the past 6 million years and that iron isotope variations in the crust are closely correlated to those of lead isotopes. The close correlation between the two isotope series indicates that the observed iron isotope variations predominantly reflect those of iron input from terrigenous sources and provides no evidence for biologically induced mass fractionation within North Atlantic Deep Water.  相似文献   

18.
Oxygen-18-oxygen-16 fractionation of coexisting quartz and magnetite from the Biwabik iron formation varies as a function of distance of the sample from an intrusive contact. This isotope fractionation is related to observed mineralogic variations and compared with a theoretical heat-flow model.  相似文献   

19.
Czaja AD  Johnson CM  Yamaguchi KE  Beard BL 《Science (New York, N.Y.)》2012,335(6068):538; author reply 538
Guilbaud et al. (Reports, 24 June 2011, p. 1548) suggest that the geologic record of Fe isotope fractionation can be explained by abiological precipitation of pyrite. We argue that a detailed understanding of the depositional setting, mineralogy, and geologic history of Precambrian sedimentary rocks indicates that the Fe isotope record dominantly reflects biological fractionations and Fe redox processes.  相似文献   

20.
Models describing the evolution of the partial pressure of atmospheric oxygen over Phanerozoic time are constrained by the mass balances required between the inputs and outputs of carbon and sulfur to the oceans. This constraint has limited the applicability of proposed negative feedback mechanisms for maintaining levels of atmospheric O(2) at biologically permissable levels. Here we describe a modeling approach that incorporates O(2)-dependent carbon and sulfur isotope fractionation using data obtained from laboratory experiments on carbon-13 discrimination by vascular land plants and marine plankton. The model allows us to calculate a Phanerozoic O(2) history that agrees with independent models and with biological and physical constraints and supports the hypothesis of a high atmospheric O(2) content during the Carboniferous (300 million years ago), a time when insect gigantism was widespread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号