首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The results are reported from an experiment on the effects of cutting date (14 June, 21 July and I September), fertilizer application (none or 80 kg ha?1 N plus 40 kg ha?1 P and K) and grazing treatments (none, autumn or autumn plus spring) on the vegetation of an upland mesotrophic grassland in Upper Teesdale. northern England, UK. Effects on plant species number and cover are reported for 4 years (1989–93) of treatment. Effects on ‘species -attributes’ are given for the fourth year. The cessation of grazing combined with the use of fertilizer progressively reduced species number by about 25%. Under traditional management (no fertilizer, cutting date on 21 July, autumn and spring grazing) the species number and cover remained relatively static over the 4 years. Comparison between treatments in the fourth year showed a reduction in species number under the fertilizer application, cutting date on 1 September and no-grazing treatments. Fertilizer use together with cutting date on 1 September particularly lowered species number and cover. Analysis of variance was used to assess the effect of treatment on species that occurred frequently in the sward. A cutting date of 1 September favoured Agrostis capillaris. Alopecurus pratensis, Poa trivialis, Phleum pratense and Trisetum flavescens, The absence of grazing favoured Dactylis glomerata and Holcus lanatus. The use of fertilizer particularly favoured A. pratensis and H. lanatus. Ordination methods were used to assess the effect of treatment on the less frequent species. These were primarily associated with the treatment combination that matched ‘traditional’ management. Deviations from this ‘traditional’ regime acted separately, rather than in combination, and favoured different grass species. Traditional management was associated with ruderal, stress-tolerant ruderal and competitive ruderal strategists and with longer seed germination times, heavier seeds, some of which needed scarifying or chilling to break dormancy, and transient seed banks that germinated in the autumn. The original sward was an Anthoxanthum odora-turn-Geranium sylvatirum grassland, Briza media subcommunity (MG3b). After 4 years, Festuca ovina-Agrostis capillaris-Galium saxatile grassland, Holcus lanatus-Trifolium repens subcom-munity (U4b) and Lolium perenne-Alopecurus pratensis-Festuca pratensis grassland (MG7c) were found in many of the fertilized and late-cutting treatments.  相似文献   

2.
Growth of grass herbage in Ireland is highly seasonal with little or no net growth from November to February. As a result, feed demand exceeds grass supply during late autumn, winter and early spring. At low stocking rates [≤2 livestock units (LU) ha?1], there is potential to defer some of the herbage grown in autumn to support winter grazing. This study examined the effects of four autumn‐closing dates and four winter‐grazing dates in successive years on the accumulation of herbage mass and on tiller density in winter and subsequent herbage production at two sites in Ireland, one in the south and one in the north‐east. Closing swards from grazing in early and mid‐September (north‐east and south of Ireland respectively) provided swards with >2 t DM ha?1 and a proportion of green leaf >0·65–0·70 of the herbage mass above 4 cm, with a crude protein (CP) concentration of >230 g kg?1 DM and dry matter digestibility (DMD) of >0·700. The effects of autumn‐closing date and winter‐grazing date on herbage production in the subsequent year varied between the two sites. There was no significant effect of autumn‐closing date in the north‐eastern site whereas in the south earlier autumn closing reduced the herbage mass in late March by up to 0·34 t DM ha?1 and delaying winter grazing reduced the herbage mass in late March by up to 0·85 t DM ha?1. The effects of later grazing dates in winter on herbage mass continued into the summer at the southern site, reducing the herbage mass for the period from late March to July by up to 2 t DM ha?1. The effects of imposing treatments in successive years did not follow a consistent pattern and year‐to‐year variation was most likely linked to meteorological conditions.  相似文献   

3.
Three experiments were carried out on perennial ryegrass‐dominant swards to provide a basis for recommendations for the limits to (a) building up and timing of utilization of a herbage ‘bank’ for out‐of‐season grazing and (b) duration and intensity of early spring grazing in the United Kingdom and Ireland. In experiment 1, the effect of regrowth interval (from 7 September, 20 October, 17 November or 15 December) in autumn on herbage accumulation, leaf turnover and on subsequent spring growth was investigated. Swards regrown from early September reached maximum herbage mass (about 3 t ha–1 DM) and leaf lamina content in mid‐November, by which time senescence rate exceeded rate of production of new leaves. New leaf production and senescence rates were greater in swards remaining uncut until December than in those cut in October or November. Time of defoliation up to December had no effect on spring herbage mass in the subsequent spring. Defoliating in March reduced herbage mass in late May by less than 20%. Experiment 2 investigated the progress in herbage growth and senescence in swards regrowing from different times in late summer and autumn to produce herbage for utilization beyond the normal grazing season. Treatments in a randomized block design with three replicates were regrowths from 19 July, 8 August, 30 August and 20 September. Based on a lower ceiling of leaf and total herbage mass being reached with progressively later regrowths, beyond which leaf senescence generally exceeded leaf production and herbage mass declined, it was concluded that currently recommended rotation lengths for this period should extend from 3 weeks in late July to 8 weeks for swards previously grazed in mid‐September. In both experiments, leaf senescence commenced earlier (by one leaf‐age category) than previously published estimates and so brought forward the time at which senescence rates balanced leaf growth rates. In experiment 3, designed to evaluate the effect of daily grazing period and intensity in early spring on herbage regrowth, dairy cows grazed successive plots (replicates) for 2 or 4 h each day at two intensities (target residual heights of 5 or 7 cm) in March to mid‐April. Regrowth rate was similar in all treatments including the ungrazed control, despite soil moisture content being relatively high on occasions. Tiller density was significantly reduced in May by grazing plots in early or mid‐April. It is concluded that in autumn there are limits to which rotation lengths should be extended to produce herbage for out‐of‐season grazing owing to attainment of ceiling yields. Although utilization in early spring may reduce herbage availability in spring, out‐of‐season utilization need not reduce herbage growth rates in early spring.  相似文献   

4.
A rising-plate meter and a single-probe capacitance meter were calibrated on perennial ryegrass swards (cultivars S23, Endura, Melle) over the spring and summer (13 March to 14 September 1981). The swards were rotationally grazed by cattle and from mid-June onwards they were irrigated and cut at 5 cm after grazing to remove rejected herbage. Linear regressions were calculated relating meter readings to herbage dry matter mass as measured by cutting 0–2 m2 quadrats to either 18 mm above ground or to ground level. The regression for the rising-plate meter was constant over the spring (slope 275 kg DM ha?1 cm?1) and again over the summer (slope 385 kg DM ha?1 cm?1). The regression for the capacitance meter changed slightly over the spring (slope 11.2 to 14.0 kg DM ha?1 unit reading?1) and was also constant over the summer (slope 20.3 kg DM ha?1 unit reading ?1). Correlation coefficients were always above 09 and residual standard deviations ranged from 258–525 in Spring up to 636–918 kg DM ha?1 in summer. Residual standard deviations were lower with the plate meter than with the capacitance meter and were lower with the above-ground cutting height. Neither meter was able to give accurate results with tall rejected herbage containing a build-up of senescent material. Herbage mass below 18 mm was greater on summer than spring swards. When compared with a ground level cut. cutting above ground underestimated herbage mass on summer relative to spring swards; there was also a tendency to underestimate herbage mass on tall pastures relative to short pastures. There was no evidence of a curved relationship between herbage mass and meter reading with either meter and both meters gave readings related to herbage dry matter mass rather than mass of green herbage or water.  相似文献   

5.
The provision of grass for early spring grazing in Ireland is critical for spring calving grass‐based milk production systems. This experiment investigated the effect of a range of autumn closing dates (CD), on herbage mass (kg DM ha?1), leaf area index (LAI) and tiller density (m?2) during winter and early spring. Thirty‐six grazing paddocks, closed from 23 September to 1 December 2007, were grouped to create five mean CD treatments – 29 September, 13 October, 27 October, 10 November, 24 November. Herbage mass, tiller density and LAI were measured every 3 weeks from 28 November 2007 to 20 February 2008; additionally, herbage mass was measured prior to initial spring grazing and tiller density was measured intermittently until September 2008. Delaying CD until November significantly (P < 0·05) reduced herbage mass (by approximately 500 kg DM ha?1) and LAI (by approximately 0·86 units) in mid‐February. On average, 35% of herbage mass present on swards on 20 February was grown between 28 November and 30 January. LAI was positively correlated with herbage mass (R2 = 0·78). Herbage mass increased by approximately 1000 kg DM ha?1 as spring grazing was delayed from February to April. Tiller density increased from November to February, although it did fluctuate, and it was greatest in April (9930 m?2). This experiment concludes that in the south of Ireland adequate herbage mass for grazing in early spring can be achieved by delaying closing to early mid‐October; swards required for grazing after mid‐March can be closed during November.  相似文献   

6.
Developing sustainable grazing management systems based on perennial species is critical to preventing land degradation in marginal land classes. A field study was conducted from 2002 to 2006 to identify the impacts of deferred grazing (no defoliation of pastures for a period generally from spring to autumn) and fertilizer application on herbage accumulation, soil seed reserve and nutritive value in a hill pasture in western Victoria, Australia. Three deferred grazing strategies were used: short‐term deferred grazing (no defoliation between October and January), long‐term deferred grazing (no defoliation from October to the autumn break) and optimized deferred grazing (withholding time from grazing commenced between annual grass stem elongation and seed head emergence and concluded in February/March). These treatments were applied with two fertilizer levels (with or without fertilizer at 50 kg phosphorus ha?1 and 2000 kg lime ha?1 applied in year 1 only) in a factorial arrangement and two additional treatments: continuous grazing (CG) and no grazing (NG) in year 1. The deferred grazing treatments on average produced herbage dry matter of 4773 kg ha?1, the NG produced 4583 kg ha?1 and the CG produced 3183 kg ha?1 in year 4 (2005–06) of the experiment. Deferred grazing treatments with and without fertilizer application produced an average of 5135 and 4411 kg DM ha?1 respectively. Averaged over 4 years, deferred grazing increased the germinable seed pool of perennial grasses by 200% and annual grasses by 50% (except optimized deferred grazing that considerably decreased the annual grass seed pool) compared with the CG. The best of the deferred grazing strategies increased the digestibility of pastures by 7% compared with the CG. The results demonstrated that deferred grazing from spring to autumn followed by rotational grazing could be an effective tool to increase herbage production and soil seed pool and improve the digestibility of native pastures in the steep hill country of southern Australia.  相似文献   

7.
The productivity of a mixed sward, comprising perennial ryegrass cvs Barlano and Bastion and white clover cvs Donna and Aran, was measured under sixteen fertilizer N treatments. These involved 0.25, 50 and 75 kg N ha-1 in spring only, in autumn only and in all combinations of spring N and autumn N. A simulated grazing regime of six cuts annually at 3- to 6-week intervals was imposed. Increasing rates of total N application increased total herbage DM regardless of application pattern. Yield response was greater with N applied in the spring, and total herbage DM was higher with high spring N-low autumn N than the reverse. Mean yield responses at the first harvest to 25, 50 and 75 kg ha-1 N in spring were 13.6, 10.8 and 11.6 kg DM per kg N. Corresponding responses at the final harvest to N rates in the autumn were 7.2, 5.8 and 6.8 kg DM per kg N. Responses were similar at these times for treatments receiving combined spring and autumn N. Over all treatments, mean annual production of total herbage was between 7.08 t ha-1 DM with no N and 8.19 t ha-1 with 75 kg ha-1 N in both spring and autumn. Owing to drought, mean production in year 2 fell by 32% compared with year 1. White clover production fell progressively with increasing N application. Treatments with spring-applied N gave the most marked decrease. White clover was more markedly depressed than the associated grass by the drought in the second year. The mean reductions in white clover content were 0.17, 0.07 and 0.12 percentage units per kg applied N for spring N, autumn N and combinations. Autumn N use depressed white clover less than spring N but the yield response of grass was less. It is concluded that any applied N adversely affects white clover performance to some degree. Where management factors are unfavourable to white clover even strategic N use may not be wise. Instead, it is suggested that a ‘dual-sward’ approach be adopted in practice, namely, grass/white clover swards with no N. and complementary grass swards receiving optimum applied N to give better production at times when grass/white clover swards are relatively less productive.  相似文献   

8.
The response of swards which have been previously grazed to N fertilizer applied in early February was studied in two experiments in Northern Ireland. The effect of N fertilizer applied at a range of dates in autumn and spring on swards for out-of-season utilization was studied in a further experiment. Deep soil coring was also undertaken, subsequent to grazing with dairy cows, in grazed and protected areas in November and March to investigate the effect of out-of-season grazing on soil mineral N levels.
Dry-matter (DM) yield response to early spring N application in previously grazed swards was low, with no effect on DM yield in February or March. Progressively delaying N application (and commencement of herbage accumulation) in autumn from 8 September until 18 October reduced herbage availability in late autumn and early spring but increased leaf lamina content. The greater the amount of herbage accumulated to 1 December, the lower the tiller density in the following April.
N fertilizer had a greater impact on soil mineral N in spring than in late autumn/early winter, suggesting that fertilizer N was more prone to loss in the latter. Soil mineral N was not significantly affected by out-of-season grazing.
It is concluded that in well-fertilized, previously grazed swards response to N for out-of-season herbage is low and the probability for N loss is increased. Herbage quality will decline and the sward may be damaged if about 2 t DM ha−1 or more of harvestable herbage accumulates for use in winter or in early spring.  相似文献   

9.
Two experiments were carried out on a tall fescue sward in two periods of spring 1994 and on a tall wheatgrass sward in autumn 2001 and spring 2003 to analyse the effect of sward surface height on herbage mass, leaf area index and leaf tissue flows under continuous grazing. The experiment on tall fescue was conducted without the application of fertilizer and the experiment with tall wheatgrass received 20 kg P ha?1 and a total of 100 kg N ha?1 in two equal dressings applied in March (autumn) and end of July (mid‐winter). Growth and senescence rates per unit area increased with increasing sward surface height of swards of both species. Maximum estimated lamina growth rates were 28 and 23 kg DM ha?1 d?1 for the tall fescue in early and late spring, respectively, and 25 and 36 kg DM ha?1 d?1 for tall wheatgrass in autumn and spring respectively. In the tall fescue sward, predicted average proportions of the current growth that were lost to senescence in early and late spring were around 0·40 for the sward surface heights of 30–80 mm, and increased to around 0·60 for sward surface heights over 130 mm. In the tall wheatgrass sward the corresponding values during spring increased from around 0·40 to 0·70 for sward surface heights between 80 and 130 mm. During autumn, senescence losses exceeded growth at sward surface heights above 90 mm. These results show the low efficiency of extensively managed grazing systems when compared with the high‐input systems based on perennial ryegrass.  相似文献   

10.
Two experiments are described in which the effect of grazing or defoliating mixed swards at different times over winter and spring on clover content and development was investigated. In the first experiment swards were grazed with sheep (to about 3 cm) for a short period in (a) November, (b) November, January and March, (c) March or (d) not at all, in three consecutive years. All swards were grazed intermittently during the grazing season with cattle and cut for silage once each year. Each plot received either 0 or 50 kg N ha?1 in March. The effect of N fertilizer was to reduce clover content in each summer and clover growing point density in the third year. In two of the three years, treatments involving grazing in March had lower subsequent net annual herbage accumulation compared with the other two treatments and higher clover content in summer of the third year. Reduction in growing point density in all plots during the grazing season was associated with cattle grazing when conditions were wet, suggesting that stolon burial was implicated. Grazing with sheep in November, January and March resulted in significantly more visible (when counted in situ) clover growing points in April in year 2 and more total growing points (counted after dissection of turves) in the third year than the November grazed and ungrazed treatments which had, on occasions, higher grass tiller density. In a microplot experiment, high herbage mass standing over winter was associated with lower potential photosynthesis per unit clover lamina area and lower growing point density in March. Cutting herbage in March to 2-3 cm resulted in higher clover content and higher growing point number per unit stolon length. The latter was significantly correlated with total irradiance and red: far red at the canopy base. Potential photosynthesis of clover was not affected by cutting in March. It is concluded that growing point density can be increased by grazing or cutting during winter or spring. However, in order for these new stolons to contribute to clover yield during the summer, they have to be maintained until then by ensuring that competition from grass is minimized by keeping the sward short in winter and spring and avoiding the burial of stolons during grazing.  相似文献   

11.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

12.
The effects of autumn management and nitrogenous manuring on the production of early spring grass were studied from 1954 to 1957 on farms throughout England and Wales.
The most important management factor influencing spring yields was the application of spring nitrogen. In the early spring 6 to 10 lb. of dry matter were produced per lb. of nitrogen applied. Autumn nitrogen increased herbage yields in the auttimn by 8 to 17 lb. of dry matter per lb. of nitrogen applied.
Italian and perennial ryegrass responded well to autumn nitrogen but it was important to graze off the extra growth fairly quickly to prevent the sward becoming too open. The yield of ryegrass swards which received spring nitrogen were very much higher if they were grazed during the previous September and October than if they had been rested during those months.
In two years neither the autumn management nor alumni fertilizer appeared to influence the spring yields of cocksfoot, timothy or meadow fescue swards, in one year, however, when autumn growth was poor, autumn nitrogen and resting resulted in slightly better yields on these swards in the following spring.
It is suggested that resting swards during September and October to build up "reserves" is relatively unimportant in relation to the yields of grass in the following spring.  相似文献   

13.
14.
A crop of cocksfoot and lucerne in alternate rows was subjected to various autumn treatments for winter pasture. The yield of grass in winter, and the effect of autumn and winter treatments upon yield and composition in the following spring, are reported and discussed.
Maximum yield of winter grass was achieved by resting from an early date and applying nitrogenous fertilizer. The response to fertilizer applied in August and mid-September for winter grass production was as good as that obtained on ordinary swards at other times of the year. To ensure an adequate yield in any year the crop would need to be rested from early August and to receive about 70 lb N per acre.
The spring growth of cocksfoot was distinctly retarded by cutting twice in winter, i.e. in November and February. Cutting once only had no such adverse effect.
Both cocksfoot and lucerne persisted satisfactorily. The use of nitrogenous fertilizer to promote autumn growth of grass did not greatly reduce the overall productivity of the lucerne.
The two species were complementary in the sense that, in combination, they maintained a high aggregate yield of herbage under a range of weather conditions in midsummer and in winter.  相似文献   

15.
An established sward of binary mixtures of meadow fescue (Festuca pratensis) and white clover (Trifolium repens) (either AberHerald, Grasslands Huia or Sandra) was subjected to (A) no further defoliation, (B) a defoliation in late September or (C) a defoliation in late October after four harvests had been taken during the grazing season. About a tonne of dry matter (DM) was removed by the autumn defoliations. There were two levels of nitrogen application in spring, either 0 or 90 kg ha?1. The development of grass and clover morphology and population sizes from early autumn until the first harvest the following year was followed by regular sampling of the above-ground material. Stolons were analysed for total non-structural carbohydrates (TNCs), and the temperature at stolon level was continuously recorded. There were no interactions between autumn defoliation, clover cultivar or nitrogen treatments on any of the parameters studied. White clover growing-point numbers and stolon morphological characteristics were reduced in size during the winter and did not recover during the spring. A defoliation in late September resulted in the greatest reduction, whereas there were no differences between the other two treatments. The grass tiller population increased from early autumn until the last sampling occasion in May, but both autumn defoliations resulted in a smaller increase. Defoliation in late September had the greatest impact. The TNC content of white clover stolons fell from about 350 g kg?1 to 150 g kg?1 DM from late autumn until late April. There were small differences between the treatments, but a defoliation in late September resulted in a significantly lower level in late autumn. The temperature amplitude at stolon level was consistently greater in plots defoliated in late September. Total DM harvested in spring was 4367, 2564 and 3536 kg ha?1, of which 388, 352 and 460 kg ha?1 was white clover, from treatments A, B and C respectively. It is concluded that an autumn defoliation may affect the overwintering of white clover negatively, but that the effect on the grass may be even more detrimental.  相似文献   

16.
Abstract The implications for the agricultural productivity of the UK upland sheep systems of reducing nitrogen fertilizer application and lowering stocking rates on perennial ryegrass/white clover swards were studied over 4 years at a site in Wales. The system involved grazing ewes and lambs from birth to weaning on swards maintained at a constant height with surplus herbage made into silage, thereafter ewes and weaned lambs grazed on separate areas until the onset of winter with adjustments to the size of the areas grazed and utilizing surplus pasture areas for silage. Four stocking rates [SR 18, 15, 12 and 9 ewes ha?1 on the total area (grazed and ensiled)] and two levels of annual nitrogen fertilizer application (N 200 and 50 kg ha?1) were studied in five treatments (N200/SR18, N200/SR15, N50/SR15, N50/SR12 and N50/SR9). Average white clover content was negatively correlated with the level of annual nitrogen fertilizer application. White clover content of the swards was maintained over the duration of the experiment with an increasing proportion of clover in the swards receiving 50 kg N ha?1. Control of sward height and the contribution from white clover resulted in similar levels of lamb liveweight gain from birth to weaning in all treatments but fewer lambs reached the slaughter live weight by September at the higher stocking rates and with the lower level of fertilizer application. Three of the five treatments provided adequate winter fodder as silage (N200/SR15, N50/SR12 and N50/SR9). Because of the failure to make adequate winter fodder and the failure of white clover to fully compensate for reduction in nitrogen fertilizer application, it is concluded that nitrogen fertilizer can only be reduced on upland sheep pastures if accompanied by reduced stocking rates.  相似文献   

17.
The objective of this study was to examine the effect of herbage mass and daily herbage allowance (DHA) on sward characteristics and animal performance, dry‐matter intake, rumen pH and volatile fatty acid production of unsupplemented spring‐calving dairy cows throughout the main grazing season. Sixty‐eight Holstein‐Friesian dairy cows were randomly assigned across four treatments (n = 17) in a 2 × 2 factorial design. Two swards were created with different levels of pre‐grazing herbage mass [allocated above 4 cm (>4 cm); 1700 kg DM ha?1 (medium; M) or 2200 kg DM ha?1 (high; H)] and two levels of DHA (>4 cm; 16 or 20 kg DM per cow d?1). An additional eight lactating ruminally cannulated Holstein–Friesian dairy cows were randomly assigned to each treatment in a replicated 4 × 4 Latin square design. Sward and animal measurements were collected across four periods each of 1 week duration in April and May (PI) and July and August (PII). Maintaining the medium‐mass sward across the season improved the nutritive value of the sward in the latter part of the grazing season compared with high‐mass swards, thus resulting in increased animal intakes and milk production throughout PII. The higher organic matter digestibility of the medium‐compared with high‐masses during PII indicates that grazing severity and herbage mass in the spring to mid‐summer period will determine sward quality parameters in the late summer period.  相似文献   

18.
A framework for managing rotationally grazed pastures for dairy cattle which enables the cows’ energy and protein requirements to be met while simultaneously limiting the amount of N excreted in order to reduce N losses is described. The first objective is achieved by ensuring that lamina mass and the N concentration of herbage do not limit herbage intake or feeding value. The second objective is achieved by limiting N fertilizer supply or increasing the interval between defoliations to reduce the N concentration of herbage. Lower and upper thresholds for the N concentration of herbage and lamina mass were estimated from published data. The method is illustrated using two vegetative regrowths (beginning and end of spring) in a cutting experiment with two fertilizer treatments, 0 or 120 kg N ha?1 (?N and +N), and early or late cutting. Decreasing N supply led to a reduction in grazing management flexibility, i.e. the defoliation interval ranges which were compatible with the required sward characteristics (minimum lamina mass and N concentration of lamina) for herbage intake and to meet the protein requirements of dairy cows. Aiming for the upper threshold N concentration of herbage increased the minimum interval between defoliations only for the +N treatments. Nevertheless, grazing management flexibility remained the highest for the +N treatments.  相似文献   

19.
A five‐year experiment tested the response of above‐ground net primary production (ANPP) and plant functional groups to manipulations in residual dry matter (RDM), reflecting typical grazing practices in Californian annual grasslands. The RDM treatments were 225, 560, 900 and 5000 kg ha?1 with the latter treatment representing no grazing by livestock. ANPP in autumn, winter and spring showed a strong year × RDM interaction indicating that, in periods with higher herbage mass, the highest RDM treatment, representative of no grazing, was usually more productive. However, the opposite pattern was observed for the autumn period when ANPP was lowest. Random effects models indicated that at most 0·20 of the variation in ANPP for any of the three seasons stemmed from RDM treatments, with the remaining variation partitioned among temporal and spatial dimensions or not explained. Cover of grass species was highest under the highest RDM treatment in four of the five years, and lowest for the lowest RDM treatment compared with the two intermediate RDM treatments in the two years with the highest herbage masses. Cover of forbs and clover was higher on the lowest RDM treatment and lower on the highest RDM treatment than on the intermediate treatments. The results suggest that residual RDM values above 550 kg RDM ha?1 are appropriate for annual grasslands with a mean annual precipitation of more than 400 mm and offer a compromise between herbage use and promotion of future productivity and diversity, but direct control of ANPP and composition via management is not attainable because the environmental factors are predominant.  相似文献   

20.
The effect of sowing date (SD) and sowing rate of perennial ryegrass (PRG) on the establishment of Caucasian and white clovers in New Zealand was assessed. Clovers were sown in spring on 24 September (SD1) and 9 November (SD2) 1999, and in autumn on 4 February (SD3) and 31 March (SD4) 2000. On each date, clovers were sown with 0, 3, 6 or 12 kg ha?1 of PRG. Total herbage dry matter (DM) production up to 6 November 2000 was 13–16 t DM ha?1 for SD1 and SD2 when sown with 3–12 kg ha?1 of PRG, and 7–10 t DM ha?1 for sown clover monocultures. For SD3 and SD4, total herbage production was 6–9 t DM ha?1 with PRG, while total herbage production of clover monocultures was 5·4 t DM ha?1 for SD3 and 2·6 t DM ha?1 for SD4. By 6 November 2000, white clover contributed proportionately more than 0·15 of herbage mass when sown with 3–12 kg ha?1 of PRG on SD1, SD2 or SD3, but less than 0·09 when sown on SD4. The proportion of Caucasian clover never exceeded 0·09 of herbage mass in any of the swards. White clover was successfully established in spring and in autumn with 3–12 kg ha?1 of PRG provided the 15‐mm soil temperature was above 14 °C. None of the combinations of Caucasian clover and PRG provided an adequate proportion of legumes during the establishment year. This unsuccessful establishment of Caucasian clover with PRG was attributed to its inability to compete for available light as a seedling due to slow leaf area expansion from secondary shoot development and a high root:shoot ratio. Alternative establishment strategies for Caucasian clover may include the use of slow establishing grasses, cover crops and temporal species separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号