首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The arrival of the warm tropical Leeuwin Current (LC) into southern Western Australia (SWA) may influence the movement timing and foraging habitat of juvenile southern bluefin tuna (SBT). Seasonal and interannual changes in the strength of the LC lead to thermal differences and potential changes in food availability between tropical and temperate waters in SWA. This phenomenon could influence the habitat utilization of SBT in these summer grounds. Movement characteristics determined from SBT tagged with acoustic transmitters (N = 244) using cross‐shelf lines of automated receivers for three summer‐autumn seasons (2004/2005, 2005/2006, 2006/2007) in SWA revealed interannual variability. Each year, the eastward movements of tagged fish increased as temperatures increased, and fish left the region when temperatures exceeded 20.0°C, a temperature indicative of the leading edge of the LC in SWA waters. Interannual fluctuations in the timing of movements were detected. When the LC was narrow and restricted to the shelf edge in 2004/2005, the distribution of SBT in shelf waters did not change before or after LC intrusion. In contrast, long distance eastward movements frequently occurred when the LC intrusion was spread wide over the continental shelf in 2005/2006 and 2006/2007. This suggests that, off SWA, juvenile SBT move quickly out of local foraging habitats defined by cool sub‐tropical temperate waters ahead of the tropical LC intrusion, despite these waters not being physiologically limiting. These results suggest that the behavioural response of SBT may be related to changes in prey availability as a result of changes in oceanographic conditions.  相似文献   

2.
Pop‐up satellite archival tags (PSATs) were deployed on 52 large (156–200 cm length to caudal fork) southern bluefin tuna (Thunnus maccoyii) in the western Tasman Sea during the austral winters of 2001–2005. Southern bluefin tuna (SBT) were resident in the Tasman Sea for up to 6 months with movements away from the tagging area occurring at highly variable rates. The data indicated a general tendency for SBT to move south from the tagging area in the Western Tasman Sea. Four individuals migrated west along the southern continental margin of Australia and into the Indian Ocean. Three individuals moved east into the central Tasman Sea, with one individual reaching New Zealand. We also describe the first observed migration of an SBT from the Tasman Sea to the Indian Ocean spawning grounds south of Indonesia. Individuals spent most of their time relatively close to the Australian coast, with an estimated 84% of time spent in the Australian Fishing Zone. SBT favored temperatures between 19 and 21°C, adjusting their depth to the vertical temperature distribution. Distinct diurnal diving patterns were observed and adjustment of depth to maintain constant ambient light levels over a 24‐h period. The findings of this study are a significant advance toward greater understanding of the spatial dynamics of large SBT and understanding the connectivity between distant regions of their distribution.  相似文献   

3.
We used satellite telemetry data to investigate the movement patterns and habitat use of juvenile shortfin makos Isurus oxyrinchus (Lamnidae) tagged in the Great Australian Bight, southern Australia. Tracking durations ranged from 49–672 days and six deployments were > 1 year. During winter and spring, some shortfin makos migrated to the tropical NE Indian Ocean and Coral Sea, and the Subtropical Front region. One shortfin mako undertook an extended migration of 25 550 km across the Indian Ocean. Areas characterized by sea‐mounts in the NE Indian Ocean, the oceanic Subtropical Front region, and the continental shelf edge (200‐m depth) and slope canyons were visited by several sharks. Juvenile shortfin makos used the outer continental shelf, the shelf edge, the slope and oceanic waters during migrations and mostly exhibited fidelity in the mid‐outer shelf, the shelf edge and slope habitats characterized by high bathymetric relief and oceanographic frontal gradients. Our findings highlighted that the continental shelf and slope and associated submarine canyons of the Great Australian Bight represent ecologically important habitats for juvenile shortfin makos. The findings of this study will be pertinent during future management processes for this highly migratory species in this Southern Hemisphere region.  相似文献   

4.
Abstract Southern bluefin tuna (SBT), Thunnus maccoyii (Castelnau), is a quota‐managed species that makes annual winter migrations to the Tasman Sea off south‐eastern Australia. During this period it interacts with a year‐round tropical tuna longline fishery (Eastern Tuna and Billfish Fishery, ETBF). ETBF managers seek to minimise the bycatch of SBT by commercial ETBF longline fishers with limited or no SBT quota through spatial restrictions. Access to areas where SBT are believed to be present is restricted to fishers holding SBT quota. A temperature‐based SBT habitat model was developed to provide managers with an estimate of tuna distribution upon which to base their decisions about placement of management boundaries. Adult SBT temperature preferences were determined using pop‐up satellite archival tags. The near real‐time predicted location of SBT was determined by matching temperature preferences to satellite sea surface temperature data and vertical temperature data from an oceanographic model. Regular reports detailing the location of temperature‐based SBT habitat were produced during the period of the ETBF fishing season when interactions with SBT occur. The SBT habitat model included: (i) predictions based on the current vertical structure of the ocean; (ii) seasonally adjusted temperature preference data for the 60 calendar days centred on the prediction date; and (iii) development of a temperature‐based SBT habitat climatology that allowed visualisation of the expected change in the distribution of the SBT habitat zones throughout the season. At the conclusion of the fishing season an automated method for placing management boundaries was compared with the subjective approach used by managers. Applying this automated procedure to the habitat predictions enabled an investigation of the effects of setting management boundaries using old data and updating management boundaries infrequently. Direct comparison with the management boundaries allowed an evaluation of the efficiency and biases produced by this aspect of the fishery management process. Near real‐time fishery management continues to be a realistic prospect that new scientific approaches using novel tools can support and advance.  相似文献   

5.
The habitat use of Pacific bluefin tuna (Thunnus orientalis; PBF) in nursery waters off the southern coast of Japan was investigated using archival tags over a 3 year study period (2012–2015), and the data were used to examine the free‐ranging habitat preferences of PBF and the relationship between their horizontal movements and the path of the Kuroshio off the Pacific coast of Japan. The path of the Kuroshio fluctuated seasonally, leading to changes in water temperature that strongly influenced the habitat use of small PBF (2–3 months after hatching). Most PBF were present in coastal waters inshore of the path of the current, and their habitat use changed in response to the distance of the current from the coast. The Kuroshio typically flowed along the coast from summer to autumn, and PBF remained in the coastal waters off Kochi Prefecture during this period. In contrast, PBF quickly moved eastward in winter when the current moved away from the coast. Throughout the winter and spring, the area of habitat use extended widely from the eastern end of the southern coast of Japan (the Boso Peninsula) to the offshore Kuroshio‐Oyashio transition region. These findings suggest that the seasonal habitat use and movement behavior of juvenile PBF are influenced by the distance of the Kuroshio axis from the coast, and the ultimate drivers are likely variations in oceanographic conditions and prey availability along the southern coast of Japan.  相似文献   

6.
7.
Abstract –  We examined macrohabitat patch level assemblage composition and habitat use patterns of fishes over four seasons in a second-order submontane stream (Danube drainage, Hungary). Rainfall data indicated that our study included both high- and low-water periods, and hence our results may be applicable to broader time scales. Principal component analysis of physical habitat data from 13 macrohabitat patches indicated that these patches represented a riffle-pool continuum. Correspondence analysis of fish assemblage structure data from these patches identified a continuum in assemblage composition that was positively correlated with the habitat continuum. The riffle fauna was dominated by stone loach ( Barbatula barbatula ), whereas chub ( Leuciscus cephalus ) were most abundant in pool patches. We detected little evidence of seasonality in either fish assemblage structure or habitat use. Fish density did not differ significantly among macrohabitat patches in two (summer and autumn 1999) of three seasonal samples, although riffle patches displayed significantly higher fish abundance in late spring 2000. This difference primarily was due to higher abundance of juvenile stone loach in riffles. Two species, stone loach and minnow ( Phoxinus phoxinus ), displayed generalized habitat use patterns, whereas chub and rare species (i.e., gudgeon, Gobio gobio ; dace, Leuciscus leuciscus ; Barbus petenyi ; and burbot, Lota lota ) were significantly over-represented in pool habitats. We hypothesized that pool specialists (i.e., chub and rare species) were responding primarily to the increased depth of these habitats. Nevertheless, our data did not demonstrate the presence of separate pool and riffle habitat guilds. In conclusion, we believe that our understanding of stream fish ecology will be greatly facilitated by use of a 'patch-based approach'.  相似文献   

8.
9.
Lakes can be important to stream dwelling fishes, yet how individuals exploit habitat heterogeneity across complex stream‐lake networks is poorly understood. Furthermore, despite growing awareness that intermittent streams are widely used by fish, studies documenting the use of seasonally accessible lakes remain scarce. We studied Arctic grayling (Thymallus arcticus) in a small seasonally flowing (June–October) stream‐lake network in Alaska using PIT telemetry. Overall, 70% of fish visited two lakes, 8% used a single lake, and 22% used only stream reaches. We identified five distinct behavioural patterns that differed in dominant macrohabitat used (deep lake, shallow lake or stream reaches), entry day into the network and mobility. Some juvenile fish spent the entire summer in a shallow seasonally frozen lake (average 71 days), whereas others demonstrated prospecting behaviour and only entered the stream channel briefly in September. Another group included adult and juvenile fish that were highly mobile, moving up to 27 km while in the 3‐km stream‐lake network, and used stream reaches extensively (average 59 days). Lentic and lotic habitats served differing roles for individuals, some fish occupied stream reaches as summer foraging habitat, and other individuals used them as migration corridors to access lakes. Our study emphasises the importance of considering stream‐lake connectivity in stream fish assessments, even to shallow seasonally frozen habitats not widely recognised as important. Furthermore, we demonstrate that individuals may use temporary aquatic habitats in complex and changing ways across ontogeny that are not captured by typical classifications of fish movement behaviour.  相似文献   

10.
  1. Sperm whales have occupied the waters off the Galápagos Islands, Ecuador, for at least the past 200 years. During the 19th century, they were the target of intensive whaling that severely depleted the population. In recent times, after commercial whaling ended, sperm whales in the region remain vulnerable to multiple threats, especially potential entanglement in fishing gear, which may hinder their ability to recover from the whaling era.
  2. As a highly mobile, long-lived species, long-term analysis of the habitat use of sperm whales is necessary to establish effective conservation and management strategies. Here, contemporary (1985–2014) and historical (1830–1850) sperm whale habitat use off the Galápagos Islands was analysed and contrasted to the extent of the Galápagos Marine Reserve (GMR). Contemporary habitat use and its variability over time were modelled as a function of geographic, oceanographic, and topographic variables using generalized additive models.
  3. The fine-scale habitat (<50 km) used by sperm whales was associated with topographic (i.e. depth and slope) and oceanographic characteristics (i.e. relative sea surface temperature and standard deviation of sea surface temperature), but these preferences varied over time.
  4. While historical and contemporary data indicate that sperm whale habitat primarily occurred within the boundaries of the GMR, in recent years, whales were found up to 30.1% of the time outside the GMR, potentially overlapping with commercial fisheries operating in the area.
  5. The dynamic nature of the relationship of this nomadic species with its habitat highlights the need of large-scale conservation efforts across the Eastern Tropical Pacific region, including the wide-scale enforcement of regulations requiring the use of Automatic Identification System in fishing vessels, the promotion of on-board fisheries observer programmes, the development of adaptive management strategies, and international collaboration to identify and mitigate threats.
  相似文献   

11.
Abstract  The application of a drift-foraging bioenergetic model to evaluate the relative influence of prey abundance (invertebrate drift) and habitat (e.g. pool frequency) on habitat quality for young-of-the-year (YOY) and yearling juvenile cutthroat trout, Oncorhynchus clarki (Richardson) is described. Experiments and modelling indicated simultaneous limitation of fish growth by prey abundance and habitat, where depth and current velocity limit the volume of water and prey flowing through a fish's reactive field as well as swimming costs and prey capture success. Predicted energy intake and growth increase along a depth gradient, with slower deeper pool habitat generating higher predicted growth for both YOY and yearling trout. Bioenergetic modelling indicated that fish are constrained to use progressively deeper habitats to meet increasing energy requirements as they grow. Sensitivity of growth to prey abundance identified the need to better understand how variation in invertebrate drift and terrestrial drop affects habitat quality and capacity for drift-feeding fishes.  相似文献   

12.
Two closely related baleen whale species, sei and Bryde's whales, in the western North Pacific were studied to identify differences in habitat use. Data were obtained from May to August 2004 and 2005. This study examined the relationship between oceanographic features derived from satellite data and the distribution of sei and Bryde's whales using basic statistics. We investigated oceanographic features including sea surface temperature (SST), sea surface chlorophyll a (Chl‐a), sea surface height anomalies (SSHAs), and depth of the habitat. These two whale species used habitats with different SST, Chl‐a, and SSHA ranges. The 0.25 mg m?3 Chl‐a contour (similar to the definition of the Transition Zone Chlorophyll Front) was a good indicator that separated the habitats of sei and Bryde's whales. Then generalized linear models were used to model the probabilities that the whale species would be present in a habitat and to estimate their habitat distribution throughout the study area as a function of environmental variables. The potential habitats of the two species were clearly divided, and the boundary moved north with seasonal progression. The habitat partitioning results indicated that SST contributed to the patterns of habitat‐use and might reflect differences in prey species between the two whales. This study showed that the habitats of the sei and Bryde's whales were clearly divided and their potential habitat‐use changed seasonally.  相似文献   

13.
  • 1. The ultimate determination of coastal habitat suitability requires the integration of both dynamic (i.e. water mass characteristics) and stationary (structural) habitats. An approach using real‐time streamed data collection, remote sensing, and GIS modelling to compare and contrast seasonal and spatial patterns in these habitat components of the eastern and western distributaries of the lower Pascagoula River estuary is described.
  • 2. Structural and dynamic habitat characteristics are described using GIS and integrated with published growth data on juvenile mullet (Mugil spp.) and spot (Leiostomus xanthurus) to reveal zones of accelerated growth. Both mullet and spot had their greatest growth when water temperature and salinity (dynamic habitat) were physiologically optimal. The lack of spatial difference in the dynamic habitat between distributaries resulted in no growth zone differences for both species.
  • 3. The integration of the growth zones with the structural habitat component showed that the west distributary, with its greater availability and reduced fragmentation of main channel marsh edge, should provide a greater area of essential fish habitat than the east distributary for juvenile spot, a marsh‐edge associate. Because juvenile mullet are less associated with structural wetland habitat, growth zones and the stationary (structural) habitat were not integrated.
  • 4. The approach of integrating real‐time geo‐referenced water quality data with regional fish growth‐rate data is an important step towards a quantitative understanding of the hierarchical nature and inherent variability of dynamic coastal environments. The use of this holistic approach should lead to more effective management of estuarine systems, especially in regard to potential impacts within the estuary's watershed and to its coupling with offshore environments.
Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract– We determined the habitat use of age-0 yellow perch ( Perca flavescens ) in two South Dakota (USA) lakes. Larval perch abundance was based on trawl catches and related to environmental variables on two late spring dates. Juvenile perch abundance was based on late July shoreline seine and bottom trawl catches. Day and night juvenile abundance relations to environmental variables were examined. Larval abundance appeared to be related to biological environmental variables, and no significant (P≥0.05) correlations with physical habitat variables were found. Juvenile yellow perch abundance was related to physical variables, particularly substrate, water temperature and water depth. The only biological variable that could be related to juvenile abundance was chironomid abundance. Finally, juvenile perch abundance was positively associated with abundance of other juvenile fishes and minnows, but these associations varied by lake, time of day and habitat type. Understanding age 0 perch habitat use will allow fishery biologists to better assess sampling designs and recruitment processes.  相似文献   

15.
  1. Juvenile Pacific salmon exhibit diverse habitat use and migration strategies to navigate high environmental variability and predation risk during freshwater residency. Increasingly, urbanization and climate-driven hydrological alterations are affecting the availability and quality of aquatic habitats in salmon catchments. Thus, conservation of freshwater habitat integrity has emerged as an important challenge in supporting salmon life-history diversity as a buffer against continuing ecosystem changes.
  2. To inform catchment management for salmon, information on the distribution and movement dynamics of juvenile fish throughout the annual seasonal cycle is needed. A number of studies have assessed the ecology of juvenile coho salmon (Oncorhynchus kisutch) during summer and autumn seasons; catchment use by this species throughout the annual cycle is less well characterized, particularly in high-latitude systems.
  3. Here, n = 3,792 tagged juvenile coho salmon were tracked throughout two complete annual cycles to assess basin-wide distribution and movement behaviour of this species in a subarctic, ice-bearing catchment.
  4. Juvenile coho salmon in the Big Lake basin, Alaska, exhibited multiple habitat use and movement strategies across seasons; however, summer rearing in lotic mainstem environments followed by migration to lentic overwinter habitats was identified as a prominent behaviour, with two-thirds of tracked fish migrating en masse to concentrate in a small subset of upper catchment lakes for the winter. In contrast, the most significant tributary overwintering site (8% of tracked fish) occurred below a culvert and dam, blocking juvenile fish passage to a headwater lake, indicating that these fish may have been restricted from reaching preferred lentic overwinter habitats.
  5. These findings emphasize the importance of maintaining aquatic connectivity to lentic habitats as a conservation priority for coho salmon during freshwater residency.
  相似文献   

16.
Abstract – Although homing behaviour has been observed in juvenile Atlantic salmon, brown trout and resident cutthroat trout, this behaviour has not been well studied in juvenile Pacific salmon. We examined the site fidelity and homing behaviour of juvenile coho salmon ( Oncorhynchus kisutch ) by marking and relocating them within an off-channel habitat. Over 80% of displaced fish returned to the area from which they were originally collected. The proportion of fish that returned to the original location did not vary significantly among three sampling dates. However, we found that this proportion decreased over time in a brackish lagoon when we statistically analysed the data reported by Day (1966) . Our results suggest that juvenile coho salmon exhibit strong site fidelity and are able to return to their home ranges after displacement. These behaviours are likely to be important for the winter survival of juvenile coho salmon.  相似文献   

17.
18.
Understanding the spatial ecology of juvenile freshwater fish beyond summer months is an essential component of their life history puzzle. To this end, declines in the natural populations of sympatric Muskellunge (Esox masquinongy) and Northern Pike (Esox lucius) in the upper St. Lawrence River prompted study of spatiotemporal patterns and habitat requirements associated with earlier life stages of these congeneric, freshwater predators in fall and overwinter periods. Over 75 age-0 esocids were tagged and passively monitored using acoustic telemetry in four nursery embayments in fall and winter months from 2015 and 2017 months to elucidate spatiotemporal ecology and test hypotheses related to emigration. Presence, residency, space and habitat use were assessed and modelled against key environmental (i.e. water temperature and level) and biological (total length) covariates using mixed effect models. Muskellunge were found to spend more time in deeper, littoral regions with canopy-forming, submerged aquatic vegetation while Northern Pike aggregated in the deepest, highly vegetated region of their nursery embayment. Results suggest fish may exhibit transitionary movements in fall months and may span outwards into nearshore regions along the main river channel. Studies informing coastal restoration initiatives to increase Muskellunge production are encouraged to assess sympatric habitat use relative to prominent embayment structures and further explore depth partitioning by these young predators. With a substantial influence from water-level regulation on use of nursery habitat, future studies must work in concert with management plans aimed at producing more natural riverine cycles and thus increased recruitment of Esox species.  相似文献   

19.
Effective conservation of highly mobile species requires an understanding of the factors that influence their habitat use patterns, locally and within a large‐scale oceanographic context. We characterized the seasonal (chick‐rearing, post‐breeding) and inter‐annual (2004–2008) distribution and abundance of black‐footed albatross (Phoebastria nigripes; BFAL) along the central California continental shelf/slope using standardized vessel‐based surveys. We used a hypothesis‐based information‐theoretic approach to quantify the relative influence of environmental conditions on BFAL occurrence and abundance by assessing their association with: (i) local static bathymetric features, (ii) local and regional dynamic oceanographic processes, and (iii) seasonal and inter‐annual basin‐wide variability. While the presence/absence models yielded stronger results than the abundance models, both revealed that static and dynamic features influence BFAL habitat use. Specifically, occurrence was greatest near the shelf‐break, particularly in months with strong upwelling. High BFAL densities were associated with Rittenburg Bank, especially during the chick‐rearing season, periods of positive North Pacific Gyre Oscillation index and large northern monthly upwelling, evidenced by cool, salty waters in the study area. BFAL aggregation intensity was greatest onshore of the shelf‐break (200 m isobath). Behavioral observations reinforced the notion that transiting BFAL are widely dispersed near the shelf‐break and concentrate in large flocks of birds sitting on the water farther onshore. These results underscore the need to consider oceanographic processes at multiple spatial scales when interpreting changes in BFAL dispersion within marine sanctuaries, and highlight the feasibility of implementing bathymetrically defined protected areas targeting predictable BFAL aggregations within these larger management jurisdictions.  相似文献   

20.
Climate change has altered the oceanographic environment and subsequently the habitats of marine species. Fish and invertebrate populations’ responses to habitat include movement with latitude and depth to remain within their fundamental niches. The northwest Atlantic mackerel (Scomber scombrus) population has fluctuated over the last century due in part to changes in the environment. We used species distribution models to understand the influence of the physical (temperature) and biological (zooplankton) environment on mackerel larval abundance, and how such relations have determined larval habitat suitability in the Northeast U.S. Shelf. Atlantic mackerel larval presence and abundance correlated with sea temperature and copepod abundances, suggesting that larval survival may be sensitive to specific temperatures and zooplankton prey. Predicted abundances were spatially interpolated to estimate Atlantic mackerel larval suitable habitat. Metrics for habitat quality indicate that the Mid‐Atlantic Bight has become less suitable over time. Since the 1970s, the proportion of Northeast U.S. Shelf suitable habitat located in the Mid‐Atlantic Bight has decreased, as southern New England and the western Gulf of Maine regions have become more suitable. Habitat suitability within the Northeast U.S. Shelf has shifted northeast: from the Mid‐Atlantic Bight‐southern New England border towards the northeast portion of southern New England. While total Northeast U.S. Shelf habitat suitability has decreased since the 1970s, the decline in the time series trend was not statistically significant. Thus, while select ecoregions have decreased in habitat suitability, larval habitat does not appear to be the only contributor to decreases in the U.S. Atlantic mackerel contingent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号