首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
太湖地区稻田田面水氮磷动态特征及径流流失研究   总被引:19,自引:3,他引:16  
为探讨稻田氮磷养分地表径流流失特征,以太湖地区典型稻田为研究对象,通过在溧阳、宜兴两地实施田间试验,对稻田施肥后田面水氮磷动态变化特征及径流流失进行了研究。结果表明:两试验点田面水总氮浓度均在施肥当日达到最高,然后迅速下降,基肥在施肥7 d后逐渐趋于稳定,而追肥则在施肥5 d后逐渐趋于稳定;田面水总磷浓度也是在施肥后的当日达到最高,而后迅速下降,8 d后基本趋于稳定;施肥后田面水总氮及总磷浓度与施肥天数均可用指数方程进行拟合,且均达极显著水平;溧阳和宜兴两试验点稻季总氮径流量分别为8.21,10.73 kg/hm^2,分别占稻季氮肥总投入量的2.49%和3.25%,总磷径流量分别为0.58,0.75 kg/hm^2,分别占稻季磷肥总投入量的0.97%和1.25%。  相似文献   

2.
通过生物质炭与不同肥料配施的方法研究水稻田面水氮、磷、钾等养分的流失风险。结果表明:除不施肥外,其余施肥处理水稻田面水总氮、可溶氮、铵态氮、可溶性钾浓度均于施肥第2天达到顶峰,并逐渐趋于稳定,1周后分别降为顶峰值的9.2%~15.5%,11.0%~38.5%,16.6%~42.8%和30.4%~68.0%;总磷、可溶磷浓度于施肥第3天到达顶峰,后呈现持续下降趋势并逐渐趋于稳定,1周后为顶峰值的29.2%~64.8%,33.5%~59.6%;硝态氮浓度在施肥第2天达到顶峰,随后下降,但在1周内又有间歇性上升,出现铵态氮向硝态氮转化的过程,最后下降至不施肥水平。施肥时添加生物质炭能够适量吸收田面水中氮、磷、钾等养分,降低养分的流失风险;适量有机肥的加入可大幅度提高田面水中磷素浓度,同时也可提高田面水中可溶性有机碳(DOC)浓度,是仅施无机肥的124.4%~181.7%。因此,在单一施加无机肥时适量添加有机肥与生物质炭可优化田面水中养分比例,更加有利于水稻对养分的吸收。  相似文献   

3.
为指导水稻田合理施肥,防治稻田面源污染,试验开展了不同氮肥减施比例对紫云英—水稻轮作体系下稻田田面水氮磷流失的影响研究。2020年在浙江建德开展田间小区试验,设置冬闲(CK)和冬种紫云英(CT)2个处理,并在冬种紫云英基础上设置4个减氮比例,分别为0(CT0),10%(CT1),20%(CT2),30%(CT3),共5个处理,每个处理重复3次。在水稻移栽施肥后开始稻田田面水样品采集(包括施肥2周内的连续采样以及2周后相隔7,14,28天的间隔采样),测定田面水氮磷浓度;于水稻成熟后采集土壤和植物样品,测定土壤理化性状以及水稻生长性状和产量。各处理田面水总氮、可溶性氮、铵态氮以及总磷、可溶性磷均在施肥后第1天达到峰值,总氮在基肥后4天内降幅明显,为最大值的4.2%~9.1%,可溶性磷在施基肥5天内降至最大值的4.7%~13.7%。采样期内,CK处理田面水总氮、可溶性氮、总磷和可溶性磷的平均浓度分别为48.87,36.82,0.82,0.64 mg/L,CT0、CT1、CT2、CT3的总氮平均浓度分别为CK的93.9%,78.1%,79.7%,69.7%;可溶性氮平均浓度分别为CK的95.1%,84.1%,85.7%,73.2%;总磷平均浓度分别为CK的90.9%,76.9%,96.2%,81.3%;可溶性磷平均浓度分别为CK的79.4%,73.8%,87.3%,68.7%。与CK相比,CT2、CT3显著提高土壤有效磷含量,增加幅度分别为61.7%和37.0%。比较冬闲处理,翻压紫云英使水稻株高增高0.7%~3.5%,有效穗数增加7.0%~15.2%,水稻增产0.4%~4.9%。与冬闲处理相比,冬种紫云英配合不同比例氮肥减施均能降低稻田田面水氮磷流失风险,其中以30%氮肥减量效果最好;紫云英配合减氮施肥措施能够提升土壤有效磷、全氮含量和水稻产量,其中均以紫云英配合20%减氮施肥效果最好。综合稻田田面水氮磷流失风险、土壤肥力以及水稻产量,紫云英配合20%减氮施肥是较为适合该地区的种植方式。  相似文献   

4.
本研究设计了不同肥料和不同施肥管理方式等8种处理,以期通过研究不同减量施肥处理下稻田田面水中氮素和磷素的动态变化来了解研究区面源污染状况及风险。结果表明,各减量化处理均能有效保证水稻产量,同时不同程度降低了田面水中的氮磷浓度,降低流失潜能。总氮和铵氮分别在施肥后第1天和第3天达到峰值,一周之后降至较低水平,铵氮是田面水中氮素流失预防的主要监测对象。总磷和可溶态磷均在施肥后第1天便达到峰值,之后迅速降低至稳定,5天后总磷浓度降至1 mg/L以下,可溶态磷/总磷基本在0.5以下,田面水中磷素的主要流失形态为悬浮颗粒态磷。此外,后期的施氮行为会引起田面水中可溶态磷/总磷的上升,使可溶态磷相对流失潜能增大。  相似文献   

5.
通过构建包括不同氮肥类型、氮肥用量、施肥方式和施肥次数的6种氮肥运筹模式,分析了不同氮肥运筹模式对稻田田面水各形态氮浓度变化和水稻产量的影响。结果表明:不同时期施用缓控释肥和尿素后,总氮和铵态氮浓度均在1天达到峰值,硝态氮浓度在2~3天达到峰值,之后逐渐下降趋于稳定。铵态氮为各处理施肥后初期的主要氮形态,1天时铵态氮占总氮比例达50.6%~92.8%,而硝态氮仅占3.8%~22.6%。田面水总氮和铵态氮峰值浓度大小与氮肥类型、施用用量和施肥方式均存在相关性,等氮量施用条件下,田面水总氮和铵态氮峰值浓度大小顺序为撒施尿素处理撒施缓控释肥处理侧深施缓控释肥处理,在N施用量48 kg/hm~2条件下,撒施尿素处理、撒施缓控释肥处理、侧深施缓控释肥处理的总氮和铵态氮平均峰值浓度分别为38.44,16.44,7.55 mg/L和34.39,13.00,3.82 mg/L。等氮施用量和相同施肥次数条件下,基肥采用侧深施缓控释肥的处理4,5,6比相应的撒施缓控释肥的处理1,2,3的产量分别提高2.8%,3.5%,2.7%。基肥采用侧深施缓控释肥和"一基一穗"2次施肥的处理6的水稻产量,在氮肥总施用量减少30%条件下,仅比基肥采用撒施缓控释肥和"一基一蘖一穗"3次施肥的处理1的水稻产量减少0.3%。侧深施缓控释肥可以有效降低施肥初期田面水铵态氮峰值浓度,从而减少氨挥发和降低径流流失风险,并在一定程度减量条件下不会对水稻产量产生影响。  相似文献   

6.
稻田化肥减量施用的环境效应   总被引:11,自引:0,他引:11  
在太湖地区宜兴市水稻田采取田间试验与室内分析相结合的方法,研究了适当减少化肥用量(优化施肥)对水稻产量、田面水与渗漏液中氮、磷养分的影响.结果表明:优化与常规两种施肥处理下水稻产量差异不显著,但优化施肥节省22%氮肥,减少30%~40%氮素径流损失,减少32.3%氮素渗漏损失.田面水与渗漏液中溶解性总氮(TDN)浓度与施肥量呈正相关,在施肥后的1~2 d内达到峰值,不同施氮处理TDN浓度在一周内差异显著,以后渐趋一致.施肥后田面水中溶解性总磷(TDP)浓度高达15.7 mg·L-1,整个稻季均高于导致水体富营养化的临界值,存在着污染附近水体的风险;稻田对灌水中的磷有净化作用.适当减少化肥用量、加强稻田水肥管理,是控制农田面源污染的重要措施.  相似文献   

7.
为合理利用菌渣,以化肥施氮量为基准,设置1,1.5,2,2.5倍氮量的菌渣还田处理,采用田间定位监测并结合室内分析实验,以期通过研究稻田田面水中氮素和磷素的动态变化探明菌渣还田下面源污染风险。结果表明:与化肥处理相比,菌渣还田处理显著降低田面水TN、DTN、DON、PN和NH4+-N含量,显著提高NO3--N/TN比例(P0.05);其田面水TN、DTN和NO3--N含量在施肥后均呈下降趋势,NH4+-N含量则表现为"先增后减",施肥后第5d达最大值,其中TN、DTN和NH4+-N含量变化均可用指数降低模型Y=C0×ekt(k0)拟合,NO3--N含量变化可用倒数模型Y=C0+k/x拟合;受田面水中氮含量等因素的影响,其TP、DTP和PP含量均显著降低(P0.05),TP和DTP含量表现为"先降后升再降"。总体来看,较化肥处理,菌渣还田不会延长田面水氮磷素流失风险期,同时显著降低田面水NH4+-N含量,缩短NH4+-N流失风险期,但等氮量还田会显著降低水稻产量及糙米氮含量(P0.05),超过2倍氮量还田会增加NO3--N流失风险。综合环境风险与粮食生产,应以1.5倍氮量还田为宜。  相似文献   

8.
化肥氮磷优化减施对水稻产量和田面水氮磷流失的影响   总被引:9,自引:0,他引:9  
为探讨氮(N)、磷(P)减量对降低稻田养分地表径流损失风险的影响,以毛里湖稻区为研究对象,连续两年(2016—2017年)进行田间小区试验,研究化肥氮磷优化减施对水稻产量和生长期内田面水N、P动态变化特征及径流流失的影响。结果表明:常规施肥处理(CF)和有机替代20%化肥N处理(0.8FN+0.2ON)稻田田面水总氮(TN)、NH_4~+-N和总磷(TP)浓度在施肥后迅速达到峰值,之后逐渐下降。而控释氮肥减N处理能有效减缓N素释放速度,田面水N素流失量远低于CF处理,且磷肥减量处理TP流失量低于CF处理。与CF处理相比,控释氮肥减N 20%(0.8N)和控释氮肥+过磷酸钙减量20%(0.8NP)处理水稻两年平均分别增产5.55%、3.22%,N素累积量分别提高19.01%、13.66%,氮肥偏生产力分别显著提高31.94%、28.83%,氮肥农学利用率分别提高47.52%、33.75%,氮肥吸收利用率分别提高95.30%、73.31%。0.8NP处理较0.8N处理水稻磷肥偏生产力两年平均显著提高22.08%,而0.8FN+0.2ON处理较CF处理P素累积量和磷肥吸收利用率分别降低11.14%、36.04%。总体而言,控释氮肥与磷肥减量既保证高产稳产,又有效降低稻田施肥初期N、P径流损失风险。在综合考虑农业生产节本增效和控制农田面源污染的前提下,可采用控释氮肥减量的施肥模式。  相似文献   

9.
通过微区模拟稻田试验,分析了免耕、浅耕和深耕3种耕作模式下滞水时间不同的稻田排水中氮磷的动态特征及总氮、总磷流失潜能,研究了稻田夏季施肥耕作模式和滞水时间对氮磷的减排效能。结果表明:(1)深耕有利于土壤固肥作用的发挥,田面水中TN和NH4+-N浓度呈逐渐下降的趋势。浅耕和深耕土壤中微生物环境利于硝化反应,不易被土壤吸附的NO3--N得以迅速向田面水中释放。免耕和深耕处理的田面水中TP和DP浓度在第1~5 d内浓度较高,3个耕作处理的滞排水中TP和DP在耕作处理5 d后均处于较低的浓度水平。(2)不同耕作模式滞水5 d后TN的绝对流失量均处于较低水平。免耕、浅耕、深耕在滞水5 d后可分别减少田面水中TN流失59.55%~65.68%、70.15%~88.20%和65.23%~77.26%。深耕处理的模拟稻田田面水中TN的流失潜能相对较小。不同耕作模式处理相对流失形态与潜能以TN为主。(3)免耕处理田面水中TP的绝对流失量最大,浅耕处理田面水中TP绝对流失量最少。免耕、浅耕、深耕在滞水5 d后再排水可分别减少田面水中TP流失54.70%~67.78%、62.99%~85.09%和52.45%~87.99%。浅耕处理模拟稻田田面水中TP的相对流失潜能较小。不同耕作模式处理田面水中磷素的相对流失形态表现出一定的差异性,田面水中磷素流失形态随时间变化呈现出TP与DP交替变化的现象。总之,从减少田面水中氮磷的绝对流失量出发,夏季浅耕不失为最佳清洁耕作模式;同时在滞水5 d后排水,能有效减少田面水中氮磷的流失量,减少稻田排水对面源污染的影响。  相似文献   

10.
太湖地区绿肥还田与无机氮追肥配施的环境效应分析   总被引:1,自引:1,他引:1  
通过太湖地区绿肥还田与不同用量的无机氮追肥配施小区试验,研究了水稻苗期、分蘖期和抽穗期田面水氮素不同形态的变化特征、径流损失及水稻产量。结果表明:绿肥还田后,水稻苗期田面水中总氮浓度出现先减小后增加的变化,总氮浓度增加的原因主要是有机氮浓度的增加,而无机氮浓度先升后降;分蘖肥和穗肥施用后,田面水氮素浓度随施肥量的增加而升高,田面水总氮和有机氮在施肥后第1天达到最大,随后快速下降,而无机氮在施肥后则经历了一个先升后降的变化过程;随着施肥量的增加,稻季氮素径流损失不断增大,无机氮是氮素径流损失的主要形态,且径流水中无机氮以铵态氮为主,故应将铵态氮作为农田排水污染检测的主要指标;绿肥还田模式下,施用氮素基肥可大大提高田面水的氮素含量,增加氮素流失风险,而不施氮素追肥或者过量减施均可影响作物的产量。绿肥还田,稻季配施140 kg hm-2无机氮追肥,可减少48%无机氮肥投入,降低38.5%氮肥流失率,实现水稻产量效应和环境效应的协调,是水体污染严重地区值得尝试的一种农作方式。  相似文献   

11.
为解决吉林省半干旱区滴灌施肥条件下氮肥合理施用问题,通过2年(2015—2016年)田间试验,研究了覆膜滴灌条件下施氮量(0,70,140,210,280,350kg/hm~2)对春玉米产量、氮素吸收利用、土壤剖面无机氮含量变化及氮素平衡的影响。结果表明:施氮量在70~210kg/hm~2范围内玉米产量随施氮量的增加显著增加,当施氮量超过210kg/hm~2后,处理间产量无显著差异;将玉米产量(y)与施氮量(x)拟合,得出最佳施氮量分别为195.1,201.0kg/hm~2。施氮显著提高了玉米各生育时期氮积累量,其中灌浆期和成熟期氮积累量以施氮量210kg/hm~2处理最高。氮素当季回收率、农学利用率和偏生产力均随施氮量的增加而下降。玉米成熟期0-200cm剖面土壤硝态氮和铵态氮含量随土层深度增加呈逐渐下降的趋势;施氮提高了0-200cm土壤硝态氮和铵态氮含量,其中施氮量280,350kg/hm~2处理40-200cm土层硝态氮含量显著高于其他施氮处理。玉米吸氮量、土壤无机氮残留量和氮表观损失量与施氮量呈极显著的正相关;玉米吸氮量、土壤无机氮残留量和氮表观损失量分别占增加纯氮的21.6%~23.3%,33.0%~37.4%,41.0%~43.7%。综上所述,在本试验条件下,综合产量、氮素吸收利用、土壤剖面无机氮含量变化及氮素平衡等因素,在吉林省半干旱区滴灌施肥适宜施氮量应控制在195~210kg/hm~2。  相似文献   

12.
以前期筛选的不同耐低氮性玉米品种正红311和先玉508为试验材料,通过田间裂区试验研究氮肥(0,90,180,270,360,450kg N/hm~2)对不同耐低氮性玉米品种氮素吸收利用及氮素平衡的影响。结果表明:施氮显著提高玉米的氮素积累、氮素转运和氮素表观损失,而收获指数、氮收获指数、氮素干物质生产效率、氮素产谷效率、氮素吸收效率、氮肥利用效率、氮肥生理效率、氮肥农学效率和氮肥偏生产力等随施氮量增加显著降低。与低氮敏感品种先玉508相比,耐低氮品种正红311氮素积累量、氮素转运量和产量更高,而氮素转运率、转运贡献率、收获指数及氮收获指数更低。正红311叶片较高的物质生产能力有利于其生育后期的氮素吸收和物质生产,使其氮肥吸收效率、氮肥利用效率、氮肥农学效率和氮肥偏生产力均显著高于先玉508,而氮素表观损失显著低于先玉508。川中丘陵山区土层瘠薄,土壤保肥保水能力差,随施氮量增加玉米氮素表观损失量和损失率均显著增加,耐低氮品种正红311具有较强的氮素吸收能力,能显著提高氮素的吸收利用效率从而有效减少氮素的表观损失。因此,在川中丘陵山区中低氮水平下推广种植耐低氮品种正红311既能充分发挥其产量优势,又能有效的控制氮素的表观损失。  相似文献   

13.
水氮调控对设施土壤有机氮组分、全氮和矿质氮的影响   总被引:2,自引:0,他引:2  
为探讨水氮调控对设施土壤有机氮组分、全氮和矿质氮的影响,通过膜下滴灌设施番茄田间定位试验,采用灌水下限(W_1、W_2、W_3)和施氮量(N_1、N_2、N_3)的两因素三水平随机区组设计,研究水氮调控对休耕期0—30cm土层土壤有机氮组分、全氮和矿质氮的影响。结果表明,不同水氮调控下,设施土壤有机氮主要是以酸解态氮为主,总体表现酸解态氮大于非酸解态氮含量。土壤有机氮组分在酸解态氮和非酸解态氮中分配比例差异明显。土壤有机氮各组分含量及占全氮比例的大小顺序为氨基酸氮/氨态氮未知氮氨基糖氮。除氨基糖氮,其余酸解态氮各组分和酸解总氮含量及其占全氮比例均随着土层深度的增加而降低,不同土层含量差异显著(P0.05)。土壤全氮、矿质氮和总有机氮含量随土层深度的增加也呈降低趋势,且含量差异达到极显著水平(P0.01)。除氨基糖氮,全氮与其他有机氮各组分、酸解总氮间均达到极显著正相关(P0.01);矿质氮仅与酸解氨态氮及酸解总氮的影响达到极显著(P0.01)和显著正相关(P0.05)。灌水下限、施氮量及水氮交互对设施土壤全氮、矿质氮和总有机氮及有机氮组分影响均达到极显著水平(P0.01)。因此,设施土壤氮素含量的变化与水氮管理模式紧密相关。氨态氮和氨基酸氮是设施土壤中最主要的有机氮形态,是土壤活性氮中的主要组分,亦是土壤供氮潜力的表征。考虑土壤供氮潜力,灌水下限35kPa、施氮量300kg/hm~2为该设施生产下最优的水氮管理措施。  相似文献   

14.
为探明生物炭与氮肥配施对土壤中氮素循环和烤烟氮素利用的影响,采用盆栽试验,设置四个处理:5 g/盆纯氮(CK),5 g/盆纯氮+100 g/盆生物炭(T1),3.5 g/盆纯氮+100 g/盆生物炭(T2),2 g/盆纯氮+100 g/盆生物炭(T3),利用15N标记的氮肥,测定生物炭与氮肥配施条件下烤烟生长不同时期土壤中15N的残留量、不同形态氮素的含量、土壤微生物量氮和移栽后90 d烟叶对不同氮源氮素的累积量。试验结果表明:相同施氮量时,生物炭的施用可以提高土壤中15N残留量、土壤无机氮、碱解氮、微生物量氮的含量和叶片对氮素的累积量。生物炭与氮肥配施时提高了肥料氮在烟叶中的占比,使15N利用率也提高了25.4%-63.3%。与对照相比,T2处理植烟土壤中铵态氮、硝态氮、碱解氮在移栽后75 d比对照分别提高了17.3%、8.0%、7.2%,碱解氮和微生物量氮的含量在移栽后90 d时也高于对照。在本试验条件下,生物炭与氮肥配施对土壤氮素的影响是显著的,施用生物炭时减少30%氮肥用量是可行的。  相似文献   

15.
施氮对小麦产量和氮素径流损失及氮肥投入阈值的研究   总被引:3,自引:0,他引:3  
为明确巢湖流域小麦季氮肥投入阈值,在连续3年田间试验条件下,研究了(2012—2014年)不同氮肥水平下(N0、N1、N2、N3、N4、N5分别为0,157.5,210.0,262.5,310.0,420.0kg/hm~2)小麦产量、植株氮素积累量、氮肥利用率、土壤无机氮残留量(0—20cm)及氮素径流流失;同时,利用回归方程模型对其间的相关关系进行拟合。结果表明:(1)与不施氮肥相比,施用氮肥可不同程度提高小麦产量,其中以N3处理增加的比例最大,为64.8%。利用二次函数分析,当施用氮肥超过290.9kg/hm~2时,小麦产量下降。(2)植株氮素累积量和氮肥利用率随施氮量的增加均呈先上升后下降的趋势,当实际施氮量为296.6kg/hm~2时,小麦地上部植株氮素积累量最高;当施氮量为158.5kg/hm~2时,氮肥利用率最高。(3)随着施氮量的增加,土壤中无机氮的残留量(0—20cm)和氮素的径流损失逐渐升高,但是在310.0kg/hm~2之前累积量无显著变化,当施氮量达到420.0kg/hm~2时,土壤中无机氮的残留量及氮素的径流流失变化明显,累积量平均达67.0kg/hm~2,流失量平均达8.3kg/hm~2。因此,施氮量过高时,会增加土壤无机氮残留及氮素径流损失的风险,对环境造成污染。结合巢湖地区土壤肥力条件,综合考虑试验施肥处理、施氮量对小麦产量、植株氮素积累量、氮肥利用率、土壤无机氮残留量(0—20cm)及氮素径流流失因素,提出适宜巢湖地区的氮肥投入阈值为157.5~262.5kg/hm~2。  相似文献   

16.
为了提高氮肥增产效益,减少对环境的污染,通过田间试验研究了施氮量对春玉米产量、氮肥效率及土壤矿质氮的影响。结果表明,施氮量较低时,春玉米籽粒产量随施氮量增加显著增加,当施氮量高于180 kg·hm-2时,产量保持不变或有减少趋势。氮肥农学利用率、氮素吸收效率、氮素偏生产力和氮收获指数均随着施氮量增加显著降低,氮肥表观利用率和氮肥生理利用率均先增加后降低。从苗期到收获期,施氮处理0~60 cm土层硝态氮含量呈现"上升—下降—上升—下降—稳定"的变化趋势,而60~120 cm土层硝态氮在春玉米生长后期有增加的趋势。随着土层加深,土壤硝态氮含量呈波浪式下降,施氮量240 kg·hm-2和300 kg·hm-2处理在60~100 cm土层硝态氮含量均显著高于其他处理。随着施氮量增加,0~120 cm土层硝态氮累积量显著增加,当施氮量超过240kg·hm-2时,土层中累积的硝态氮存在着较大的淋溶风险。综合考虑产量、氮肥效率和环境效应,179~209 kg N·hm-2是本试验条件下春玉米的合理施氮量。  相似文献   

17.
Abstract

Pearl millet is a potential dryland crop for Nebraska. Experiments were conducted in eastern Nebraska in 2000, 2001, and 2002, and in western Nebraska in 2000 and 2001. The objectives were to determine optimum nitrogen (N) rate, N uptake, and N use efficiency (NUE) for pearl millet. The hybrids “68×086R” and “293A×086R” and N rates of 0, 45, 90, and 135 kg N ha?1 were used. Hybrids had similar yield, N uptake and NUE responses. In western Nebraska in 2000, pearl millet yield response to N rate was linear, but the yield increase was only 354 kg ha?1 to application of 135 kg N ha?1. In eastern Nebraska, pearl millet response to N rate was quadratic with maximum grain yields of 4040 in 2001 and 4890 kg ha?1 in 2002 attained with 90 kg N ha?1. The optimum N rate for pearl millet was 90 kg N ha?1 for eastern Nebraska. For western Nebraska, drought may often limit pearl millet's response to N fertilizer.  相似文献   

18.
减氮配施氮肥增效剂对土壤速效氮和玉米产量的影响   总被引:2,自引:0,他引:2  
过量施氮一直是玉米生产中存在的主要问题,而配施氮肥增效剂可作为减氮条件下玉米实现高产和稳产的一种重要技术措施。2016—2017年在四川省德阳市中江县合兴乡新建村设置田间试验,研究不同施氮量与氮肥增效剂配施对土壤速效氮含量和玉米干物质积累及产量的影响,为玉米减氮增产栽培技术提供科学依据。结果表明:减氮配施增效剂能够增强土壤速效氮供应能力,促进玉米干物质积累,改善产量构成,提高玉米产量,实现玉米减氮不减产。常规氮和减氮20%配施增效剂增产幅度分别为5.53%~13.97%和10.24%~17.05%,减氮配施增效剂的增产效果更好。减氮20%条件下A_2B_4脲酶活性和土壤硝态氮含量较A_2B_2、A_2B_32年平均分别降低了19.00%,15.65%和-2.97%,57.24%,土壤铵态氮含量和产量2年平均提高11.48%,248.50%和3.71%,6.18%。综上,减氮20%条件下硝化抑制剂(DCD)和脲酶抑制剂(HQ)复配土壤速效氮的供应能力最强,可实现玉米减氮不减产。  相似文献   

19.
滴灌减氮对植烟土壤无机氮变化及烟株氮积累的影响   总被引:1,自引:0,他引:1  
为明确滴灌施肥条件下减量施氮对土壤无机氮变化特征、烟株氮积累规律的影响,于2016年在登封进行了田间试验,试验共设置5个处理:T0:不施氮肥;T1:常规施肥;T2:减氮15%;T3:减氮30%;T4:减氮45%。分析了0~20、20~40、40~60 cm土层无机氮含量及烟株氮积累量变化,并对0~20 cm土层无机氮含量拟合曲线及烟株氮积累拟合曲线特征值进行分析。结果表明,滴灌施肥能够显著提高栽后40、50 d时0~20 cm土层无机氮含量,显著降低栽后50 d时40~60 cm土层无机氮含量;减氮15%~30%对烟叶产量、生育期内烟株氮素积累量均无显著影响,减氮45%烟叶产量、烟株氮积累量、烟叶氮积累量分别显著下降11.52%、10.53%、10.50%;氮肥农学效率(NAE)、氮肥偏生产力(NPFP)均以T4处理最高,且随施氮量增加逐渐下降,氮肥表观利用率(ARE)以T3处理最高,氮收获指数(NHI)、氮肥生理利用率(NPE)与施氮量间无明显关系。减施氮肥土壤无机氮下降持续时间及烟株氮素快速增长时间会延长,无机氮最大下降速率及烟株最大氮积累速率降低,不利于烟株氮素快速积累。因此,综合考虑认为,在该地区条件下,滴灌施肥减氮15%~30%有利于氮肥高效应用。  相似文献   

20.
灌溉与施氮对留茬免耕春小麦氮素吸收和氮肥损失的影响   总被引:1,自引:1,他引:0  
在甘肃省石羊河流域绿洲灌区,采用裂区设计大田试验,研究不同灌溉量(常规灌溉(327 mm)、节水20%灌溉(261 mm)、节水40%灌溉(196 mm))和施氮量(0,140,221,300 kg/hm^2)对留茬免耕春小麦植株吸氮量、收获期土壤硝态氮(NO3^--N)含量和氮肥损失的影响。结果表明,在留茬免耕农田中,灌溉量从196 mm增加到327 mm,小麦籽粒含氮量从1.55%增加到1.71%,植株吸氮量从134 kg/hm^2增加到190kg/hm^2。当施氮量超过221 kg/hm^2时,籽粒含氮量、秸秆含氮量、植株吸氮量不再显著增加。施氮300,221,140 kg/hm^2处理的植株吸氮量比不施氮处理的分别提高47%,37%和18%;在春小麦收获期,土壤表层(0-60 cm)NO3^--N含量随灌溉量增加而减少,随施氮量增加而增加,灌溉和施氮对60 cm以下土壤NO3^--N含量影响不明显。与不施氮处理相比,施氮300,221,140 kg/hm^2的氮肥损失分别为186,137,94 kg/hm^2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号