首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barley (Hordeum vulgare L.) was grown on a sandy soil given different doses of cadmium carbonate (salt), copper carbonate (malachite), lead carbonate (cerussite), and zinc carbonate (smithsonite) in a pot experiment conducted in a greenhouse. The element compounds were added to the soil in amounts equivalent to the following levels of the metals: Cd 5, 10, 50 μq ?1; Cu and Pb 50, 100, 500 μg g?1; Zn 150, 300, 1500 μg g?1. Sequential extraction was used for partition these metals into five operationally-defined fractions: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. The residue was the most abundant fraction in the untreated soil for all the metals studied (43 to 61% of the total contents). The concentration of exchangeable Cd (0.2 μg g?1), Cu (0.01 μg g?1), Pb (0.1 μg g?1), and Zn (1.4 μg g?1) were relatively low in the untreated soil but increased markedly in the treated soils for Cd (up to 31 μg g?1) and Zn (up to 83 μg g?1), whereas only small changes were observed for Cu and Pb. The pot experiment showed a significant increase in the Cd and Zn contents of barley grown on the treated soils, but only small changes in Cu and Pb concentrations.  相似文献   

2.
The cereal crops (barley -Hordeum vulgare L., maize -Zea mays L., wheat -Triticum vulgare L.) were grown in a greenhouse using a sandy soil type treated with various doses of cadmium carbonate (salt), copper carbonate (malachite), lead carbonate (cerussite), and zinc carbonate (smithsonite), added jointly. The following levels of these metals were used: Cd ? 5, 10, 50μg g?1 soil; Cu and Pb - 50,100, 500 μg g?1 soil; Zn-150, 300, 1500 μg g-1 soil. Sequential extraction was adopted to partition the metals into five operationally-defined fractions: exchangeable, carbonate, Fe-Mn oxides, organic, and residual. The residual was the most abundant fraction in the untreated (control) soil for all the metals studied (50 to 60% of the total metal content). The concentrations of exchangeable Cd, Cu, Pb, and Zn were relatively low in untreated soil but increased (over the three year period) in treated soils for Cd, Zn, and Cu, whereas only small changes were observed for Ph. This experiment showed a significant increase in Cd, Zn, and Cu in tissue of plants grown on the treated soil, but a non-significant change in plant tissue with respect to Pb concentration.  相似文献   

3.
The survival of Pseudomonas solanacearum biovars 2 and 3 in three soils, a Nambour clay loam, a Beerwah sandy loam and a Redland Bay clay, was compared at pressure potentials of ?0.003, ?0.05 and ?0.15 kPa. The soils were inoculated with mutants of P. solanacearum biovars 2 and 3, resistant to 2000 μg streptomycin sulphate ml?1 and their survival measured every 6 weeks for 86 weeks in the clay loam and clay and for 52 weeks in the sandy loam. Soil populations declined with the initial drying necessary to bring the soil moisture to the specific pressure potentials; the initial counts for biovar 2 varied between 0.20 and 2.00 × 109 cfu g?1 soil and for biovar 3 between 0.17 and 1.29 × 109 cfu g?1 soil.The population decline in soil maintained at a constant pressure potential was expressed as the rate of population decline. Biovar 2 declined more rapidly than biovar 3. The rate of population decline of each biovar at ?0.003 and ?0.05 kPa was greater in clay loam than in sandy loam and at all pressure potentials it was greater in clay loam and sandy loam than in clay. There was also a tendency for the rate of population decline of both biovars to decrease in the drier soil treatments.  相似文献   

4.
The effect of added heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) on the rate of decomposition of glutamic acid was studied in four Dutch soil types in order to determine if such measurements would serve as sensitive indicators of heavy metal pollution in soil. The time required to reach the maximum respiration rate (referred to as the decomposition time) with glutamic acid was linearly related to increasing concentrations of Ni in a sandy loam soil.Changes in decomposition time were measured 18 months after addition of 55, 400 or 1000 mg kg? of Cd, Cr, Cu, Ni, Pb or Zn respectively to sand, silty loam, clay and sandy peat soils. A significant increase in the decomposition time occurred with a concentration of 55 mg kg?1 of Cd, Cu or Zn in the sand soil. At 400mgkg?1 adverse effects in the various soils are distinct. The sensitivity of the decomposition time of glutamic acid as a method to measure soil pollution is discussed.  相似文献   

5.
The effect of increasing concentrations of Cd and Zn in a sandy soil on spring wheat (Triticum vulgare L.) yields and the metal contents of the plants was examined in a pot experiment to establish critical levels of these metals in soil. The metals were added (individually and jointly) to the soil as sulfates in the following doses (in μg g?1, dry wt.): Cd — 2, 3, 5,10, 15, 25, and 50; Zn ?200, 300, 500, 1000, 1500, 2500, and 5000. Cadmium added to soil did not affect yields of wheat. The Zn dose of 1000 μg g?1 strongly reduced crop yields; at 1500 μg g? Zn dose wheat did not produce grain. The metal contents of wheat increased with increasing concentrations of Cd and Zn in soil up to 10.3 and 1587 μ g? of Cd and Zn in straw, respectively. The concentrations of both metals were higher in straw than in grain by factors of 3–7 and 1.5–2 for Zn and Cd, respectively. The relationships between Cd and Zn contents of the plants and soils were best expressed by exponential equations. High concentrations of Zn in soils (1042 and 1542 μg g?1) enhanced uptake of Cd by plants. The tested threshold concentrations of the metals in soils (3 μg g?1 for Cd and 200–300 μg g?1 for Zn) are safe for Zn but are too high for Cd in terms of protecting plants from excessive metal uptake. The critical Cd content of sandy soil should not exceed 1.5 μg g?.  相似文献   

6.
In a screen-house study, the effects of artificially contaminating the soil with lead (Pb) at levels ranging from 0 to 1500 mg kg?1 soil on the growth and uptake of Pb and micronutrients by Indian mustard [Brassica juncea (L.) Czern.] grown on a loamy sand soil (Typic Ustorthent) were investigated. The crop was grown for 60 days with adequate basal fertilization of nitrogen, phosphorus, and potassium, and dry matter was recorded. The plants were analyzed for total Pb and micronutrients, and the soil was analyzed for diethylenetriaminepentaacetic acid (DTPA)-extractable Pb. The DTPA-extractable Pb measured before sowing of Indian mustard increased consistently and significantly with increase in rates of Pb application to soil. It increased from 0.65 mg kg?1 in the control to 199.8 mg kg?1 in soil treated with 1500 mg Pb kg?1 soil. Significant reduction in the dry-matter yield of Indian mustard occurred with Pb applications of 500 mg kg?1 soil and greater. The concentration as well as uptake of Pb by Indian mustard increased significantly over control at all rates of its application. It increased from 9.4 μg pot?1 in the control to 220.6 μg pot?1 at Pb application of 1500 mg kg?1 soil. Applications of Pb to the soil decreased the concentration of micronutrients in plants, but a significant reduction occurred only for iron at rates greater than 500 mg Pb kg?1 soil. However, the uptake of iron, manganese, and copper registered a significant decline at Pb application of 500 mg kg?1 and greater and that of zinc at 750 mg kg?1 and greater. In a Typic Ustorthent soil, a DTPA-extractable Pb level of 59.5 mg kg?1 and plant content of 44.2 μg Pb g?1 dry matter was found to be the upper threshold levels of Pb for Indian mustard. This study suggests that once the soil is contaminated by Pb, it remains available in the soil for a long time, and such soils, if ingested with food crops, may be a significant source of Pb toxicity to both humans and grazing animals.  相似文献   

7.
The average number of survivors of fast-growing medic rhizobia (3 strains), fast-growing Rhizobium leguminosarum types (6 strains) and slow-growing species (9 strains) following desiccation of sandy soil inoculated with 106 bacteria·g?1 soil was 727, 795 and 15,682 bacteria·g?1 soil, respectively. Survival in desiccated sandy soil was not influenced by the degree of extracellular polysaccharide production in strains of R. trifolii, nor was it influenced by growth of R. meliloti and slow-growing species in media of low water activity before desiccation in sandy soil.A progressive increase in numbers of fast-growing bacteria surviving desiccation was observed in sandy soil amended with increasing concentrations of powdered montmorillonite, but not with mont-morillonite added as a suspension to the soil. The clay had either a detrimental effect or no effect on the survival of the slow-growing rhizobia. Maltose, sucrose and polyvinylpyrrolidonc provided a greater degree of protection to both fast- and slow-growing rhizobia than was obtained with montmorillonite. The effect of polyethylene glycol 6000 was similar to the effect of montmorillonite, as the polymer only protected the fast-growing rhizobia and not the slow-growing species.  相似文献   

8.
Forest floor and mineral soil samples were collected from subalpine spruce-fir forests at 1000 m above mean sea level on 19 mountains in the northeastern United States to assess patterns in trace metal concentrations, acidity, and organic matter content. The regional average concentrations of Pb, Cu, and Zn in the forest floor were 72.3 (2.9 s.e.) μg g?1, 8.5 (0.7) μg g?1, and 46.9 (2.0) μg g?1, respectively. The regional average concentrations of Pb, Cu, and Zn in the mineral soil were 13.4 (0.8) μg g?1, and 18.2 (1.2) μg g?1, respectively. The regional average pH values of the forest floor and mineral soil were 3.99 (0.03), and 4.35 (0.03), respectively. The Green Mountains had the highest concentrations of Pb (105.7 μg g?1), and Cu (22.7 μg g?1), in the forest floor. They also had the highest concentrations of Cu (18.0 μg g?1), in the mineral soil. Site aspect did not significantly influence any of the values. Concentrations of Pb were lower than concentrations reported earlier in this decade at similar sites while concentrations of Cu and Zn remained the same. We believe that these lower Pb concentrations reflect real changes in forest Pb levels that have occurred in recent years.  相似文献   

9.
The effect of 50, 100, 150, and 400 μg sodium pentachlorophenate (Na-PCP) per gram soil was studied in nonsterile soil incubated under aerobic and anaerobic conditions, and in sterilized soil inoculated withAzotobacter sp. isolated from the soil. N2 fixation was determined by acetylene reduction. Pentachlorophenate at a concentration of 50 μg g?1 had an inhibitory effect in nonsterile soil incubated aerobically while strong inhibition of dinitrogen fixation in nonsterile soil occurred in the presence of 100 μg g?1 and above. The EC50 values for the inhibition of nitrogenase activity in nonsterile soil incubated aerobically and anaerobically and in sterilized soil inoculated withAzotobacter sp. suspensions were 49.8±1.4 μg Na-PCP g?1, 186.8±2.8 μg Na-PCP g?1, and 660.8±29.3 μg Na-PCP g?1, respectively.  相似文献   

10.
Samples from the surface layer (0–15 cm) of a cultivated Typic Haplaquoll, collected in the fall of 1975 from field plots amended with variable amounts of Pb in the spring of 1969 and with ground corn cobs in 1973 and 1974 (22.4 tons ha?1), were analyzed for organic N, total Pb, exchangeable- and soluble-Pb, specifically-adsorbed Pb, and organically-bound Pb. Highly-significant correlations were obtained between organic N and soil Pb concentrations, from which it was concluded that the applied Pb resulted in small increases in the organic matter content of the soil. The most probable mechanism was believed to be through the formation of biologically-resistant Pb-organic matter complexes. At low amounts of soil Pb (20–30 μg g?1 range), approximately 30% of the soil Pb occurred in organic linkages but the proportion increased steadily up to 400 μg g?1 and gradually leveled off thereafter. The conclusion was reached that progressive contamination of the test soil by exogenous Pb additions, such as from automobile exhaust near traffic highways, would have little effect on plant available forms until soil Pb concentrations reached about 100 μg g?1, following which the concentration in the soil solution would be related to and controlled by the size of the organic pool.  相似文献   

11.
Irrigation with untreated effluent in periurban agriculture could result in accumulation and bioconcentrations of cadmium (Cd) and lead (Pb). Different amendments were used to investigate their effect on availability, concentration, and uptake of metals by wheat in texturally different soils. Crop was irrigated with water containing Cd and Pb at 20 mg L?1, thereby adding 260 mg pot?1 of each metal. Amendments included calcium carbonate at 6 or 12%, gypsum at 50 or 100% of the soil gypsum requirement, farm manure at 7.50 or 15.00 g kg?1 soil, and a control. Amendments decreased ammonium bicarbonate diethylenetriaminepentaacetic acid (AB-DTPA)–extractable Cd and Pb concentrations and uptake by wheat. Dry matter, concentration, uptake, and extractability of Cd and Pb were greater in sandy loam soil compared with those in sandy clay loam soil irrespective of amendments. Sequential extraction showed that more metals were extracted from the control in all fractions and that predominantly metals were found in the carbonate fraction.  相似文献   

12.
Samples of soils and vegetation from the mining area of South-West Sardinia (Italy) were analyzed for Pb, Zn, Cd, and Cu content. The area (more than 100 km2) is inhabited by many thousands of people; land utilization includes mainly grapes on some small plains and permanent sheep pasture on the hills. The levels of Pb, Zn, and Cd were found to be exceptionally high in most samples. Lead concentration was up to 71000 μg g?1 in the soils and 4000 jig g?1 in vegetation; Cd concentration was found up to 665 μg g?1 in soils and 26.5 μg g?1 in vegetation. The heavy metal content of some soil samples was highly variable. Data show that Pb is easily absorbed by plant roots and translocated to foliage. In spite of the high heavy metal level, no signs of toxicity were apparent in vegetation.  相似文献   

13.
The application of Pb inhibited the development of mycelia of the saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi (AM) Glomus mosseae and G. deserticola in vitro. The application to soil of 1500 mg kg?1 of Pb decreases the dry weight, total N, P, Mg and Fe concentration and chlorophyll content of the shoot of E. globulus no inoculated with AM fungi. However, G. deserticola increased the dry weight, total nutrient concentration and chlorophyll content of the shoot, and the percentage of AM root length colonization and the succinate dehydrogenase activity of AM mycelia of E. globulus in presence of 1500 mg kg?1 of Pb, and these increases were higher when G. deserticola was inoculated together with T. koningii. The application to soil of 3000 mg kg?1 of Pb decreased the shoot dry weight and AM colonization of E. globulus in all treatments tested. Pb was accumulated in the stem more than in the leaves of E. globulus. In presence of 1500 mg kg?1 of Pb the highest accumulation of this metal in the stem took place when E. globulus was colonized with G. deserticola. In conclusion, the possibility to increase Lead accumulation in stem is very attractive for phytoextraction function, the saprobe fungi, AM and their interaction may have a potential role in elevating phytoextraction efficiency and stimulate plant growth under adverse conditions such as lead contaminated soil.  相似文献   

14.
Sodium chloride, at rates up to 100 mg g?1, was added to a Sassafras sandy loam amended with finely-ground alfalfa to determine the effect of NaCl on CO2 evolution, ammonification, and nitrification in a 14-week study. A NaCl concentration of 0.25 mg g?1 significantly reduced CO2 evolution by 16% in unamended soil and 5% in alfalfa-amended soil. Increasing NaCl progressively reduced CO2 evolution, with no CO2 evolved from the soil receiving 100 mg NaCl g?1. A 0.50 mg NaCl g?1 rate was required before a significant reduction in decomposition of the alfalfa occurred. The NO?2-N + NO?3-N content of the soil was significantly reduced from 40 to 37 μg g?1 at 0 and 0.25 mg NaCl g?1, respectively in the unamended soil. In the alfalfa amended soil, nitrification was significantly reduced at 5 mg NaCl g?1. At 10 mg NaCl g?1, nitrification was completely inhibited, there being only 6 and 2 μg NO?2-N + NO?3-N g?1 in the alfalfa amended and unamended soil, respectively. In the alfalfa amended soil NH+4-N accumulated from 6 μg g?1 at the 0 NaCl rate to a maximum of 54 μg g?1 with 25 mg NaCl g?1. These higher NH+4-N values resulted in a 0.5 unit increase in the pHw over that of the 0 NaCl rate in the alfalfa amended soil. At NaCl concentrations above 25 mg g?1 there was a reduction in NH+4-N. The addition of alfalfa to the soil helped to alleviate the adverse affects of NaCl on CO2 evolution and nitrification.  相似文献   

15.
Bacteria, Pseudomonas paucimobilis, were inoculated at two concentrations (6.56 × 104 g?1 and 6.56 × 106g?1) into sterilized soil amended with 700 μg glucose-C g?1. Two levels of NH+4-N (11.0μg g?1 and 81.0 μg g?1) were used. The subsequent development was followed for three days by measurement of several biological, chemical and physiological parameters.The amount of bacterial biomass-C (μg g?1 soil) became twice as great in high as in low N treatments, and significantly decreased between 39.5 and 63.5 h for the high inoculum, high N level treatment due to decreasing cell size. By the end of the experiment the cumulative respired carbon was twice as great and more inorganic P was immobilized for high compared to low N treatments and all available NH+4-N was taken up by the final sample time. Soil ATP concentrations were twice as large in high N treatments but the turnover times were twice as long compared to low N systems. The yield coefficient (Y), calculated from respiration and biomass-C values, equalled 0.61 while substrate was plentiful. Nitrogen limitation did not alter the efficiencey with which glucose was transformed into biomass, but rather controlled the total amount of glucose used and biomass produced.  相似文献   

16.
The side effects of fluazifop-butyl on soil fungal populations and oxygen uptake were studied by incubating soil samples with a range of fluazifop-butyl concentrations (0, 0.6, 3 and 6 μg g?1) over 8 weeks. Cellulose decomposition in soil was also studied in laboratory experiments with the herbicide which was either incorporated in soil or sprayed onto calico squares which were buried in soil. The mycelial dry weight of six fungal species under the effect of the herbicide was also examined. Fluazifop-butyl had no significant effect on total fungal propagule populations at 0.6 μg g?1. At 3 and 6 μg g?1, it caused temporary reduction in fungal populations observed after 1 and 2-wk of incubation. The herbicide had no significant effect on OZ uptake. The decay of calico buried in herbicide-treated soil was generally stimulated, while the decomposition of herbicide-treated calico, buried in untreated soil, was temporary delayed. The mycelial dry weight yields of Aspergillus favus (at 2 and 12 μg mL?1 of fluazifop-butyl) and Cunninghamella echinulata (at 12 μg mL?1) were significantly increased. At 24 μg mL?1 the mycelial dry weight of A. flavus and Alternaria alternata was significantly reduced.  相似文献   

17.
The cryptogamic soil crusts of the Great Basin Artemisia, Ceratoides, and Atriplex plant communities contain a significant heterotrophic N2-fixing microbial population in addition to the predominating filamentous cyanobacteria. The bacterial association with the cyanobacteria exhibits a phycosphere-like effect. Heterotrophically fixed N gains reached 17.5 μg N· g?1 of soil (23.1% increase above the initial soil N content) and 45.9 μg N·g?1 of soil (57.4% increase) after 3 and 5 weeks, respectively. (NH4)2SO4 and native plant material amendments to soil resulted in a 41–100% reduction in N2-fixation. The potential input of N to soil crusts may be reduced in the presence of shrub-produced allelochemic agents and by concurrent denitrification.  相似文献   

18.
Bone fluoride concentration was measured in field voles (Microtus agrestis) trapped throughout a year at a moderately polluted site 1 km south of an Al reduction plant at Holyhead, Anglesey. Fluoride values ranged from 300 to 4800 μg g?1, with a mean of 2074 μg g?1 and increased with age as judged by dried eye-lens weight and body weight. At a heavily polluted site about 250 m from the pot-room of the reduction plant field voles had bone fluoride concentrations which ranged from 910 to 11000 μg g?1 with a mean of 7148 μg g?1. Wood mice (Apodemus sylvaticus) at this same location had a mean bone fluoride concentration of 8430 μg g?1 and ranged from 1800 to 17 200 μg g?1. The difference in mean bone fluoride concentration between these two species at this location was not significant (P > 0.1). A sample of field voles from presumed unpolluted sites in other parts of Britain had bone fluoride concentrations which ranged from 23 to 540 μg g?1 with a mean of 168 jig g?1. There was a high positive correlation (r > 0.97) between fluoride concentrations in different parts of field vole skeletons. There was no correlation between bone fluoride concentration in field voles and their femur diameters (r < 0.2).  相似文献   

19.
The earthworms Allolobophora catiginosa and Lumbricus rubellus were used to study the toxicity of 2,3,7,8-TCDD (dioxin) for earthworms. The earthworms were exposed to soil containing concentrations ranging from 0.05 to 5.0 μgg?1. No worms were killed or showed any other observable toxicological effects when exposed to concentrations up to 5 μg g?1 for 85 days in soil. The lethal threshold concentration for TCDD to earthworms falls between 5 and 10 μg g?1 in this study. In soils containing 0.05 μg g?1 earthworms accumulated TCDD up to 5 times the original soil concentration within 7 days. Worms were also exposed to TCDD on filter paper to study the behaviour of earthworms and the uptake of TCDD after surface contact. The earthworms did not avoid TCDD in their environment, indicating an indifference to it. No active penetration of TCDD into the body occurred where earthworms were exposed to surface concentrations. No indication was found of possible biological breakdown of TCDD on passing through the earthworm gut, although the search for metabolites was limited to the mono-, bi- and trichlorinated dioxins. There was a steady decrease (a T12-value of 80–400 days) in the amount of TCDD recovered from worm-worked soil compared to soil without worms.  相似文献   

20.
A total of 2454 samples were collected to evaluate the degree, extent, and distribution of Pb contaminated soil in Minnesota. Samples were collected primarily at locations where susceptible populations were concentrated. Soil Pb concentrations in chilldren's play areas, urban gardens, and at open sites were generally below 100 μg g ?1 when Pb painted structures were absent. Street side and yard soils typically had Pb concentrations between 10 to 300 μg g?1, with samples collected near major highways or Pb painted structures exhibiting greater values. The most severely contaminated soils were found in localized areas around the foundations of private residences, where concentrations up to 20 136 μg g?1 were detected. Exterior Pb based house paint is the major Pb source in these soils, and its presence greatly influences the distribution of contaminated soil in individual yards. Contamination attributable to autoemissions is less concentrated but more widespread than contamination from paint. A higher proportion of soils exceeding 1000 wg g?1 Pb was found in large cities than elsewhere. However, a sufficient number were detected in small cities and rural areas to confirm that high soil Pb levels are not exclusively an urban phenomenon. By examining the degree, extent, and distribution of Pb contaminated soils in Minnesota, this study provides information useful in guiding response actions to reduce children's exposure to Pb by this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号