首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Actinomycetes are considered to be members of the autochthonous component of the soil microflora. However, nocardiae and, to a lesser extent micromonosporae, can exhibit a sustained zymogenous-like response when complex recalcitrant organic substrates are added to soil in the form of dried sewage sludge. Numbers of Nocardia and Micromonospora do not increase when wet sludge, which contains less organic matter, is added to soil. In contrast, Thermoactinomyces did not follow this trend and greater numbers were isolated from the wet, rather than the dried, sludge plots. Results of herbage produced by the dried sludge plots indicate that plant nutrients were continually mineralized during the 3 yr following sludge addition.  相似文献   

2.
施用辐照处理的污水污泥对作物产量和土壤氮的影响   总被引:1,自引:0,他引:1  
A field experiment was conducted to study the feasibility of irradiated and non-irradiated sewage sludge as a fertilizer for the growth of wheat and rice. The irradiated and non-irradiated sewage sludge were applied at rates of 0 (CK), 75, 150, 225 and 300 kg N ha-1 for wheat, and 0 (CK), 112.5, 225, 337.5 and 450 kg N ha-1 for rice, respectively. (NH4)2SO4 at a rate of 150 kg N ha-1 for wheat, and 225 kg N ha-1 for rice were added to the control treatments. Additionally, 20 kg 15N ha-1 in the form of (NH4)2SO4 was added to each treatment for wheat to study the effect of sewage sludge on chemical nitrogen fertilizer recovery. The results showed that the irradiation of sewage sludge by gamma ray at a dosage of 5 kGy increased crop yield by 11%~27% as compared to the non-irradiated treatments. Irradiation stimulated mineralization of organic nitrogen in the sludge and improved seedling growth. It was found that addition of irradiated sludge could reduce the leaching loss of chemical nitrogen fertilizer. Both irradiated and non-irradiated sewage sludge could increase the content of soil total nitrogen. Based on the preliminary results, it was concluded that irradiated sewage sludge could partly substitute for chemical nitrogen fertilizer in crop production.  相似文献   

3.
Abstract

Municipal sewage sludge previously composted with sawdust (CSS) was applied to an eutric sandy cambisol at rates of 7.5, 15.0, 22.5, and 30 g#lbkg‐1. Incubation and pot experiments were conducted to evaluate CSS effectiveness on nitrogen (N) and phosphorus (P) soil availability and on plant nutrition. The CSS rates did not increase soil mineral N and had little effect on organic P and on labile forms of P. Efficiency of total applied P was 17% for the soil labile forms and 4.8% for the resin extractable fraction. In contrast, CSS significantly increased hydroxide extractable inorganic P and nonextractable soil P fraction. The major portion of the increment on nonextractable forms was at the expense of HC1 extractable P fraction [calcium (Ca)‐bounded], dominant on the original CSS. Thus, chemical rather than biological reactions lead to the redistribution of CSS‐borne P to more firmly held forms after its application to the soil. Ryegrass dry matter yield, N content, and N uptake did not increase in CSS‐treated soils. Plant P content increased at the second harvest, but the effect was nil in the subsequent harvest. Total P uptake increased from 14.1 to 20.2 mg#lbpot‐1, but percentage P recovery by ryegrass was modest, averaging 2.5% of the CSS‐borne P. Results suggest that moderate application of CSS to agricultural systems are inadequate for crop growth but may contribute to nutrient recycling without environmental risks related to N and P loss.  相似文献   

4.
Sewage sludge in doses of 200 and 400 Mg ha−1 (dry weight) were applied in an experimental rehabilitation of a limestone quarry to improve soil physical condition. The effect of this organic waste on soil aggregation and structural stability has been tested measuring aggregate size distribution by dry- and wet-sieving procedures over a period of 28 months. We discuss the influence of the organic components of aggregates on soil structure. The main effect of sewage sludge was to increase aggregate stability to raindrop impact (splash) just after application of the former but one year later this effect decreased notably. Organic matter is distributed in different ways between macro- and microaggregates, and this parameter seems to be responsible for the structure changes observed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Effects of N-enriched sewage sludge on soil enzyme activities   总被引:5,自引:0,他引:5  
Sewage sludge is increasingly used as an organic amendment to soil, especially to soil containing little organic matter. However, little is known about utility of this organic amendment with N-enriched or adjusted C:N ratios in soil. We studied the effects of adding of different doses (0, 100, 200 and 300 t ha−1) and C:N ratios (3:1, 6:1 and 9:1) of sewage sludge on enzyme activities (β-glucosidase, alkaline phosphatase, arylsulphatase and urease) in a clay loam soil at 25 °C and 60% soil water holding capacity. Nitrogen was added in the form of (NH4)2 SO4 solution to the sludge to reduce the C:N ratio from 9:1 to 6:1 and 3:1. The addition of different doses and C:N ratios of the sludge caused a rapid and significant in the enzymatic activities in soils, this increase was specially noticeable in soil treated with high doses of the sludge. In general, enzymatic activities in sludge-amended soils tended to decrease with the incubation time. All activities reached peak values at 30 days incubation and then gradually decreased up to 90 days of incubation. Sewage sludges also the increased available metal (Cu, Ni, Pb and Zn) contents in the soils. However, the presence of available soil metals due to the addition of the sludge at all doses and C:N ratios did negatively affect all enzymatic activities in the soils. This experiment indicated that all doses and C:N ratios of sewage sludge applied to soil would have harmful effects on enzymatic activity. Some heavy metals found in sewage sludge may negatively influence soil enzyme activities during the decomposition of the sludge.  相似文献   

6.
Soil properties are one of the most important factors explaining the different toxicity results found in different soils. Although there is knowledge about the role of soil properties on the toxicity of individual chemicals, not much is known about its relevance for sewage sludge amendments. In particular little is known about the effect of soil properties on the toxicity modulation of these complex wastes. In addition, in most studies on sewage sludges the identity of the main substances linked to the toxicity and the influence of soil properties on their bioavailability remains unknown.In this study, the toxicity of a sewage sludge to the soil collembolan Folsomia candida was assessed in nine natural soils from agricultural, grassland and woodland sites, together with the OECD soil. Correlations between the relative toxicity of sludge for collembolans in the different soils and their physical and chemical soil properties were assessed in order to identify the main compounds responsible for the effects observed. Furthermore, the relationships between the toxic effects to collembolans and water-soluble ions released by sludge, pH and electric conductivity were also assessed, together with the modulating effects of soil properties.Sludge toxicity was directly linked to the water extractable ammonium, which explained most of the mortality of the collembolans, and part of the inhibition of reproduction. For the last endpoint, nitrite also contributed significantly to the inhibition observed. The varied levels in water extractable ammonium in the different soils at equal dosages seem to be, in turn, modulated by some soil properties. Higher organic carbon contents were associated with lower toxicity of sludge, both for survival and reproduction, probably related to its higher ammonium sorption capacity. In addition, for reproduction, increasing the C/N ratio and pH appeared to increase the toxicity, probably due to both the greater difficultly in nitrification and the known unsuitability of alkaline soils for this species.  相似文献   

7.
以小麦-玉米轮作体系下的沙质潮土为研究对象,选用经无害化处理后的城市污泥产物,通过2013~2015年田间定位试验,研究了不同城市污泥施用量对土壤肥力的影响,以期为城市污泥资源化利用提供理论基础和技术依据。设置单施化肥(CK)、CK+污泥15 t·hm~(-2)(CS1)、CK+污泥30 t·hm~(-2)(CS2)和CK+污泥45 t·hm~(-2)(CS3)共4个处理。主要研究结果如下:(1)连续定位试验结果表明,同一施用量污泥处理的土壤p H值随施用时间的增加呈下降趋势;土壤有机质(SOM)和养分含量如全氮(TN)、有效磷(AP)和速效钾(AK)随施用时间的增长呈上升趋势;(2)与CK比较,在2015年玉米季施用污泥各处理的土壤p H值显著降低了0.34~0.83个单位(P0.05),且与污泥施用量呈反比,以高施量污泥45 t·hm~(-2)下降最多;土壤SOM、TN、AP和AK分别显著提高了52.1%~166.9%、77.3%~177.8%、215.7%~486.3%和167.2%~379.0%(P0.05),且与污泥施用量呈正比,以高施量污泥45 t·hm~(-2)效果最显著;(3)试验所用污泥施用量范围内不会造成土壤和植物籽粒重金属污染,能够保持土壤环境健康;(4)与CK比较,施用污泥各处理土壤微生物量碳(MBC)、氮(MBN)含量均显著提高(P0.05),且与污泥施用量呈正比,并且季节不同也显著影响土壤MBC、MBN含量(P0.05);施用污泥能够显著提高土壤MBC/MBN(P0.05),说明施用污泥能够改变土壤微生物群落组成;(5)施用污泥,尤其是高施量污泥45 t·hm~(-2),在保证土壤和植物籽粒质量安全下,其土壤培肥效果最优。  相似文献   

8.
Two different biosolids were obtained composting anaerobic (A) and aerobic (B) municipal sewage sludge (SS) with rice husk. Higher amounts of SS (1:1 v/v) could be used in this composting process than in conventional ones. The two biosolids were characterized by chemical analysis and compared with a conventional green manure plus municipal solid waste and municipal SS compost. The effect of these products on soil functionality was studied in a 14-week incubation experiment by their addition to two different soils (silty clay—Ustic Endoaquert—and sandy loam—Aquic Xeropsamment). The total organic C ranged from 20 to 26 % and total N from 1.6 to 2.5 % in the two biosolids. The most relevant difference was due to dissolved organic C that was lower in the anaerobic biosolid (1 mg?C?kg?1) than in the other products (5–6 mg?C?kg?1). The total trace elements (Cd, Cr, Cu, Ni, Pb and Zn) contents were under the limits fixed by the European legislation for soil application of SS (EC Directive 86/278/EEC, 1986). The three biosolids did not show strong negative effects on soil functionality during the incubation experiment, although some significant differences were found. The aerobic biosolid B mainly increased cumulative N release, microbial activity, basal respiration rate, microbial biomass-C-to-total organic C ratio, β-glucosidase, alkaline phosphomonoesterase and aryl-sulphatase activities. The anaerobic one (B) decreased basal respiration rate, microbial biomass-C-to-total organic C ratio and aryl-sulphatase activity. DTPA soil bioavailable heavy metals were not affected by biosolids additions.  相似文献   

9.
An artificial soil mix was prepared from coal fly ash and sewage sludge and an experiment was performed to evaluate their effects on soil microbial respiration. Coal fly ash at 0%, 5%, 10%, 35% and 50% w/w was mixed with dewatered sewage sludge and then each ash-sludge mixture was incubated with a sandy soil at 1:1 v/v at 28°C for 42 days. All treatments showed the same carbon dioxide production pattern with a peak production at day 7 to day 14. Addition of ash-sludge mixtures to soil resulted in an increase in carbon dioxide production but the production rate decreased according to the ash amendment rate. The high pH of coal fly ash and the dilution effect of the sludge were the major reasons for the decrease. However, the ecological dose 50% values sharply increased from 26% at day 3 to 39% ash at day 14. This indicates the rapid acclimatization of microorganisms to the fly ash-sludge mixtures. Therefore, a brief stabilization period may be required for the establishment of soil microbial populations in soil amended with ash-sludge mixtures.  相似文献   

10.
Toxic trace metals may percolate to the ground water from sewage sludge disposed onto land. Analyses are presented of the soil solution from a slightly acid loamy soil treated 7 years earlier with single applications of digested sewage sludge in amounts equivalent to 0, 150 & 330 t dry matter ha−1
These very heavy dressings correspond to 2 & 4.5 times the recommended 30–year limit. Samples of soil and soil solution from four depths to 80 cm were analysed for Al, B, Ba, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, S, Sr, V, Zn, together with the OM of the soil, and the pH, alkalinity, dissolved organic carbon, and absorbance at 350 nm of the solutions.
These very heavy sludge applications were apparently still releasing substantial quantities of NO3, and some SO4 even after 7 years. Nitrate, SO4, Mg, Ca, Sr, B, and possibly Ba are still moving through the profile, possibly to the ground water. Solution concentrations of Cu and Zn are considerably higher at all depths than those in the untreated plot, but they fall off sharply with depth. It is unlikely that any Cu or Zn is now reaching the ground water.
The paper also presents a set of published solution analyses for soils, sludge–treated soils and digested sludge, as a basis for further studies.  相似文献   

11.
Summary We studied the effect of incubating peat with lime and sewage sludge in small proportions on biological activity and N mineralization. The peat response was dependent on pH and, in acid peats, on mineralization capacity. In acid peats, the addition of sewage sludge inhibited biological activity. Only the most eutrophic peats (Herbosa) responded with accelerated mineralization. The addition of lime to acid peats favoured organic matter mineralization, shown by a greater CO2 release. The best results were obtained by adding lime and sewage sludge together. In saline peats, the best N levels were obtained without incubation.  相似文献   

12.
室内采用正交试验设计进行4 因素多水平试验, 研究了温度、城市污泥和麦麸配比、饲养密度、幼虫体重对黄粉虫幼虫生长速度、死亡率以及幼虫重金属含量变化的影响, 探讨黄粉虫幼虫在城市污泥中的生长状况和对城市污泥重金属的积累作用。结果表明: 随着温度的升高, 幼虫生长率和死亡率都呈上升趋势, 饲养密度、污泥和麦麸配比对黄粉虫幼虫生长率、死亡率无显著影响; 15 ℃、密度为0.2 g·cm-2、污泥/麸皮为1∶2、幼虫体重为85.4±5.9 mg 时, 幼虫对Cu、Se、Hg 的积累作用较显著; 15 ℃、密度为0.4 g·cm-2、污泥/麸皮为1∶0、幼虫体重为85.4±5.9 mg 时, 黄粉虫幼虫对Cd 的积累能力显著; 20 ℃、密度为0.4 g·cm-2、污泥/麸皮为1∶0、幼虫体重为34.9±4.9 mg 时, Zn 的积累系数较大; 黄粉虫幼虫对Cu、Cd、Se、Hg 和Zn 等重金属元素有很强的积累作用。  相似文献   

13.
污泥复混肥对早熟禾草坪草生长性状及土壤酶活性的影响   总被引:3,自引:0,他引:3  
为使城市生活污泥得以无害化、资源化综合利用,通过盆栽试验,研究了经无害化处理的生活污泥辅以化肥配制的污泥复混肥对早熟禾草坪草生长以及土壤酶活性的影响.结果表明:在氮、磷、钾施用总量相同的条件下,随复混肥中污泥含量的增加,草坪土壤脲酶、蛋白酶、转化酶活性显著提高,草坪草的颜色明显改善,剪草量、分蘖数显著增加,特别在生长中后期草坪颜色提高两个等级,剪草量鲜重增加10~15g·盆-1,分蘖数增加30~50个·盆-1,细胞膜透性降低40%.但污泥提供氮素养分占总氮量的60%以上时,其肥料效应的增加不再显著,故在配制污泥复混肥时,以污泥提供氮素养分占总氮量的60%左右为宜.  相似文献   

14.
Purpose

The application of sludge from wastewater in agriculture has increased in recent years, and it is therefore important to assess the effect that such treatment has on both the soil and the plant. The aim of the study described here was to ascertain whether there is a variation in the properties of the soil and to determine if this addition has an impact on the plant.

Materials and methods

The area of investigation was close to the municipality of Villarrubia de los Ojos (Ciudad Real). In this work, six samples were taken from the surface horizon in the studied plot at a depth of 35 cm. A further three samples were taken: (i) a surface horizon of a soil close to the area under investigation but without treatment (control sample), (ii) a sample of sludge from the wastewater treatment plant and (iii) a sample of the mixture used by farmers as fertilizer. Laboratory tests were conducted in accordance with the SCS-USDA (1972) guidelines. Trace element samples were analysed by X-ray fluorescence spectrophotometry (Philips PW 2404).

Results and discussion

The parcel of land studied is dominated by a sandy texture (88.3 % sand), and a decrease in pH was observed in areas in which the mixture (manure + sludge) was added (pH?=?8.0) compared to areas in which fertilizer was not applied (pH?=?8.5). It was observed that the addition of the compound led to an increase in the electrical conductivity of the soil. The trace elements can be organized into two groups based on the results obtained in this study. One group contains the trace elements that were only present in the rows that were treated with the fertilizer. The other group of trace elements was mobilized throughout the whole plot.

Conclusions

The application of sewage sludge on agricultural soils can be very useful as an organic amendment because it produces an increase in soil organic matter. However, sewage sludge must be applied with caution due to the changes in soil chemical properties (for example, pH and E.C.). The use of this type of waste for prolonged periods of time can cause problems of contamination in the soil.

  相似文献   

15.
Recently, biochar has shown to be an alternative to waste disposal and a source of nutrients, acting as a soil amendment. The effects of two types of biochar on soil properties and sugar beet production as well as potential for carbon (C) sequestration were evaluated:biochar produced from sewage sludge (SB) and biochar produced from a 1:1 mixture of sewage sludge and sugarcane bagasse (MB). A greenhouse pot experiment was conducted using a sandy loam soil from the Brazilian savanna under treatments of MB applications at 2.5%, 5.0%, 7.5%, and 10.0%, SB application at 5.0%, and a conventional fertilization (CF) using lime and mineral fertilizers, with no fertilization as a control. After incubation for 45 d, seedlings were transplanted into each pot and cultivated for 55 d. Biochar characterization showed that pyrolysis reduced the biomass volume drastically, but concentrated the trace elements per unit of biochar weight. The MB treatments increased soil total C (by 27.8%) and pH (by 0.6), reduced the concentrations of nutrients, except for potassium (K), and chromium (Cr), and did not significantly alter lead (Pb) and cadmium (Cd) concentrations. Results of stable isotopes showed that all biochar treatments increased the total soil C stock and stability, suggesting a potential for application in C sequestration, and improved overall soil fertility. However, the biochar treatments also increased the concentrations of trace elements in the soil and plants. The sugar beet yields at 10.0% MB and 5.0% SB corresponded to 55% and 29% of the yield obtained in the CF treatment, respectively. These results may be due to biochar nutrients not being bioavailable when required by plants or to biochar nutrient adsorption.  相似文献   

16.
Modification of soil porosity after application of sewage sludge   总被引:1,自引:0,他引:1  
The effect of the application of sewage sludge on soil porosity over 28 months is discussed here. Anaerobic sludges of urban refuse waters were applied on a degraded limestone soil in a mining land by two ways. First, a previous mixture of sludge and soil was carried out; this was then applied to the target land. Second, a direct application of sludge to soil and tilling. Porosity and pore morphology were measured on thin sections prepared from undisturbed soil samples. Data were obtained from backscattered electron images and image-processing computer equipment. The application of sludge induced an increase of both soil fine microporosity (φ<50 μm) and coarse microporosity (φ>50 μm). However, this effect showed transient, since no significant differences were reported in relation to the control plot after one year from application. The incorporation of sludge and developed vegetation modified coarse micropore irregularity and orientation. On the other hand, fine micropore morphology remains unchanged.  相似文献   

17.
The effects of increased cobalt additions (0, 50, 100 and 200 v mg v kg m 1 soil) in sewage sludge-amended soil on organic matter, N Kjeldahl, ammonium and nitrate were studied in this experiment. Three different rates of sewage sludge were applied (0, 30 and 60 v tn v ha m 1 ) to soil as main plots, using tomato (Lycopersicum esculentum Mill var. Ramy) such testing cultivation. Plant biomass and nitrogen content in tomato leaf were also monitored. The organic matter in the soil was clearly affected by the fertilization. N Kjeldahl, ammonium and nitrate were favoured by organic treatments. Co seemed to reduce the transformation of ammonium to nitrate on amended soils, with accumulation of ammonium forms, especially at the higher application rates of sewage sludge. This incidence of Co on nitrogen species in soil decreased with the time of experiment, probably due to the reduction of availability of the pollutant. Aerial biomass production and nitrogen content in leaf were increased for the organic fertilization compared to the control. Only very high levels of Co in soil reduced significantly the aerial biomass production of tomato plants in amended soils. Co seemed to induce a decrease of the nitrogen in leaf in the amended soils, but not for the non-fertilized soils.  相似文献   

18.
目前关于污泥及其生物质堆肥的土地利用过程中土壤性质变化和温室气体排放数据十分缺乏,难以满足农田土壤氮素保存和温室气体减排的需求。该研究通过在番茄种植过程中添加800 kg/hm2新鲜污泥(S-H)、400 kg/hm2新鲜污泥(S-L)、800 kg/hm2秸秆堆肥(VM-S)和800 kg/hm2猪粪堆肥(VM-M),开展土壤性质、无机氮形态、作物生长以及N2O排放特征的研究。结果表明:堆肥处理显著增加了土壤电导率(electric conductivity,EC)(P0.05),其中猪粪堆肥时土壤EC值最大。添加污泥和堆肥都使土壤p H值显著上升(P0.05),最终趋于中性,且VM-M对土壤酸化的抑制效果略优于VM-S。污泥和堆肥处理时土壤NO3--N浓度显著高于对照,且各处理组NO3--N浓度均随时间逐渐下降,NO3--N主要被番茄吸收,部分NO3--N从土壤上层淋溶至下层;NH4+大多数被氧化为NO3-,部分NH4+被植物吸收。在施入的无机氮量相等情况下,VM-M、VM-S、S-H处理组中番茄地上部分生物量分别为1 515、1 383、1 103 g/株,株高分别为56.8、54.5、51.3 cm,对番茄生长的促进效果为VM-MVM-SS-H,而S-H比S-L多施入的氮肥对番茄生长并未起到明显促进作用(P0.05)。与对照相比,污泥或生物质堆肥都显著提高了土壤N2O的排放(P0.05),各处理组N2O的排放均集中于施肥后的前20天,且土壤N2O的排放通量大小顺序为S-L(0.76 kg/(hm2·a))VM-M(0.95 kg/(hm2·a))VM-S(1.19 kg/(hm2·a))S-H(1.71 kg/(hm2·a))。因此,在进行污泥及其生物质堆肥的土地利用时,应考虑有机肥的种类及其施用量,以在提高作物产量的同时改善土壤并减少温室气体排放,在进行污泥的农田利用时可先将污泥与畜禽粪堆肥。  相似文献   

19.
《Soil biology & biochemistry》2001,33(4-5):633-638
An incubation study in closed static microcosms was performed to elucidate Zn effects on N mineralisation in relation to other microbial activities and biomass in a sandy soil. Sewage sludge equivalent to 25 t ha−1 was enriched with five different rates of Zn to add concentrations between 50 and 800 μg Zn g−1 soil. All microbial indices were increasingly depressed with increasing Zn concentration of the sewage sludge, but they were affected with different intensity: Zn had especially large effects on CO2 production and qCO2, moderate effects on N mineralisation and relatively small effects on protease activity, biomass C and arginine ammonification.  相似文献   

20.
通过田间实验,研究污泥生物炭(SSBC)施用对杨树人工林土壤理化性质、重金属含量、土壤微生物生物量碳氮以及土壤酶活性的影响。试验设置4个处理:对照 (CK: 0 t·hm-2)、低量(LS: 15 t·hm-2)、中量(MS: 30 t·hm-2)及高量(HS: 60 t·hm-2)。结果表明:SSBC的施用可降低土壤pH,增加土壤EC值;随着SSBC用量的增加,土壤营养成分和重金属含量均呈现增加趋势,其中SOC增加18.4~47.9%、全N含量增加20.4~46.5%、全P含量增加27.9~74.9%、有效氮增加4.2~23.1%及有效磷增加16.3~ 28.3%,且重金属污染可控。SSBC提高微生物生物量碳氮含量,并使土壤 β-葡糖苷酶(BG)、N-乙酰-葡糖苷酶(NAG)和蛋白酶(LAP)活性显著增加,即BG、NAG和LAP分别增加17.1%~35.3%、18.1~36.8%及29.3~70.3%,其中MS处理的增幅最大。总体而言,SSBC的应用不仅显著增加土壤营养成分,而且改善部分微生物环境,致使土壤环境质量一定程度上有所改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号