首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
烟草根际土壤中解钾细菌的分离与多样性分析   总被引:1,自引:0,他引:1  
土壤中含有丰富的钾元素,但主要以缓效态形式存在于钾长石或云母等硅酸盐矿物中,不能被作物直接吸收利用。解钾微生物能溶解硅酸盐矿物中的钾,提高土壤中作物可利用钾的含量,有望缓解我国钾肥短缺的现状。本研究利用选择性培养基,从烟草根际筛选钾细菌,基于16S rDNA序列分析烟草根际土壤解钾细菌的多样性,通过测定解钾细菌的解钾效能及对烟草的促生作用,筛选有应用潜力的优良解钾细菌菌株。结果表明,从四川、湖北和山东烟区烟草根际土壤分离获得的27株解钾细菌,在解钾固体培养上溶钾圈直径为0.11~0.30 cm。16S rDNA序列分析表明,烟草根际土壤解钾细菌主要包括变形菌门γ亚群(Gammaproteobacteria,85.18%)、变形菌门α亚群(Alphaproteobacteria,3.70%)、变形菌门β亚群(Betaproteobacteria,3.70%)、放线菌门(Actinobacteria,3.70%)和拟杆菌门(Bacteroidetes,3.70%),其中克雷伯菌属(Klebsiella)为优势菌属(66.67%)。27个菌株均有一定的解钾能力,解钾活性为0.59~4.40 mg.L–1。参试菌株均对烟草有一定的促生作用,利用解钾细菌菌液处理烟株20 d后,与对照相比,株高增加0.97%~38.64%,最大叶长增加4.40%~31.02%。本研究筛选出的菌株XF11、GM2、JM19和GL7具有较高的解钾活性和促进植物生长的能力,展现了良好的应用潜力。  相似文献   

2.
Effects of soil texture on the extraction efficiency of bacteria from soils and on biosynthetic activity of the extracted bacteria were studied. Bacterial extracts were prepared from three soils of different texture by homogenization (ultrasonication and mixing) or by homogenization-centrifugation at different speeds. Bacterial biosynthetic activity was estimated using thymidine and leucine incorporation techniques. In each step of the extraction procedure, a higher extractability of bacteria was obtained in finer soils than in coarse soil. Also cell-specific growth rates of bacteria were higher in the finer soils than in the coarse soil. However, in all soils, the extracted bacteria always had significantly lower cell-specific thymidine and leucine incorporation rates than the bacteria in soil slurries and thus did not represent so well the bacterial growth in the original soils. The total declines in cell-specific incorporation rates caused by the extraction were larger in fine soil (96-98%) than in coarse soil (90%), but bacteria in the coarse soil were more responsive to only minor intervention. The homogenization-centrifugation method eliminated the differences in bacterial biosynthesis found when working with soil slurries. Therefore, we recommend using of soil slurries or, optionally, soil suspensions to compare bacterial biosynthetic activity among soils of different textures.  相似文献   

3.
The aim of the present work was to test known bacterial plant growth-promoting strains for their ability to promote cucumber plant growth in salinated soil and to improve cucumber fruit yield by protecting these plants against soil-borne pathogens. Fifty-two plant-beneficial bacterial strains were evaluated for their ability to protect plants against cucumber foot and root rot after bacterization of the seeds and infestation of salinated soil with the isolated Fusarium solani pathogen. Based on the results of initial screenings, five efficient strains were selected, namely Serratia plymuthica RR-2-5-10, Stenotrophomonas rhizophila e-p10, Pseudomonas fluorescens SPB2145, Pseudomonas extremorientalis TSAU20, and P. fluorescens PCL1751. All five strains are salt tolerant since they grow well in a medium to which 3% NaCl was added. Infestation of the soil with F. solani resulted in an increase of the percentage of diseased plants from 17 to 54. Priming of seedlings with the five selected bacterial strains reduced this proportion to as low as 10%. In addition, in the absence of an added pathogen, all five strains showed a significant stimulatory effect on cucumber plant growth, increasing the dry weight of whole cucumber plants up to 62% in comparison to the non-bacterized control. The strains also increased cucumber fruit yield in greenhouse varying from 9% to 32%. We conclude that seed priming with the selected microbes is a very promising approach for improving horticulture in salinated soils. Moreover, allochthonous strains isolated from non-salinated soil, from a moderate or even cold climate, and from other plants than cucumber, functioned as well as autochthonous strains as cucumber-beneficial bacteria in salinated Uzbek soils. These results show that these plant-beneficial strains are robust and they strongly suggest they can also be used successfully in case the climate gets warmer and the soils will become more salinated. Finally, the mechanisms by which they may exert their plant-beneficial action are discussed.  相似文献   

4.
以湘西凤凰铅锌矿区土壤为对象,基于BCR三步法和ICP-MS技术,研究了该矿区土壤中Pb的化学形态及污染特征。结果表明,矿区土壤中Pb以残渣态为主,其次为有机-硫化物结合态,酸交换态和Fe-Mn氧化物结合态所占比例较少,各形态Pb的分配系数依次为:残渣态(44.0%)〉有机-硫化物结合态(29.3%)≈Fe-Mn氧化物结合态(24.3)〉酸交换态(2.4%);矿区土壤中各形态Pb含量存在明显的空间分异,并因土地利用类型不同而差异明显;土壤理化性质影响土壤Pb的形态分配,各形态Pb含量与砂粒含量正相关,并随土壤pH升高而增加,这与人为排放输入的含Pb物质以类似于土壤砂粒形式存在有关。人类活动引起的外源输入性Pb污染对矿区土壤中Pb的污染特征产生了重要影响。  相似文献   

5.
Bacterial communities in a spoil heap in a copper mine, a forest soil with high Cu contamination, and an agricultural soil with low Cu contamination were characterized in terms of Gram-staining, plasmid frequency, pigmentation, Cu-resistance system, and predominant Cu-resistant bacterial species. Similarity existed in that the ratio of green colonies for sorbing Cu and Gram-negative bacteria increased with the increase of the Cu content of the medium regardless of the characteristics of the bacterial communities. It was found that the plasmid was not present in most of the Cu-resistant bacteria of the soils. Curesistant genera including Burkholderia, Alcaligenes, and Methylobacterium species were isolated from the Cu contaminated soils using YG agar plates treated with 2 mM Cu. Furthermore, the bacterium with the highest Cu resistance (MIC = 5.5 mm Cu) was identified as a Gram-positive bacterium Bacillus sp., though most of the Cu-resistant bacteria were Gram-negative.  相似文献   

6.
Veterinary medicines enter agricultural soils by the use of animal excrements as fertilizers. To study their impact on soil bacterial communities, microcosms containing orthic luvisol soil were spiked with the antimicrobial agents sulfadiazine (SDZ) and chlorotetracycline (CTC) at three different concentrations (1, 10, 50 mg kg−1 soil) and incubated for 48 days at 20 °C. The impact on the microbial respiratory activity was measured continuously in a respirometer (Sapromat). Changes in bacterial community structure were visualized by means of PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rDNA derived from soil samples after 1, 7, 11 and 48 days. Additionally, growth inhibitory effects of SDZ and CTC on bacteria previously isolated from the same soil were tested in agar diffusion tests. In microcosms with soil and antibiotics only, no effects could be observed, either on respiratory activity or on bacterial population structure. Therefore, further incubations were conducted in the presence of an additional assimilable carbon source (5 g glucose kg−1 soil). In the presence of glucose, SDZ affected soil respiration as well as the bacterial community structure: Additional bands appeared and some bands already visible at the beginning of incubations increased in intensity. A clear relationship between SDZ concentrations and changes in DGGE patterns became visible. During 48 days of incubation, changes in DGGE patterns were minimal in microcosms with 50 mg SDZ kg−1soil indicating an inhibition of strains, which were capable of growing on glucose in the presence of lower SDZ concentrations. Only a few soil bacterial isolates (5 out of 47 strains tested) were weakly inhibited by SDZ in agar diffusion disk tests. Contrastingly, CTC inhibited growth of 12 soil bacterial isolates significantly in disk tests, but no effects on soil respiration and bacterial community structure could be observed. In the presence of the soil matrix the growth inhibitory potential of CTC decreased due to adsorption or complexation. This was confirmed in growth inhibition experiments with soil suspensions and time-dependent sampling.  相似文献   

7.
The vast majority of soil bacteria are unable to form visible colonies on agar media. One hypothesis is that unculturable soil bacteria are dwarf cells that may either be small starved forms derived from larger species or represent inherently small species. We test the hypotheses that cells of extremely starved soil bacterial communities are smaller and less culturable than cells of bacterial communities from a richer soil, and that culturability is related to cell size by comparing an extremely starved community from a 5200-year-old A-horizon buried under a burial mound with a community from a modern agricultural A-horizon.We serially filtered cell suspensions through filters with successively smaller pore sizes (0.8 μm, 0.6 μm and 0.4 μm) and assessed total cell number and culturability, i.e. the ability to form colonies on two types of agar media, in each size fraction. Cell size distributions were assessed in unfiltered suspensions. Average cell size was only moderately reduced in the starved community, where culturability was low for all size classes. In contrast, culturability was much higher in the modern community, where culturability decreased dramatically with decreasing cell sizes.  相似文献   

8.
In this study, we compared the differences of bacterial abundance and diversity between rhizosphere and surrounding bulk soils under soil salinization and petroleum contamination in the Yellow River Delta on a 110-km-distance scale. In comparison with bulk soils, rhizosphere soils were mainly characterized by lower salinity and higher water content in saline soils. For bacterial abundance, the numbers of total bacteria and hydrocarbon degraders were significantly higher in rhizosphere soils than those in bulk soils. Although there was no significant difference in total petroleum hydrocarbon (TPH) concentration between the two types of soils, TPH had distinctly different effects on bacterial abundance in rhizosphere and bulk soils. TPH concentration was the major determinant of total bacterial abundance and had positive effects on abundances of hydrocarbon degraders. However, the abundances of total bacteria and hydrocarbon degraders in bulk soils were primarily determined by soil salinity and water content. Great abundance of rhizosphere bacteria suggested that plant roots could alleviate the stresses from soil salinization and provide more favorable microhabitats for bacterial growth. TPH had positive effects on bacterial diversity of both rhizosphere and bulk soils. Our results support the view that petroleum in the environments functions as both toxic chemicals and carbon sources to soil bacteria. Great abundance and diversity of total bacteria in plant rhizospheres would potentially improve the roles of bacteria in maintaining ecosystem functioning in the degraded ecosystems. Our results would improve our understanding of the relationships between rhizosphere effects and multiple environmental stresses that control the development of bacterial community in fragile anthropologically-affected ecosystems.  相似文献   

9.
采用白浆土为供试材料,利用混皿法对白浆土土样进行筛菌,将筛选得到的优势菌种进行发酵,设置1%,3%,5%三种不同比例的菌体接种量,在相同条件下与培养好的白浆土进行共培养,探究细菌菌体对白浆土中水溶性腐殖质转化的影响,为土壤腐殖质转化的微生物学机理研究和土壤有机培肥研究提供理论基础。结果显示:(1)各处理WSS均表现为先降低后升高的趋势。(2)其中添加1%细菌菌体的处理有机质含量波动最为平缓,先降低后增加,添加3%细菌菌体的处理在30d开始有机质含量不断增加。而添加5%细菌菌体,有机质含量在30d开始增加,在60d开始下降,各处理的土样中,有机质含量在120d内始终高于对照水平。(3)各处理的土壤当中的HE含量都是在加入细菌菌体后明显增加,然后下降,其中添加3%细菌菌体处理中的HE含量变化最为明显。各处理的HA含量都是不断降低,其中添加1%和3%菌体的处理中HA含量降低速度快。培养结束后,各处理FA含量变化不明显。(4)培养初期,细菌菌体的繁殖促使各处理土样中的微生物数量增大,然后降低,最后趋于平缓。微生物量碳的相对含量在添加不同比例的细菌菌体后均高于对照组,且添加1%细菌菌体的处理组微生物量碳的相对含量最高。  相似文献   

10.
A study was undertaken to investigate the bacterial community found in metallophytic grassland soil contaminated with Zn and Pb. We hypothesised that such communities would be tolerant of additional heavy metal stress due to phylogenetic and functional adaptation. In microcosm experiments, lasting 51 days, denaturing gradient gel electrophoresis (DGGE) analyses was used to compare the total bacterial and actinobacterial communities in non-amended soils and those to which additional Pb and Zn concentrations were added. There was a decrease in total bacterial diversity with each addition of Pb and Zn; in contrast, the actinobacterial community diversity remained unaffected. The community structures were analysed using multivariate analyses of the DGGE profiles. Total bacterial community profiles showed two distinct groups sharing less than 80% similarity, irrespective of Pb and Zn addition. The first contained profiles sampled during the first 7 days of the experiment; the second contained those sampled from day 10 onwards. Actinobacterial profiles from those that were non-amended showed a similar distribution to those of the total bacterial community. However, in soil amended with fivefold additional Pb and Zn, all the profiles shared more than 80% similarity. Raup and Crick analyses suggested that total bacterial soil communities were subject deterministic selection becoming significantly similar as the experiment progressed, but this was inhibited by the highest concentration of additional Pb and Zn. Actinobacterial communities showed a similar response but were less affected by elevated Pb and Zn concentrations. These data indicate that the diversity of the actinobacterial community was not negatively affected by additional heavy metal stress in contrast to total bacterial community diversity.  相似文献   

11.
铜污染土壤微生物群落结构及酶活性研究   总被引:2,自引:0,他引:2  
The microbial community structure and enzyme activities of seven paddy soils with different Cu concentrations were investigated in the vicinity of a Cu smelter in Fuyang County,Zhejiang Province in Southeast China.The microbial community structure was analyzed using the phospholipid fatty acid (PLFA) and multiplex-terminal restriction fragment length polymorphism (M-TRFLP) techniques.There was no clear dose-response relationship between Cu pollution and soil enzyme activity except for urease.Both PLFA and M-TRFLP methods showed that Cu contamination had a large effect on the soil microbial community structure.PLFA indicators of Gram-positive bacteria (16:0i,15:0i) and fungi (18:2w6,9) relatively decreased with increasing Cu concentration,whereas indicators of Gram-negative bacteria (19:0cy,16:1w7) increased.The M-TRFLP results suggested that there was a dose-dependent response between Cu pollution and bacterial community or fungal community.The fungal community was more sensitive to Cu pollution than the bacterial community.There were no significant differences in archaeal community structure between the different Cu pollution plots and archaea might be more tolerant to Cu pollution than both bacteria and fungi.  相似文献   

12.
Sodium, Cl and Pb contents of snow, meltwater and soil from ten Metropolitan Toronto snow dumps were determined. Contaminant concentrations were related to the source of the snow. Although initially very high, Na and Cl concentrations in the snow decreased with time while piled at the dump site. Conversely, Pb content increased with time as the snow gradually melted and the Pb-containing particulates accumulated on the snow surface. The Na and Cl content of the meltwater was related to the concentrations in the snow, but the mean levels decreased with time, indicating that parts of the piles with higher salt concentrations were melting and draining away before the remaining areas. Although some Na and Cl is leached from the soil during the summer months, much of the salt and most of the Pb remains to accumulate from year to year. Adjacent to the snowpiles, the soil contained contaminant concentrations that were higher than control samples, possibly as a result of the movement of meltwater runoff.  相似文献   

13.
Summary A method for simultaneous estimation of the impact of heavy metal stress on the diversity and the degradative capability of soil bacteria was developed and tested. It is based on the ability of soil bacteria to use aromatic substances as C sources. Though these characters were selected to indicate specific biochemical potential, they were sufficiently capable of differentiating the isolated strains into biochemical types. Using these characters implied that only organisms capable of growing at the expense of aromatics were tested. However, this made it possible to restrict the number of assays to 20 and to test up to 200 isolates per soil sample. In three out of five experiments, we found that heavy metal stress definitely decreased the diversity of bacteria in a flora. In two other experiments, an unchanged or even higher diversity in the metal-contaminated soils was observed. These unexpected results may have been caused by a high soil pH rendering metals unavailable or by selection of fast-growing strains in the control soil (decrease in evenness). The relative scoring of all characters in a community (also the average number of substrates used per isolate) was not a reliable indicator of changes in the degradative capability of bacterial communities. However, the ratio of the 10 lowest-scoring to the 10 highest-scoring out of the 20 characters tested was capable of indicating these changes. In all heavy-metal-affected bacterial communities so far tested, this ratio was lower than in the corresponding unaffected communities. These data suggest that some of the rare biochemical capabilities of bacterial flora were lost following contamination of soils by heavy metals.  相似文献   

14.
Summary Five bacterial strains capable of Mn reduction were isolated from the rhizosphere of plants growing in different South Australian soils. They differed in their Mn-reducing capacity. The antagonism of these strains compared to the imported strain 2–79 (from the United States) against Gaeumannomyces graminis var. tritici was tested in agar and in a soil sandwich experiment at different Mn2+ concentrations in the soil. In addition, wheat seeds were coated with the different strains and with MnSO4 or with MnSO4 only in order to investigate their effect on plant growth and Mn uptake. With one exception, all strains inhibited the growth of G. graminis in agar, but to different degrees. In contrast, only two strains significantly inhibited the growth of the fungus in the soil. The hyphal density was decreased more than the hyphal length. The Mn2+ concentration in the soil also had a marked effect on fungal growth; low Mn concentrations slightly increased while high Mn concentrations strongly decreased the fungal growth. Seed treatment with MnSO4 only (+Mn) increased Mn uptake above that of the control (no seed treatment). Only the weakest Mn reducer on agar significantly increased plant growth and Mn uptake from soil in comparison with the Mn treatment. One strain was tested as seed coating without adding MnSO4; it increased the plant growth to an extent similar to the Mn treatment. Increasing the Mn uptake by plants may be one of the growth-promoting effects exerted by rhizosphere bacteria.  相似文献   

15.
《Applied soil ecology》2005,28(2):101-112
The bacterial communities of two soils with different chromium levels were characterized by Biolog carbon substrate utilization patterns and amplified 16S ribosomal DNA restriction analysis (ARDRA). For each bacterial community sample, cell suspensions containing 10,000 or 100 colony-forming units (CFU) were inoculated in each well of Biolog-GN microplates. The number of carbon compounds utilized by the bacterial community consisting of 100 CFU from unpolluted soil was significantly lower than that detected for the bacterial community consisting of 10,000 CFU. The size of inoculum did not substantially influence the percentage of carbon sources utilized by the Cr-polluted soil bacterial community. ARDRA approach was applied to about 100 bacterial isolates for each soil sample. A similar number of clusters for Gram-negative bacteria were found in both soils, but there were differences in percentages of isolates belonging to each group and specific genomic groups were found in each soil. Pseudomonas was the dominant taxon in both soils. Comparing the ARDRA clusters obtained from Gram-positive isolates it was evident that the culturable bacterial communities of Cr-polluted and unpolluted soils were dominated by the genus Arthrobacter and the genus Bacillus, respectively.  相似文献   

16.
High salinity of soils in arid and semi-arid regions results in desertification and decreased crop yield. One possibility to circumvent this problem is to use root colonising salt tolerant bacterial inoculants which can alleviate salt stress in plants. In the present work, the best five enhanced wheat root tip coloniser bacteria were selected from the rhizosphere of wheat grown in saline soil and were identified by the 16S rRNA gene sequence as Pseudomonas putida, Pseudomonas extremorientalis, Pseudomonas chlororaphis and Pseudomonas aurantiaca. The isolates tolerated salt of 5% NaCl and produced indole acetic acid under saline conditions. Four isolates proved to be very efficient in promoting a significant increase in the shoot, root and dry matter of wheat and were able to survive in saline soil. Four of the isolated strains appeared to be better competitive colonisers than reference strains and probably outcompeted with indigenous microorganisms of the rhizosphere. These results are promising for the application of selected environmentally save microbes in saline agricultural soils.  相似文献   

17.
Success in introducing Rhizobium japonicum strains into soil is related to their interaction with native microorganisms including some that are antagonistic. Actinomycetes, bacteria, fungi and rhizobiophages antagonistic towards strains of R. japonicum were counted directly using soil samples from field plots under different crop and soil management systems. The antagonistic actinomycete population varied from 1.3 × 103 to 4.5 × 105 g?1 dry soil and ranged up to 90% of total actinomycetes. Soybean rhizosphere soil samples included antagonistic actinomycetes ranging up to 70% of total actinomycetes. The antagonistic bacterial population was less than 10% of total bacteria and the proportion did not vary significantly with crop or soil management practices. Antagonistic fungi were observed for many of the soils examined but they could not be counted. There were few rhizobiophages and they were found most frequently in soybean rhizospheres. Occasional bacterial and actinomycete colonies that stimulated growth of R. japonicum were randomly observed among the soil samples tested.  相似文献   

18.
Summary Effects of zinc (zinc chloride) added to a sandy clay loam soil on its bacterial flora were investigated by the study of cellular fatty acid composition of the isolates. The soil amended with glucose (carbon source) and ammonium sulfate (nitrogen source) was incubated in the presence (1.0 mg/g) or absence of zinc for 96 h. Bacterial strains were isolated on albumin agar from the incubated soils every 24 h. Their cellular fatty acid composition was analyzed and the strains were classified according to the percentage distribution pattern of the fatty acid composition.Two and four dominant patterns of the fatty acid composition were obtained in the isolates from the control soil and the soil with zinc added, respectively. They were different from one another. Most of the dominant strains isolated from the soil with added zinc were zinc-tolerant, and it was suggested that the selection for zinc tolerance readily proceeded.  相似文献   

19.
不同石油污染程度土壤细菌群落多样性及优势菌群分析   总被引:1,自引:0,他引:1  
  目的  探究辽河油田不同石油污染程度土壤中理化性质及细菌群落多样性和组成的变化规律,并对石油污染土壤中的石油降解菌进行分离培养和鉴定。  方法  采集了辽河油田不同石油污染程度土壤,采用高通量测序技术和化学分析法对土壤细菌群落组成和土壤理化性质进行测定,并进一步筛选出石油降解菌株。  结果  在出油口(A)、距离出油口50 m(B)和距离出油口150 m(C)采集的三个土壤样品,其土壤总石油烃含量分别为2467.44 mg kg?1、884.99 mg kg?1和141.63 mg kg?1,三个土壤样品具有不同的石油污染程度。石油污染显著提高了土壤总有机碳含量,土壤总石油烃含量与总有机碳含量呈现正相关(P < 0.001)。土壤细菌群落多样性和丰富度指数与土壤石油烃的浓度呈显著负相关(P < 0.01)。不同石油污染程度土壤具有不同的细菌群落组成和结构,土壤石油烃含量是影响细菌群落变化的主要因素。出油口石油污染土壤样品(A)中,变形菌门(Proteobacteria)为优势菌门,假单胞菌属(Pseudomonas)、假黄单胞菌属(Pseudoxanthomonas)、博代氏杆菌属(Bordetella)和伯克氏菌属(Burkholderia)为优势菌属。从出油口石油污染土壤(A)中分离出3株石油降解菌株,通过16S rRNA基因测序分别被鉴定为Pseudomonas baetica、黄褐假单胞菌(Pseudomonas fulva)和施氏假单胞菌(Pseudomonas stutzeri),其石油降解率分别为37.2%、46.9%和57.8%。此结果与A样品高通量测序属水平组成分析相吻合,表明石油污染能够选择性富集土壤中具有石油降解能力的假单胞菌属。  结论  石油污染提高了土壤总有机碳含量,降低了土壤细菌群落多样性,富集了具有烃类降解能力的优势菌属,是造成土壤细菌群落组成和结构改变的主要因素,并筛选出具有潜在开发应用价值的石油降解假单胞菌株。  相似文献   

20.
Sun  Xiaojie  Cai  Peng  Sørensen  Søren J.  Mortimer  Monika  Gao  Chunhui  Huang  Qiaoyun  Wang  Yiming  Lin  Xiangui  Wu  Yichao  Zhu  Di  Chen  Ruirui 《Journal of Soils and Sediments》2020,20(3):1494-1501
Purpose

Bacterial cooperation and competition in biofilms are being recognized as important factors in regulating structure and function of microbial communities. However, knowledge about soil bacterial interactions in biofilms and how these may be influenced by different fertilization practices is still limited. This study aims to investigate interspecific interactions in biofilms and the effects of fertilization practices on these interactions.

Materials and methods

We assessed bacterial interactions according to a classification criterion proposed recently via comparing biomass of single-species biofilms with dual-species biofilms. Biofilm biomass was measured by crystal violet staining using the modified Calgary biofilm device.

Results and discussion

Increased biofilm formation was detected in 67% of co-cultures that were composed of strains isolated from unfertilized soil, indicating a high prevalence of cooperation among the strains in natural soil. In contrast, decreased biofilm formation was detected in 74% of co-cultures that contained strains isolated from soil receiving chemical fertilizer. Interestingly, combinations of bacterial isolates from soils amended with chemical fertilizer in combination with composted chicken manure or mushroom residues showed higher level of synergism and biofilm induction in dual-species biofilms than the strains from chemically fertilized soils, suggesting integrated fertilization with composted chicken manure or mushroom residues may help maintain the native microbial interaction network dominated by synergistic interactions.

Conclusions

Together, these findings indicate that social interactions, required for biofilm formation, among soil bacteria are affected by fertilization practices. Cooperation is dominant in dual-species biofilms in unfertilized soil. Organic manure could mitigate the negative impacts on bacterial social interactions caused by chemical fertilizers.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号