首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three field experiments were conducted in lupin in 1997, 1998 and 1999 to study two aspects of selectivity of post‐emergence weed harrowing; the ability of the crop to resist soil covering (the initial damage effect), and the ability of the crop to tolerate soil covering (the recovery effect). Each year soil covering curves and crop tolerance curves were established in three early growth stages of lupin. Soil covering curves connected weed control and crop soil cover in weedy plots, and crop tolerance curves connected crop yield and crop soil cover in weed‐free plots. The experiments showed that both resistance and tolerance were unaffected by the growth stage of lupin within the range from the cotyledon to the 7–8 leaf growth stages. Tolerance to soil covering was also unaffected by year whereas the ability of the crop to resist soil covering was highly affected by year. Lupin showed high tolerance to soil covering but a rather low ability to resist soil covering. Harrowing at multiple growth stages supported the finding that lupin is fairly tolerant to soil covering. Advantages and disadvantages of using soil covering as a measure of crop damage is discussed. In conclusion, weed harrowing in lupin showed positive prospects because of high tolerance to crop soil cover.  相似文献   

2.
We investigated the tolerance to weed harrowing of four spring barley varieties and examined the possible interactions between varietal weed suppressive ability and two nutrient levels. Tolerance was defined as the combined effect of crop resistance (ability to resist soil covering) and crop recovery (the ability to recover in terms of yield). The weed harrowing strategy was a combination of one pre‐ and one post‐emergence weed harrowing. In terms of yield, the four varieties responded significantly differently to weed harrowing and the response depended on nutrient level. At the lower nutrient level, weed harrowing caused an increase in yield of 4.4 hkg ha−1 for a strong competitor (cv. Otira), while there was no effect on yield at the higher nutrient level. For a weaker competitor (cv. Brazil), weed harrowing caused no change in yield at the lower nutrient level, whereas yield decreased by 6.0 hkg ha−1 at the higher nutrient level. There were marked differences between the weed suppressive ability of the four varieties when not harrowed, with less pronounced but significant differences when harrowed. Weed harrowing did not change the weed suppressive ability of a variety. Varieties that are tall at post‐emergence harrowing and have increased density after pre‐emergence harrowing, are the ones that benefit most from weed harrowing.  相似文献   

3.
Weed competition and nutrient scarcity often restrict organic cereal production, especially where the availability of livestock manure is limited. While harrowing of annual weeds and legume cover crops can be used, these methods are both executed in early spring and may hinder each other. Two cycles of a 2‐year crop rotation were carried out in south‐east Norway (60°42′N, 10°51′E, altitude 250 m) with weed harrowing and undersown cover crops (WHCC) at two fertiliser rates (40 and 100 kg nitrogen ha?1). The effect of the WHCC treatments was measured by weed density and species, weed biomass, changes in weed seedbank and grain yield. The weed density depended on the interaction between WHCC, fertiliser and year. On average, pre‐emergence weed harrowing reduced weed density by 32% and weed biomass by 49%, while pre‐ and post‐emergence weed harrowing reduced weed density by 59% and weed biomass by 67% compared with the untreated control. Spergula arvensis became more abundant at low rather than at high fertiliser rates. On average, white clover cover crop sown after pre‐emergence weed harrowing resulted in the highest yields for both oat (+12.1%) and wheat (+16.4%) compared with the untreated control. Despite differences in weed population density and biomass among WHCC treatments within years, the weed biomass, weed density and seedbank increased for all WHCC treatments over the 4‐year period. More research is required into improving the efficacy of mechanical and cultural weed suppression methods that organic systems rely on.  相似文献   

4.
A LUNDKVIST 《Weed Research》2009,49(4):409-416
To assess the effects of timing and frequency of weed harrowing on weed abundance and crop yield, different pre- and post-emergence weed harrowing sequences were applied to spring cereals and peas in field experiments performed during 2003 and 2004 in Sweden. Post-emergence harrowing was performed at crop growth stages 2–3 and 5–6 true leaves respectively. The best weed control was obtained by a combination of pre- and post-emergence harrowing, but these treatments also caused yield losses of 12–14% in spring cereals, while no yield losses were observed in peas. Pre-emergence weed harrowing treatments alone or combined with weed harrowing shortly after crop emergence proved to be most effective against the early emerging annual weed species Sinapis arvensis and Galeopsis spp. Post-emergence harrowing alone in peas had no effect on S. arvensis . The late emerging annual weed species Chenopodium album and Polygonum lapathifolium were most effectively controlled when pre-emergence weed harrowing was combined with one or two weed harrowing treatments after crop emergence.  相似文献   

5.
In six field experiments on post‐emergence weed harrowing in spring barley, the effects of row spacing, timing, direction and orientation on crop/weed selectivity were investigated. The efficacies of increasing intensities of harrowing generated either by increasing number of passes or increasing driving speed were also tested. Selectivity was defined as the relationship between crop burial in soil immediately after treatment and weed control. To estimate crop burial, digital image analysis was used in order to make objective estimations. The study showed that narrow row spacing decreased selectivity in a late crop growth stage, whereas row spacing in the range 5.3–24 cm had no effects at an early growth stage. Harrowing across rows decreased selectivity in one out of two experiments. Whether repeated passes with the harrow were carried out in the same orientation along the rows or in alternative orientations forth and back was unimportant. There were indications that a high harrowing intensity produced by a single pass at high speed gave a lower selectivity than a similar intensity produced by several passes at a low speed. Impacts on selectivity, however, were small and only significant at high degrees of weed control. Timing had no significant impact on selectivity.  相似文献   

6.
Small unmanned aerial systems (UAS) with cameras have not been adopted in weed research, but offer low‐cost sensing with high flexibility in terms of spatial resolution. A small rotary‐wing UAS was tested as part of a search for an inexpensive, user‐friendly and reliable aircraft for practical applications in UAS imagery weed research. In two experiments with post‐emergence weed harrowing in barley, the crop resistance parameter, which reflects the crop response to harrowing, was unaffected by image capture altitude in the range from 1 to 50 m. This corresponded to image spatial resolution in the range from 0.3 to 17.1 mm per pixel. This finding is important because spatial resolution is inversely related to sensing capacity. We captured 20 plots comprising a total of about 0.2 ha in one image at 50 m altitude without losing information about the cultivation impacts on vegetation compared with ground truth data. UAS imagery also gave excellent results in logarithmic sprayer experiments in oilseed rape, where we captured 37 m long plots in each image from an altitude of 35 m. Furthermore, perennial weeds could be mapped from UAS images. These first experiences with a small rotary‐wing UAS show that it is relatively easy to integrate as a tool in weed research and offers great potential for site‐specific weed management.  相似文献   

7.
Objective assessment of crop soil cover, defined as the percentage of leaf cover that has been buried in soil because of weed harrowing, is crucial to further progress in post‐emergence weed harrowing research. Up to now, crop soil cover has been assessed by visual scores, which are biased and context‐dependent. The aim of this study was to investigate whether digital image analysis is a feasible method to estimate crop soil cover in the early growth stages of cereals. Two main questions were examined: (i) how to capture suitable digital images under field conditions with a standard high‐resolution digital camera and (ii) how to analyse the images with an automated digital image analysis procedure. The importance of light conditions, camera angle, size of recorded area, growth stage and direction of harrowing were investigated, in order to establish a standard for image capture and an automated image analysis procedure based on the excess green colour index was developed. The study shows that the automated digital image analysis procedure provided reliable estimations of leaf cover, defined as the proportion of pixels in digital images determined to be green, which were used to estimate crop soil cover. A standard for image capture is suggested and it is recommended that digital image analysis be used to estimate crop soil cover in future research. The prospects of using digital image analysis in future weed harrowing research are discussed.  相似文献   

8.
Rasmussen  Rasmussen 《Weed Research》2000,40(2):219-230
Two field experiments investigated the influences of crop seed vigour on the effect of weed harrowing and crop:weed interactions in spring barley. Artificially reduced seed vigour, which was similar to the variation within commercial seed lots, caused a reduction in germination rate, delayed time of emergence and, consequently, caused reduced competitive ability against weeds. During both years, the reduced seed vigour increased the average weed biomass by 169% and 210%, and reduced the average crop yield by 16% and 21%. Without the influence of weeds, the yield reduction was estimated to be 8% and 10%. A three‐times harrowing strategy reduced the weed biomass by 75% and 72% on average. However, it also caused damage to the crop and reduced yield. There was no clear interaction between barley seed vigour and weed harrowing in the experiments but, in one year, reduced seed vigour tended to decrease the effect of weed harrowing and also increased crop damage. Results in both years, however, indicate potential possibilities for successful integrated weed control by adding the use of high seed quality to a weed harrowing strategy.  相似文献   

9.
Abstract

Field research was conducted near Hyderabad, India, during 1981 and 1982 to investigate zero‐tillage and reduced‐tillage systems for production of sorghum (Sorghum bicolor (L.) Moench.) under semi‐arid tropical conditions. Part of the investigation compared post‐seeding hand weeding and herbicide treatments for weed control efficacy. The results showed that shallow pre‐seeding tillage was just as effective as deep cultivations in producing high sorghum fodder and grain yields provided weeds were controlled after crop emergence. Both tillage regimes were more effective than a no tillage regime which received only a mixture of glyphosate and 2,4‐D prior to seeding. Post‐seeding weed control practices were essential to maintain high fodder and grain yields of sorghum. Hand weeding and inter‐row blade harrowing were more effective than atrazine applied pre‐emergence or 2,4‐D applied post‐emergence.  相似文献   

10.
Competitive crop cultivars offer a potentially cheap option to include in integrated weed management strategies (IWM). Although cultivars with high competitive potential have been identified amongst cereal crops, competitiveness has not traditionally been considered a priority for breeding or farmer cultivar choice. The challenge of managing herbicide‐resistant weed populations has, however, renewed interest in cultural weed control options, including competitive cultivars. We evaluated the current understanding of the traits that explain variability in competitive ability between cultivars, the relationship between suppression of weed neighbours and tolerance of their presence and the existence of trade‐offs between competitive ability and yield in weed‐free scenarios. A large number of relationships between competitive ability and plant traits have been reported in the literature, including plant height, speed of development, canopy architecture and partitioning of resources. There is uncertainty over the relationship between suppressive ability and tolerance, although tolerance is a less stable trait over seasons and locations. To realise the potential of competitive crop cultivars as a tool in IWM, a quick and simple‐to‐use protocol for assessing the competitive potential of new cultivars is required; it is likely that this will not be based on a single trait, but will need to capture the combined effect of multiple traits. A way needs to be found to make this information accessible to farmers, so that competitive cultivars can be better integrated into their weed control programmes.  相似文献   

11.
Field trials were carried out at a single Danish and two Spanish locations. In Denmark, winter wheat was sown at 24‐cm row spacing allowing hoeing in the inter‐row area. Hoeing speeds of 2, 5 and 8 km h?1 were tested at the end of tillering, at the beginning of stem elongation or on both occasions. The crop was harrowed immediately after hoeing at the same speed. At the Spanish locations the winter barley was sown at a 12‐cm row spacing and harrowed only, at either pre‐emergence plus post‐emergence, or once post‐emergence at mid‐tillering at 2, 4, 6 and 8 km h?1. The depth of the soil layer thrown into the cereal row was measured at all locations. This layer ranged between 0.4 and 1.4 cm, depending on the site and on the treatment, but was generally higher following a single harrow treatment at all sites. The soil layer only tended to increase with faster speeds at the Danish location. On a more sandy soil and soil rolled prior to treatment, less soil was thrown into the cereal row. When two hoe + harrowing treatments were made, a finer soil structure was achieved. However, this did not affect the weed control. At the Danish location, initial intra‐row weeding efficacy of Brassica napus, based on plant number before and 7 days after treatment, was found to be low (21–41%) but increased to 74–79% when assessed after 45 days. Partial burial and bending of B. napus, together with crop competition, probably suppressed weed growth and enhanced final mortality. Uprooting was probably a more important cause of mortality for Stellaria media. At the Spanish locations, weeding efficacy of Papaver rhoeas was similar, ranging between 58% and 83% and this was achieved soon after harrowing. A thicker soil layer did not result in a greater weed kill. It was therefore suggested that burial alone could not be the main factor responsible for weed control in any of the cases studied. No reduction in wheat biomass, measured at the end of May, was found with increasing speed, or with repeated passes of the harrow. The results suggested that faster harrowing, which is economically more attractive for farmers, could be recommended. The soil layer thrown into the row was not found to be a useful parameter to predict the weed control efficacy in the cases presented.  相似文献   

12.
Potato is very susceptible to weed interference during the early growth stages due to slow emergence, and again at the end of the growing cycle when branches collapse and the canopy opens. Weed control usually is performed through a combination of physical and chemical methods. A growing concern for the environment and human health has encouraged the development of non‐chemical weed control. We evaluated the effects of an integrated weed management strategy consisting of physical and cultural methods on naturally emerging weeds over two field seasons in central Italy. One harrowing plus one hilling operation were conducted during the early crop stages, and the competitive abilities against late emerging weeds of six different cultivars of potato, characterised by differences in developmental timing and growth habit, were evaluated. Two measures of competition were evaluated, the competitive balance index (Cb) and the relative total biomass of crop and weed. Higher competitive ability (Cb) was associated with traits such as fast early above‐ground biomass production, height and final above‐ground biomass. Medium late maturity cultivars showed higher Cb than earlier ones, but this was associated with lower yield, providing evidence for a trade‐off between competitive ability and yield. The trade‐off was in part biased by the lack of adaptation of the medium late cultivars to hot weather conditions, so we concluded that cultivars characterised by different developmental time need to be screened and tested for local systems.  相似文献   

13.
Weeds that emerge along with or immediately after crop plants usually can reduce the yield of those crops. Two randomized complete block design experiments were conducted during 2006 and 2007 in Tabriz, Iran to determine the critical period of redroot pigweed control in the green bean hybrid “Cantander”. The treatments were weed‐infested and weed‐free plots at 2, 4, 6, 8, 10, and 14 weeks after bean emergence (WABE). The green bean biomass was affected by the early emergence of redroot pigweed, but it was not reduced when redroot pigweed emerged at 10 weeks after crop emergence, along with crop emergence, and grew with green bean until 4 WABE. The redroot pigweed biomass decreased by 2.7 g m?2 per day when weed emergence was delayed. Each 100 g m?2 of weed biomass that was produced resulted in a 1.4 kg ha?1 loss in the green bean yield. When redroot pigweed interference lasted for ≥4 weeks after green bean emergence, the green bean yield was reduced significantly. Weeds, which emerged 2 weeks after green bean and thereafter were controlled, did not decrease crop productivity significantly. The highest crop yield was obtained when the weed emerged at 14 WABE. The critical period of redroot pigweed control, considering a 10% yield loss, was between 19 and 55 days after green bean emergence. Thus, weed control practises should be begun no later than 3 WABE and should continue until at least 8 WABE in order to obtain the maximum green bean yield.  相似文献   

14.
The development of acetolactate synthase (ALS) tolerant sugar beet provides new opportunities for weed control in sugar beet cultivation. The system consists of an ALS?inhibiting herbicide (foramsulfuron + thiencarbazone‐methyl) and a herbicide‐tolerant sugar beet variety. Previously, the use of ALS‐inhibitors in sugar beet was limited due to the susceptibility of the crop to active ingredients from this mode of action. The postulated benefits of cultivation of the ALS‐tolerant sugar beet are associated with potential risks. Up to now, with no relevant proportion of herbicide‐tolerant crops in Germany, ALS‐inhibitors are used in many different crops. An additional use in sugar beet cultivation could increase the selection pressure for ALS‐resistant weeds. To evaluate the impact of varying intensity of ALS‐inhibitor use on two weed species (Alopecurus myosuroides and Tripleurospermum perforatum) in a crop rotation, field trials were conducted in Germany in two locations from 2014 to 2017. Weed densities, genetic resistance background and crop yields were annually assessed. The results indicate that it is possible to control ALS‐resistant weeds with an adapted herbicide strategy in a crop rotation including herbicide‐tolerant sugar beet. According to the weed density and species, the herbicide strategy must be extended to graminicide treatment in sugar beet, and a residual herbicide must be used in winter wheat. The spread of resistant biotypes in our experiments could not be attributed to the integration of herbicide‐tolerant cultivars, although the application of ALS‐inhibitors promoted the development of resistant weed populations. Annual use of ALS‐inhibitors resulted in significant high weed densities and caused seriously yield losses. Genetic analysis of surviving weed plants confirmed the selection of ALS‐resistant biotypes.  相似文献   

15.
Predicting the risk of weed infestation in winter oilseed rape crops   总被引:1,自引:0,他引:1  
Chemical weed control before crop and weed emergence is a systematic practice in winter oilseed rape crops in France. It would be profitable both for farmers and the environment to predict the level of weed infestation early on in the growing season and to control weeds only when necessary using post‐emergence weed control. The objective of this paper was to develop and evaluate simple models to predict weed biomass in oilseed rape crops. The model input variables were related to weed population characteristics and farmers’ practices. The models can be used to classify oilseed rape plots into two categories: plots with a level of weed infestation above a threshold or those with level of weed infestation below a threshold. A data set including 3 years of experiments, conducted across several regions in France, was used to estimate the parameters and to evaluate the models. High values of sensitivity and specificity were obtained when weed biomass was predicted as a function of sowing date, type of soil tillage, soil mineral nitrogen, crop density, weed density at emergence, and main characteristics of the most abundant weed species. Model performance strongly decreased when input variables related to the weed population were not taken into account. The best models correctly classified 90% of the plots with high weed infestation and 64% of the plots with low weed infestation.  相似文献   

16.
K Rasmussen 《Weed Research》2002,42(4):287-298
Summary Injection of liquid manure (slurry) into the soil is an alternative to the traditional surface application. By the injection method, it is possible to place nutrients closer to the crop sown, thus offering the crop a competitive advantage over weeds. This study compares the response in crop yield, weed density and weed biomass to injection vs. surface application of liquid manure through three growing seasons in barley and oats. The manure applications were combined with treatments of weed harrowing or herbicide spraying or no treatment at all. The levels of weed control and crop yield obtained by harrowing and herbicides were larger when slurry was injected compared with surface application. Without any weed control treatments, the injection method decreased the final weed biomass in barley. The influence of nutrient injection on yield and weed control seemed to be modulated by the time of emergence and the early growth rate of the crop relative to weeds. Thus, because of its early root growth and development, barley responded more quickly to the injection treatment than oats. Consequently, barley became a more competitive crop.  相似文献   

17.
B Bukun 《Weed Research》2004,44(5):404-412
Field studies were conducted over 4 years in south‐eastern Turkey in 1999–2002 to establish the critical period for weed control (CPWC). This is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. A quantitative series of treatments of both increasing duration of weed interference and of the weed‐free period were applied. The beginning and end of CPWC were based on 5% acceptable yield loss levels which were determined by fitting logistic and Gompertz equations to relative yield data representing increasing duration of weed interference and weed‐free period, estimated as growing degree days (GDD). Total weed dry weight increased with increasing time prior to weed removal. Cotton heights were reduced by prolonged delays in weed removal in all treatments in all 4 years. The beginning of CPWC ranged from 100 to 159 GDD, and the end from 1006 to 1174 GDD, depending on the weed species present and their densities. Practical implications of this study are that herbicides (pre‐emergence residual or post‐emergence), or other weed control methods should be used in Turkey to eliminate weeds from 1–2 weeks post‐crop emergence up to 11–12 weeks. Such an approach would keep yield loss levels below 5%.  相似文献   

18.
Use of Fusarium-infected seed for cereal crops results in a reduced plant density due to seedling blight. This is especially a problem in organic agriculture, for which currently no practical seed disinfection methods are available. In the present paper we investigated whether spring wheat cultivars differ in tolerance to seedling blight in vivo, whether the possible differences could be linked to cultivar differences in initial growth rates, and whether differences in weed infestation were related to differences in emergence. Seed six spring wheat cultivars (Melon, Lavett, SW Kungsjett, Epos, Pasteur, Thasos), containing three Fusarium infection levels were obtained and sown in two field experiments in 2006 and 2007 and in an outdoor pot experiment in 2007. Results indicated that the six spring wheat cultivars differed in their tolerance to seedling blight, and consequently in the percentage of emergence of their seeds. The relative levels of tolerance to seedling blight of the six cultivars were robust in the three experiments performed. No clear relationship between initial growth rates and tolerance was found. In our experiments, no early and homogenous weed pressure was present, but in the 2007 field experiment a relationship between initial seedling emergence and weed infestation after anthesis was determined. Based on the presented results we suggest that additional to resistance to Fusarium head blight (FHB), differences in tolerance to seedling blight should also be considered during selection of wheat cultivars for organic agriculture.  相似文献   

19.
Α three‐year, non‐irrigated field study was conducted in 1998, 1999, and 2000 at the Southern Weed Science Research Unit farm, Stoneville, MS to study the effects of rye cover crop residue, soybean planting systems, and herbicide application programs on the control, density and biomass of several weed species and soybean yield. The soybean planting systems comprised 19 cm rows with high plant density, 57 cm rows with medium plant density, and 95 cm rows with low plant density. The herbicide programs evaluated were pre‐emergence, postemergence, pre‐emergence followed by postemergence, and no herbicide. Flumetsulam and metolachlor were applied pre‐emergence, and acifluorfen, bentazon, and clethodim were applied postemergence. The presence or absence of rye cover crop residue and a soybean planting system did not affect weed control of the species evaluated (browntop millet, barnyard grass, broadleaf signal grass, pitted morningglory, yellow nutsedge, Palmer amaranth and hyssop spurge), when herbicides were applied, regardless of the application program. In addition, rye cover crop residue was not an effective weed management tool when no herbicide was applied, because density and biomass of most weeds evaluated were higher than a no cover crop residue system. Among soybean planting systems, narrow with high plant density soybeans reduced density of grasses, broadleaf weeds and yellow nutsedge by 24–83% and total weed biomass by 38%, compared to wide with low plant density soybeans. Although weed pressure was reduced by narrow with high plant density soybeans, herbicide applications had the most impact on weed control, weed density and biomass. All herbicide programs controlled all weed species 81–100% at two weeks after postemergence herbicide applications, in comparison to no‐herbicide. Density of grasses and all broadleaf weeds as well as total weed biomass was lower with the pre‐emergence followed by postemergence program than these programs alone. Soybean yields were higher in the pre‐emergence followed by postemergence, and postemergence only programs than the pre‐emergence alone program. Planting crops in narrow rows is one cultural method of reducing weed pressure. However, even with the use of this cultural practice, prevalent weed pressure often requires management with herbicides.  相似文献   

20.
The demography of the annual dicotyledonous weed Papaver rhoeas and the efficacy of different management practices were studied during three consecutive years in winter cereals in the north‐east of Spain. These data were used to estimate the parameters of a weed life cycle model that was used to describe the population dynamics of this species and to predict the effect of various control strategies and integrated weed management (IWM) scenarios. Without control, the annual rate of increase was 40 (λt), and the minimum control level required to maintain the population stable was 99% of the emerged plants. The annual application of post‐emergence and/or pre‐emergence herbicides did not prevent the growth of the population. Using various cultural control tactics (delayed seeding, harrowing and fallow) resulted in different trends in the overall population depending on the techniques and combinations analysed. Simulations showed that delayed seeding, fallow and pre‐emergence herbicides are the best techniques to employ in IWM programmes, always using a combination of these and other more common practices (i.e. post‐emergence herbicides). Sensitivity analysis indicated interaction between the parameters and that the model was especially sensitive to seed losses and also to fecundity, seedling survivorship and emergence. The study shows that new strategies should be sought to control these parameters. To develop IWM programmes for P. rhoeas, the combination of two or more control strategies is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号