首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.  相似文献   

2.
The Kepler spacecraft has been monitoring the light from 150,000 stars in its primary quest to detect transiting exoplanets. Here, we report on the detection of an eclipsing stellar hierarchical triple, identified in the Kepler photometry. KOI-126 [A, (B, C)], is composed of a low-mass binary [masses M(B) = 0.2413 ± 0.0030 solar mass (M(⊙)), M(C) = 0.2127 ± 0.0026 M(⊙); radii R(B) = 0.2543 ± 0.0014 solar radius (R(⊙)), R(C) = 0.2318 ± 0.0013 R(⊙); orbital period P(1) = 1.76713 ± 0.00019 days] on an eccentric orbit about a third star (mass M(A) = 1.347 ± 0.032 M(⊙); radius R(A) = 2.0254 ± 0.0098 R(⊙); period of orbit around the low-mass binary P(2) = 33.9214 ± 0.0013 days; eccentricity of that orbit e(2) = 0.3043 ± 0.0024). The low-mass pair probe the poorly sampled fully convective stellar domain offering a crucial benchmark for theoretical stellar models.  相似文献   

3.
Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star's periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.  相似文献   

4.
The existence of a dominant massive planet, Jupiter, in our solar system, although perhaps essential for long-term dynamical stability and the development of life, may not be typical of planetary systems that form around other stars. In a system containing two Jupiter-like planets, the possibility exists that a dynamical instability will develop. Computer simulations suggest that in many cases this instability leads to the ejection of one planet while the other is left in a smaller, eccentric orbit. In extreme cases, the eccentric orbit has a small enough periastron distance that it may circularize at an orbital period as short as a few days through tidal dissipation. This may explain the recently detected Jupiter-mass planets in very tight circular orbits and wider eccentric orbits around nearby stars.  相似文献   

5.
Magnetic fields at uranus   总被引:1,自引:0,他引:1  
The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.  相似文献   

6.
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.  相似文献   

7.
Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations.  相似文献   

8.
Observations of energetic electrons ( greater, similar 0.07 million electron volts) show that the outer magnetosphere of Jupiter consists of a thin disklike, quasitrapping region extending from about 20 to 100 planetary radii (R(J)). This magnetodisk is confined to the vicinity of the magnetic equatorial plane and appears to be an approximate figure of revolution about the magnetic axis of the planet. Hard trapping is observed within a radial distance of about 20 R(J). The omnidirectional intensity J(0) of electrons with energy greater, similar 21 million electron volts within the region 3 r 20 R(J) is given by the following provisional expression in terms of radial distance r and magnetic latitude theta: J(0) = 2.1 x 10(8) exp[-(r/a) - (theta/b)(2)]. In this expression J(0) is particles per square centimeter per second; a = 1.52 R(J) for 3 相似文献   

9.
Present theories of terrestrial planet formation predict the rapid ;;runaway formation' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.  相似文献   

10.
Within distances to Uranus of about 6 x 10(6) kilometers (inbound) and 35 x 10(6) kilometers (outbound), the planetary radio astronomy experiment aboard Voyager 2 detected a wide variety of radio emissions. The emission was modulated in a period of 17.24 +/- 0.01 hours, which is identified as the rotation period of Uranus' magnetic field. Of the two poles where the axis of the off-center magnetic dipole (measured by the magnetometer experiment aboard Voyager 2) meets the planetary surface, the one closer to dipole center is now located on the nightside of the planet. The radio emission generally had maximum power and bandwidth when this pole was tipped toward the spacecraft. When the spacecraft entered the nightside hemisphere, which contains the stronger surface magnetic pole, the bandwidth increased dramatically and thereafter remained large. Dynamically evolving radio events of various kinds embedded in these emissions suggest a Uranian magnetosphere rich in magnetohydrodynamic phenomena.  相似文献   

11.
Since the Cassini spacecraft reached Saturn's orbit in 2004, its instruments have been sending back a wealth of data on the planet's magnetosphere (the region dominated by the magnetic field of the planet). In this Viewpoint, we discuss some of these results, which are reported in a collection of reports in this issue. The magnetosphere is shown to be highly variable and influenced by the planet's rotation, sources of plasma within the planetary system, and the solar wind. New insights are also gained into the chemical composition of the magnetosphere, with surprising results. These early results from Cassini's first orbit around Saturn bode well for the future as the spacecraft continues to orbit the planet.  相似文献   

12.
Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.  相似文献   

13.
应用基尔霍夫定律建立基于拓扑图的行星轮系数学模型——回路方程组、切割方程组来分析、解决行星轮系运动学的有关问题,求解行星轮系的传动比和角速度以及行星轮系中各个构件之间的受力和力矩。  相似文献   

14.
The evolution of the entire planetary system has been numerically integrated for a time span of nearly 100 million years. This calculation confirms that the evolution of the solar system as a whole is chaotic, with a time scale of exponential divergence of about 4 million years. Additional numerical experiments indicate that the Jovian planet subsystem is chaotic, although some small variations in the model can yield quasiperiodic motion. The motion of Pluto is independently and robustly chaotic.  相似文献   

15.
Results are presented from a preliminary analysis of data obtained near Mercury on 29 March 1974 by the NASA-GSFC magnetic field experiment on Mariner 10. Rather unexpectedly, a very well-developed, detached bow shock wave, which develops as the super-Alfvénic solar wind interacts with the planet, has been observed. In addition, a magnetosphere-like region, with maximum field strength of 98 gammas at closest approach (704 kilometers altitude), has been observed, contained within boundaries similar to the terrestrial magnetopause. The obstacle deflecting the solar wind flow is global in size, but the origin of the enhanced magnetic field has not yet been uniquely established. The field may be intrinsic to the planet and distorted by interaction with the solar wind. It may also be associated with a complex induction process whereby the planetary interior-atmosphere-ionosphere interacts with the solar wind flow to generate the observed field by a dynamo action. The complete body of data favors the preliminary conclusion that Mercury has an intrinsic magnetic field. If this is correct, it represents a major scientific discovery in planetary magnetism and will have considerable impact on studies of the origin of the solar system.  相似文献   

16.
The surface morphology and optical properties of Mercury resemble those of the moon in remarkable detail and record a very similar sequence of events. Chemical and mineralogical similarity of the outer layers of Mercury and the moon is implied; Mercury is probably a differentiated planet with a large iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of landforms has been found. Large-scale scarps and ridges unlike lunar or martian features may reflect a unique period of planetary compression near the end of heavy bombardment by small planetesimals.  相似文献   

17.
Fluxes of high energy electrons and protons are found to be highly concentrated near the magnetic equatorial plane from distances of ~ 30 to ~ 100 Jovian radii (R(J)). The 10-hour period of planetary rotation is observed as an intensity variation, which indicates that the equatorial zone of high particle fluxes is inclined with respect to the rotation axis of the planet. At radial distances [unknown] 20 R(J) the synchrotron-radiation-producing electrons with energies greater, similar 3 million electron volts rise steeply to a maximum intensity of ~ 5 x 10(8) electrons per square centimeter per second near the periapsis at 2.8 R(J). The flux of protons with energies greater, similar 30 million electron volts reaches a maximum intensity of ~ 4 x 10(6) protons per square centimeter per second at ~ 3.5 R(J) with the intensity decreasing inside this radial distance. Only for radial distances [unknown] 20 R(J) does the radiation behave in a manner which is similar to that at the earth. Burst of electrons with energies up to 30 million electron volts, each lasting about 2 days, were observed in interplanetary space beginning approximately 1 month before encounter. This radiation appears to have escaped from the Jovian bow shock or magnetosphere.  相似文献   

18.
The questions of how planets form and how common Earth-like planets are can be addressed by measuring the distribution of exoplanet masses and orbital periods. We report the occurrence rate of close-in planets (with orbital periods less than 50 days), based on precise Doppler measurements of 166 Sun-like stars. We measured increasing planet occurrence with decreasing planet mass (M). Extrapolation of a power-law mass distribution fitted to our measurements, df/dlogM = 0.39 M(-0.48), predicts that 23% of stars harbor a close-in Earth-mass planet (ranging from 0.5 to 2.0 Earth masses). Theoretical models of planet formation predict a deficit of planets in the domain from 5 to 30 Earth masses and with orbital periods less than 50 days. This region of parameter space is in fact well populated, implying that such models need substantial revision.  相似文献   

19.
【目的】利用高密度SNP芯片完成了对北京油鸡血清免疫球蛋白Y含量等9个免疫性状的关联分析,筛选得到了与性状显著关联位点和候选基因。基于该研究结果,以集中分布在16号染色体的候选基因CD1b、 BMA1(B locus M alpha chain 1)、TRIM27(tripartite motif-containing 27)和ZNF692(zinc finger protein 692)作为研究对象,以北京油鸡为实验材料,在聚肌胞(Polyinosinic acid-polycytidylic acid, Poly I:C)和细菌的处理下进一步对候选基因表达特性进行分析和鉴定。【方法】随机选取80只12日龄北京油鸡分为3组:空白对照组、聚肌胞处理组和肠炎沙门氏菌(Salmonella enteritidis, SE)处理组,分别饲养在独立的隔离器内。两处理组分别胸肌注射聚肌胞注射液和SE菌液,对照组注射生理盐水,于处理后12 h、24 h、3 d和6 d(days post infection, DPI)检测血清炎症因子的变化水平和候选基因表达规律。【结果】经过聚肌胞和SE处理后,体重在24 h之后显著低于空白组(P<0.05),体温24 h以内显著升高;血清IFN-α、IL-4和IL-6水平先升高后降低,在第24小时或第3天达到峰值,TNF-α水平持续升高,3 d后极显著高于空白组(P<0.01)。两种处理条件下CD1b的mRNA表达没有组织特异性,其他3个基因在胸腺和法氏囊中高表达。在胸腺组织中,CD1b在两处理间12和24 h的表达量存在显著差异(P<0.01),在聚肌胞处理组整个感染阶段没有显著性变化,在SE组是先升高后降低的趋势,感染后24 h时表达量最高(P<0.01);BMA1在12 h和3 d时两处理组间差异显著,聚肌胞处理组在12 h时表达量低于SE处理组,而在3 d时显著高于SE处理组(P<0.01);TRIM27在聚肌胞感染6 d时表达量显著高于空白组(P<0.05),ZNF692的表达量在3组间没有差异。在法氏囊中,CD1b表达量在两个处理组中存在差异,在SE组12 h时表达量高;BMA1和TRIM27的表达量在两组间没有差异,TRIM27在3 d时表达量最高(P<0.01),ZNF692在SE组感染24 h时相对表达量高于聚肌胞处理组,在两组中都在3 d时表达最高。【结论】CD1b、BMA1、TRIM27和ZNF692参与了聚肌胞和肠炎沙门氏菌引起的免疫反应过程,是与免疫相关的功能基因;CD1b主要在肠炎沙门氏菌感染的前期发挥作用;BMA1和ZNF692分别参与胸腺和法氏囊的免疫反应。  相似文献   

20.
17-甲氧基-7-羟基-苯并呋喃查尔酮的分离及晶体结构   总被引:1,自引:0,他引:1  
简洁  黄仁彬 《安徽农业科学》2011,39(15):8920-8921,8993
[目的]研究17-甲氧基-7-羟基-苯并呋喃查尔酮的分离方法及晶体结构。[方法]利用液液萃取、硅胶柱色谱、重结晶等方法进行目标物的分离,并通过IR、NMR、ESI-MS、X-射线单晶衍射等手段鉴定晶体结构。[结果]晶体结构分析结果表明,该化合物为单斜晶系,空间群P2(1)/c,晶胞主要参数:a=10.881 3(16)nm,b=9.795 4(14)nm,c=13.347 3(19)nm,V=1 382.2(3)nm3,Z=4,Dc=1.414mg/m3,F(000)=616,μ=0.100/mm。[结论]从玉郎伞[Millettia Pulchra Kurz var.Laxior(Dunn)Z.Wei]的60%(体积分数)乙醇水提取物中首次分离并鉴定了17-甲氧基-7-羟基-苯并呋喃查尔酮。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号