首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information about slow rusting resistance to leaf rust (Puccinia triticina) in durum wheat (Triticum turgidum var. durum) is limited. Three slow rusting components, latent period, receptivity, and uredinium size, were determined at the adult plant stage for seven durums with slow rusting resistance to leaf rust and two susceptible durums in three greenhouse experiments. Additionally, area under the disease progress curve (AUDPC) and final disease severity (FDS) were determined in three field trials under artificial epidemics with the same P. triticina race BBG/BN. Compared to the most susceptible check, the AUDPC and FDS of slow rusting resistant durums were significantly lower and ranged from 13–47 to 22–59%, respectively. The latent period was significantly longer (8.5–10.3 days) and uredinium size significantly smaller (8.1–14.8 × 10−2 mm2) on slow rusting durums than on the susceptible checks (8.0 days and 17.3–23.8 × 10−2 mm2, respectively). Uredinium size was the most stable slow rusting component across experiments. Correlations between uredinium size versus AUDPC and uredinium size versus FDS for each environment were high (r = 0.86–0.88). Correlations between latent period and field parameters were significant (r = −0.60 to −0.80). Correlations between receptivity and the field parameters were not significant. A multiple regression analysis showed that the variation in AUDPC and FDS was significantly explained only by uredinium size (P < 0.0001). The best slow rusting resistant lines can be used for developing high-yielding durums with more durable resistance to leaf rust.  相似文献   

2.
Summary Using the cultivar Arina as the recurrent parent, six backcrosses were made with two donor lines carrying the leaf rust resistance genes Lr1 and Lr9, respectively. Selection for leaf rust resistance occurred at the seedling stage in the greenhouse; the first plants transferred to the field were BC6F4s. Frequency distribution of the 332 Lr1/7 × Arina and the 335 Lr9/7 × Arina lines showed continuous variation for yellow rust resistance and heading date in these leaf rust near-isogenic lines (NILs). Similar results were also obtained for plant height, for resistance to powdery mildew and glume blotch, as well as for baking quality characters in another set of more advanced NILs. The available information on the behaviour of one of the parents of cultivar Arina led to the conclusion that the expressed yellow rust resistance is quantitative and might possibly be durable.  相似文献   

3.
Monogenic lines resistant to leaf rust of spring and winter wheats were grown in the world wheat-producing areas from 1970 through 1975. Lines containing the alleles Lr9 (Wi), Lr9 (Tc), and Lr19 (Tc) were more resistant to the leaf rust pathogen than those containing Lr1 (Tc), –1 (Wi), –1,3 (Wi), –2A (Tc), –2A (Wi), –2D (Tc), –3 (Tc), –3 (Wi), –10 (Tc), –16 (Tc), –17 (Tc), –18 (Tc), or –2D (Pld). Monogenic line Lr1 (Wi) possibly has more than one gene for resistance and resistance properties similar to cultivars with field resistance. A computer data base was created to produce the information used in this paper.Formerly Research Agronomist, Field Crops Laboratory, now Supervisoty Computer Specialist, DSAD; and Research Plant Pathologist, Germplasm Resources Laboratory, ARS, BARC-West, Beltsville, Maryland 20705.  相似文献   

4.
Summary A set of 21 monosomics of Novosadska Rana-1 was used to locate the rust resistance genes of Lüqiyu, a stripe rust resistant line developed by BAU and Yantar, a leaf rust resistant wheat introduced from Bulgaria. The resistance of the former to p. striiformis race C25 was conditioned by a dominant gene located on chromosome 2B, whereas that of the latter to P. recondita race CL3 was controlled by two complementary dominant genes located on chromosomes 5A and 1D, respectively. The relationship of the stripe rust resistance gene in Lüqiyu to Yr5, Yr7 or Yr Suwon' all located on chromosome 2B is unknown. The two complementary leaf rust resistance factors in Yantar appear to be new.  相似文献   

5.
A set of T. aestivum-L. elongatum chromosome substitution lines was tested for yellow rust resistance at the seedling stage. Inheritance of the resistance and esterase-5 (Est-5) variation were studied. The results demonstrated that L.elongatum carried a new gene(s) conferring yellow rust resistance. This gene was dominant and located on chromosome 3E of L. elongatum. The biochemical locus encoding Est-5was also located on chromosome 3E, and co-segregated with theYr gene(s) in the wheat background. The transmission frequencies of chromosome 3E in 3E(3A) × CS, 3E(3B) × CS and 3E(3D) × CS hybrids were scored.None of the hybrids transmitted the alien chromosome at thetheoretical maximum rate, but the transmission frequencies ofchromosome 3E in F2 populations of 3E(3A) × CS and 3E(3D) × CS were significantly higher than in thatof 3E(3B) × CS.  相似文献   

6.
Monosomic analysis was conducted to determine chromosomal locations of three new leaf rust resistance genes recently transferred to common wheat (Triticum aestivum) from T. monococcum. The resistance gene in wheat germplasm line KS92WGRC23 was transferred from T. monococcum ssp. monococcum. The resistance genes found in KS93U3 and KS96WGRC34 were transferred from T. monococcum ssp. aegilopoides. Allelism tests showed that the three resistance genes were unlinked. The three lines were crossed with each of the seven A-genome Wichita monosomic lines. The leaf rust resistance genes in KS92WGRC23, KS93U3, and KS96WGRC34 were located on chromosomes 6A, 1A, and 5A, respectively, by monosomic analysis. These results demonstrate that the three new genes derived from T. monococcum are each different. They also differ from previously reported Lr genes. This information on chromosome location and the development of mapping populations will facilitate molecular tagging of the new genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Septoria glume blotch, caused by Stagonospora nodorum, is an important disease of wheat (Triticum aestivum). Separate genetic mechanisms were found to control flag leaf and spike resistance. Genes for resistance to S. nodorum were located on different chromosomes in the few wheat cultivars studied. These studies only partially agree on the chromosome locations of gene in wheat for resistance to S. nodorum, and chromosomal arm locations of such genes are not known. The objectives of this study were to determine the chromosome and chromosomal arm locations of genes that significantly influence resistance to S. nodorum in wheat cultivar Cotipora. Monosomic analysis showed that flag leaf resistance was controlled by genes on chromosomes 3A, 4A, and 3B whereas the spike resistance was controlled by genes on chromosomes 3A, 4A, 7A, and 3B (P=0.01). Additionally, genes on chromosomes 6B and 5A influenced the susceptibility of the flag leaf and spike reactions, respectively (P=0.01). Telocentric analysis showed that genes on both arms of chromosome 3A, and the long arms of chromosomes 4A and 3B were involved in the flag leaf resistance whereas genes on both arms of chromosome 4A, the short arm of chromosome 3A, and the long arm of chromosome 3B conferred spike resistance.  相似文献   

8.
J. A. Kolmer 《Euphytica》1992,61(2):123-130
Summary Leaf rust resistance gene Lr13 is present in many North American hard red spring wheat cultivars that have shown durable resistance to leaf rust. Fifteen pair-wise combinations of Lr13 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests, homozygous paired combinations of specific resistance genes with Lr13 had enhanced resistance relative to either parent to rust isolates that had intermediate avirulent infection types to the additional genes. In field tests, homozygous lines were more resistant than either parent if the additional leaf rust gene conditioned an effective level of resistance when present singly.  相似文献   

9.
P. L. Dyck  E. E. Sykes 《Euphytica》1995,81(3):291-297
Summary Common and durum wheat populations obtained from Sweden and originally collected in Ethiopia were screened for resistance to steum rust and leaf rust. Resistant selections of common wheat were crossed and backcrossed with either stem rust susceptible RL6071, or leaf rust susceptible Thatcher. Genetic studies, based largely on tests of backcross F2 families, showed that four of the selections had in common a recessive gene SrA. Plants with this gene were resistant (1+ infection type) to all stem rust races tested. This gene was neither Sr26 nor Sr29. The resistance of other selections, based on tests with an array of rust isolates, was due to various combinations of Sr6, 8a, 9a, 9d, 9c, 11, 13, 30, and 36. One of the selections had linked genes, Lr19/Sr25. Another selection had a dominant gene for resistance (;1 infection type) to all the races of leaf rust. With the possible exception of this gene for leaf rust resistance and SrA, no obviously new resistance was found.  相似文献   

10.
Summary Specific host-pathogen relationship is used to derive genetic information for resistance in commercial cultivars. Twenty-two cultivars were classified into 12 groups based on their reactions to 13 leaf rust (Puccinia recondita) races of India. The cultivars in each group were matched with the Lr gene carrying lines to see which genes they might possess. Confirmation of this information was sought through pedigree analyses.(1) Agra local and NP4 do not seem to have any resistance genes. (2) C306 has gene Lr14a, and NP824 one of the genes Lr12, Lr13, Lr14a or Lr22. (3) kalyansona carries Lr13 and another additional gene not in study. (4) Chhoti Lerma, NP852, Pusa Lerma, Sharbati Sonora, Shera, UP301 form one group and carry Lr1. (5) Sonalika seems to have Lr2a, Lr11 and additional genes. (6) Hy.65 has Lr10. (7) HS1076-2 and HW135 have the genes Lr2a and Lr3do. (8) HW124 carries the genes Lr1 and Lr3do. (9) Safed Lerma has Lr1 and Lr17. (10) NP846 has the genes Lr1 and Lr15. (11) HB117-107, Janak, UP215 form one group and possess the genes Lr3do and Lr15. (12) Girija possesses the genes Lr10 and Lr15.Based on such grouping of commercial cultivars for resistance genes a Catalogue system is advocated for the design of wheat breeding programmes like the development of multiline and multigene cultivars.  相似文献   

11.
Summary The average size of wheat leaf rust colonies, measured using epifluorescence microscopy was significantly larger in the highly susceptible genotype Morocco than in the susceptible genotype Kaspar and the partially resistant genotypes Westphal 12A, Akabozu and BH 1146. This was already so three days after inoculation. Colony growth in partially resistant genotypes was continuously retarded compared to colonies in the highly susceptible genotype Morocco. No evidence was found for an initial inhibition of the growth of colonies in partially resistant genotypes. In partially resistant genotypes formation of uredial beds and sporulating areas started at a smaller colony size than in susceptible genotypes. Wheat leaf rust colonies in primary leaves of all genotypes studied were much larger than colonies in flag leaves measured at the same number of days after inoculation. Growth and sporulation of not intertwined colonies was not influenced by either a high or a low number of neighbouring colonies.  相似文献   

12.
Summary The relation between flag leaf position and leaf rust severity was investigated in field experiments. Different leaf angles were obtained by attaching ends of flag leaves to strings stretched at different heights along wheat rows. Leaves with angles between lamina and stem of 0° and 45° were significantly less diseased than leaves with horizontal and pendulous positions. In the experiment with seedlings, spore settling and uredia number were significantly lower on erect than on horizontal leaves. The influence of wheat leaf position changes on leaf rust severity was discussed. It has been suggested that breeding of wheat cultivars with erect leaves can improve their resistance to airborne pathogens.  相似文献   

13.
J. K. Luthra  M. V. Rao 《Euphytica》1979,28(1):137-144
Summary To understand how multiline cultivars of wheat develop better protection against leaf rust, seven experimental multilines with 0, 28, 40, 50, 58, 60 and 70% susceptibility were subjected to leaf rust epiphytotics in the field along with their pure line components. A mixture comprising 12 leaf rust races, 10, 11, 12, 17, 20, 63, 77, 106, 107, 108, 162 and 162 A was used.Both the initial inoculum (Xo) and rate of increase (r) of leaf rust were substantially reduced in the multiline cultivars. Xo was reduced by 45–75% and the over-all infection rate (r) by as much as 16% over the average of components.As a result of reduced Xo and r, the intensity of leaf rust in the multilines was also significantly affected at all stages of rust development. It was reduced from 32,10 to 89.54% over the average of components differing from one multiline to another and also from time to time. The susceptible recurrent parent, Kalyansona at the peak period of rust infection exhibited 86.75% severity while in the multilines it ranged from 5.80 to 35%.The rate of increase in the multilines was found to be proportional to the logarithm of the proportion of susceptible plants in the host mixture.Further, it was found that even if as many as 50% susceptible plants are present in a multiline they would not suffer much from leaf rust damage.  相似文献   

14.
D. Singh  R.F. Park  R.A. McIntosh 《Euphytica》2001,120(2):205-218
Multi-pathotype tests on 70 U.K. wheat cultivars permitted postulation of eight known seedling genes for resistance to Puccinia recondita f. sp.tritici either singly or in combinations. The most commonly detected gene was Lr13 (present in approximately 57% of cultivars), followed by Lr26 (22%), Lr37 (20%), Lr10 (17%), Lr17b (LrH) (10%), Lr1 (7%), Lr3a (6%) and Lr20(4%). This information permitted assessments of adult plant resistance (APR) in some cultivars, in field nurseries inoculated with pathotypes of P. recondita f. sp. tritici of known pathogenicities for characterized seedling resistance genes. APR was identified in eleven cultivars, including Avalon and Maris Ranger, which lacked detectable seedling resistance genes. The results provided a better understanding of specific resistances in the cultivars tested than was available from previous reports. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
This study was undertaken to understand the inheritance of leaf rust resistance in line TM16 of Triticum monococcum ssp. monococcum var. macedonicum Papag. which is the source of resistance transferred into hexaploid triticale lines (Tcl/Tm). Thirty-two secondary tetraploid genotypes were analysed cytologicaly to identify substitutions of Am-genome chromosomes by their homoeologous A-genome chromosomes from a leaf rust susceptible hexaploid triticale accession. Plants with one (or more) substituted chromosomes were inoculated with leaf rust at two growth stages. The disease phenotypes of these lines indicated that a major resistance gene was located on the short arm of T. monococcum chromosome 2Am. An additional gene on chromosome 6Am had complementary effects in enhancing the effects of the gene on chromosome 2Am.  相似文献   

16.
P. L. Dyck 《Euphytica》1994,80(1-2):151-155
Summary The inheritance of leaf rust resistance was studied in 13 accessions of the A.E. Watkins wheat collection. Eight of the accessions (V409, V624, V628, V712, V731, V734, V745, and V855) were shown to have gene Lr33 and four of these (V409, V624, V628, and V731) also have LrW. Accessions V624 and V338 have LrB, and V377 and V488 have Lr11. V46 has an unidentified gene that gives an intermediate level of resistance. V860 has a partially dominant gene that gives a fleck reaction to avirulent isolates in the seedling stage. This gene is different from LrW and may be previously unidentified. It has been assigned the temporary gene symbol LrW2. In addition to seedling-effective genes, V46, V731, and V745 may have Lr34 and V745 may have Lr13. The adult-plant resistance in V488, V624, and V860 could not be identified. Seedling gene LrW2 and some of the adult-plant resistance should be useful sources of resistance.Contribution NO. 1576.  相似文献   

17.
D. R. Knott 《Euphytica》1989,44(1-2):65-72
Summary Nine transfers of leaf rust (Puccinia recondita Rob. ex Desm.) resistance to wheat (Triticum aestivum L.) from Agropyron elongatum Host. Beauv., Triticum speltoides Tausch and rye (Secale cereale L.) were backcrossed up to 10 times to commercial wheat cultivars. The objective was to study the effect of the transfers on agronomic and quality characters and to make them available in desirable genetic backgrounds. The results varied greatly for different transfers. In four cases no promising material was obtained even after nine backcrosses. However, for the remaining five transfers material with potential as a new cultivar was obtained.  相似文献   

18.
Summary Triticum miguschovae, a genome addition synthetic, was used as a source for transfer of leaf rust (Puccinia recondita tritici) resistance to common wheat. This synthetic, developed from two wild species Triticum militinae and Aegilops squarrosa, proves a valuable donor of the genes for leaf rust resistance. Leaf rust resistance was transferred from T. miguschovae by both dominant and recessive genes. Stable lines phenotypically similar to their recurrent parents Kavkaz and Bezostaya 1 but differing from them in a high level of leaf rust resistance were obtained. The genes for resistance in 3 selected lines differed from each other and from the known effective genes Lr9, Lr19, and Lr24. The resistance of one of them (line 1229) is controlled by two complementary interacting genes located on chromosome 7B and 1D was revealed by monosomic analysis.  相似文献   

19.
Summary The leaf rust responses of wheat lines carrying the complementary genes Lr27 and Lr31 and the same genes in a Chinese Spring background which contains Lr34, indicate that Lr34 interacts with the complementary genes to give enhanced levels of field resistance to leaf rust. Lr34, particularly in combination with other genes, is considered to be an important gene for imparting a high degree of durable resistance to leaf rust. Its similarity to Sr2, an adult plant gene for resistance to stem rust and its association with adult plant resistances to stem and stripe rusts are discussed.  相似文献   

20.
B. H. Tan 《Euphytica》1978,27(1):317-323
Summary The genetic relationships between three known genes for resistance to Puccinia hordei in barley, Pa 3, Pa5 and Pa 7, were re-examined because of conflicting reports in the literature. PA 3 was found to be independent of Pa 5 and Pa 7, but the latter two are linked with an estimated recombination value of 7.6±1.4%. Trisomic analysis confirmed Pa 7 to be on chromosome 3, but Pa 3 could not be associated with chromosomes 3 to 7 and, therefore, is inferred to be either on chromosome 1 or 2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号