首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial inorganic nitrogen control using carbon:nitrogen ratio (C:N) manipulation is a tool for aquaculture systems. The present study assessed the hatchery performance of Litopenaeus vannamei between the mysis 1 and postlarvae 5 stages in a zero-exchange biofloc system under different C:N fertilization levels (10:1, 12.5:1 and 15:1) with dextrose. Water quality, performance parameters and water microbiology were compared among treatments. The mean values of the evaluated water quality parameters were appropriate for this production stage. Fertilization with dextrose efficiently controlled ammonia levels, which did not reach the average concentrations considered toxic for the species. In the 10:1 C:N ratio treatment, the levels of ammonia started to increase early and showed significantly higher levels from the third to the last experimental day. There was no difference among groups in means of survival (>76%) and dry weight (0.26 mg) of L. vannamei production parameters and water quality were maintained without water exchange using a biofloc system supplemented with dextrose. Therefore, the use of biofloc systems without water exchange with dextrose as a carbon source in C:N ratios of 10:1, 12.5:1 and 15:1 results in both adequate production indexes and water quality during the misis 1 to post-larvae 5 hatchery phases of L. vannamei. However, the ratios of 12.5:1 and 15:1 keep lower levels of ammonia.  相似文献   

2.
The present study assessed the effects of different types of feeds and salinity levels on water quality, growth performance, survival rate and body composition of the Pacific white shrimp, Litopenaeus vannamei, juveniles in a biofloc system. Shrimp juveniles (2.56 ± 0.33 g) were cultured for 35 days in 300 L fibreglass tanks (water volume of 180 L) with a density of 1 g/L in six treatments. Three sources of feed (100% formulated feed, mixture of 66.6% formulated diet and 33.3% wet biofloc, and 100% wet biofloc) and two levels of salinity (10 and 32 ppt) were considered in two control groups and four biofloc treatments. Water quality parameters in the biofloc treatments were significantly better than control groups (p < .05). The highest increase in growth performance and survival rate were obtained in salinity of 32 ppt and mixed feed sources. Analysing the proximate composition of body shrimp indicates an increase in lipid and ash levels in biofloc treatments, which was more evident in the salinity of 32 ppt. In addition, the proximate analysis of shrimp body showed significant differences between biofloc treatments and control groups (p < .05). The highest FCR was found in the treatment with salinity level of 10 ppt and fed only with floc. Overall, it was found that the artificial diet supplemented with biofloc at the salinity of 32 showed better performance in the juvenile stage of Pacific white shrimp.  相似文献   

3.
Effect of different carbon sources on nursery performance of Pacific white shrimp (Litopenaeus vannamei) cultivated in biofloc system was investigated. Shrimp postlarvae (98.47 ± 8.6 mg) were fed for 32 days in tanks with water volume of 130 L and density of 1 individual L?1. One control treatment and four biofloc treatments (BFT1, BFT2, BFT3 and BFT4) with adding different carbon sources including molasses, starch, wheat flour and mixture of them, respectively, were considered at equal weight ratios. According to the results, salinity, dissolved oxygen and pH were not significantly different among the biofloc treatments (P > 0.05). Maximum pH (8.27) and maximum dissolved oxygen (6.35 mg L?1) were recorded in the control. Maximum (0.43 mg L?1) and minimum (0.09 mg L?1) ammonia were recorded in the control and BFT2, respectively (P < 0.05). Using simple carbohydrates (molasses and starch) lowered the ammonia concentration significantly. The highest increase in body weight (1640.43 ± 231.28 mg), growth rate, specific growth rate (8.97 ± 0.42% per day) and biomass (190.29 ± 26.83 mg) were found in BFT1 and the highest survival (90 ± 0.77%) was found in BFT4. The highest feed conversion (1.52 ± 0.23) and the lowest feed efficiency (66.81 ± 7.95) were observed in the control (P < 0.05). The proximate composition analysis revealed an increase in lipid and ash in biofloc treatments. Results indicated that using biofloc technology with zero‐water exchange system and adding carbon sources could help to recycle waste and improve the water quality. Moreover, the type of carbonaceous organic matter as a substrate for heterotrophic bacteria would be effective in degradation and metabolization of ammonia and nitrite.  相似文献   

4.
The objective of the study was to examine the effects of biofloc technology on the muscle proteome of Litopenaeus vannamei. Two biofloc treatments and one control were compared: biofloc‐based tanks under zero‐water exchange fed with 150 g/kg crude protein (BF15), or with 250 g/kg crude protein (BF25) diets, and clear water tanks with 50% of daily water exchange stocked with shrimp fed with similar amount of a 250 g/kg crude protein diet, referred to as control. The shrimp (5.28 ± 0.42 g) were divided into the 300‐L fibreglass tanks (water volume of 200 L) at a density of 35 shrimp per tank and were cultured for 35 days. The biofloc groups displayed better growth and survival compared to the control. The muscle tissue from the control and BF25 groups was subjected to proteomic analysis. Lactate dehydrogenase, enolase, arginine kinase, mitochondrial ATP synthase subunit alpha, mitochondrial ATPase inhibitor factor 1 precursor, serpin 3 and myeloid differentiation factor 88 had an increased abundance in the BF25 group, while myosin heavy chain type 1 and myosin heavy chain type 2 showed a decreased abundance. The results indicate that biofloc technology could alter the expression of proteins involved in structure, metabolism and immune status of cultured shrimp.  相似文献   

5.
A 56-day study was conducted in which shrimp (Litopenaeus vannamei) were stocked at 300 m−3 into 16, 500-L tanks. Four treatments were created: chemoautotrophic (CA), heterotrophic sucrose (HS), heterotrophic molasses (HM), and heterotrophic glycerol (HG). The heterotrophic treatments were managed such that the C:N ratio of inputs (feed and carbohydrate source) was 22:1. The chemoautotrophic treatment received no added carbohydrate, only shrimp feed. Each treatment was assigned randomly to four replicate tanks. Nitrate-N was significantly greater in the CA treatment, accumulating to a peak mean concentration of 162 mg NO3-N L−1 and nitrate was typically below detection (<0.01 mg NO3-N L−1) in the heterotrophic treatments. 5-Day biochemical oxygen demand (BOD5) was significantly greater in the heterotrophic treatments compared to the chemoautotrophic treatment. Total suspended solids concentration was significantly lower in the CA treatment compared to any other. Shrimp growth rate was significantly greater in the CA and HS treatments versus the HM treatment and there was no significant difference in growth rate between the HG treatment and any other treatment. These results indicate that differences in management and carbohydrate source can lead to substantial disparity in system function and shrimp production.  相似文献   

6.
The aim of the present study was to propose a low-cost nitrogen removal system through the nitrification / denitrification process in order to maintain the water quality required for the Pacific white shrimp superintensive cultivation in closed systems without water renewal. The increase in productivity consequently causes the accumulation of organic matter and nitrogenous compounds, especially ammonia nitrogen and nitrite, which in high concentrations can be lethal to aquatic organisms. In addition, the accumulation of solids in the system provides conditions for the emergence of opportunistic pathogens, microalgae booms, and increases the producer's cost of inputs to maintain the equilibrium physicochemical relationships required for shrimp farming. The experimental productive cycle lasted 36 days using Litopenaeus vannamei shrimps with 7.1 g ± 0.56 g and density of 350 shrimps m³. The nitrogen removal efficiency observed during the study period was 71.3 ± 5.3 %, and the shrimp had a survival of 92.9 % and a final weight of 13.1 ± 1.4 g. Thus, we established a system (ammonia and nitrite), capable of managing solids without interaction with the sea, ensuring high biosecurity against exogenous diseases in marine shrimps farms.  相似文献   

7.
为丰富凡纳滨对虾 (Litopenaeus vannamei) 生长和抗逆选育数据库,并为其生长和耐综合胁迫遗传改良提供科学参考,以5个不同遗传背景的凡纳滨对虾群体 [“兴海1号”(GS-01-007-2017) 核心群体、泰国和美国引进的4个群体] 为亲本,经交配获得80个全同胞家系,最终保留38个家系,利用多性状动物模型和ASReml 4软件估计凡纳滨对虾105日龄的生长和耐综合胁迫 [高盐 (35)、低pH (6±0.1) 与高氨氮 (70 mg·L−1) 三因子综合胁迫] 性状的方差组分及遗传参数。结果显示,生长性状的遗传力为高遗传力 [(0.37±0.09)~(0.51±0.10)],耐综合胁迫性状的遗传力为中等遗传力 (0.21±0.06),这表明通过选育改良生长和耐综合胁迫性状是可行的;生长性状 (包括体质量、体长、头胸甲长和腹节全长) 的遗传相关性普遍较高,介于 (0.54±0.13)~(0.99±0.01) (P<0.01);生长性状之间的极显著相关性表明,任何生长性状均可被其他生长性状替代以进行间接选择;生长性状与耐综合胁迫性状的遗传相关性呈低或中的正相关 [(0.11±0.23)~(0.39±0.19)],表明以生长性状为主选目标进行选育时,耐综合胁迫性状也可获得间接改良。  相似文献   

8.
This study evaluated the potential for the replacement of fishmeal (FM) by biofloc meal (BM) in the diet of Litopenaeus vannamei postlarvae. Four isonitrogenous (437.42 g kg?1) and isocaloric (19.84 kJ g?1) diets were formulated, in which FM was replaced with BM at 0% (T0), 7.5% (T7.5), 15% (T15) and 30% (T30). A commercial diet (CD) was used as reference. The study was conducted over 42 days in 50 L tanks connected to a water recirculation system. All tanks were stocked with three postlarvae (initial weight 0.0023 g) per litre. Shrimp survival, weight gain (WG), final weight (FW), specific growth rate (SGR) and protein efficiency ratio (PER) were measured. Survival rates were high (>91.1%) in all treatments. As the T30 treatment returned a significantly (<0.05) better performance in WG, FW, SGR and PER than all other treatments, partial replacement of FM with BM does not appear to affect productivity. In fact, a regression analysis indicated that a FM to BM replacement level of over 20% may actually improve shrimp growth. In addition to providing a cost‐effective alternative ingredient for L. vannamei postlarvae diets, the production of meal also represents a more sustainable way of disposing of the excess of biofloc produced by BFT systems.  相似文献   

9.
10.
An eight‐week feeding trial was conducted to evaluate the contribution of biofloc on dietary lipid requirement in whiteleg shrimp Litopenaeus vannamei. Five diets with graded levels of dietary lipid (45, 60, 90, 120 and 150 g/kg) were fed to juvenile shrimp. Final weight, weight gain and specific growth rate of shrimp fed diets with 60, 90 and 120 g/kg lipid levels were significantly higher than those of shrimp fed diets with lipid levels 45 and 150 g/kg (p < .05). Feed efficiency and protein efficiency ratio of shrimp fed 60, 90 and 120 g/kg were higher than those fed 150 g/kg diet. Plasma total cholesterol and triglyceride levels were lower in shrimp fed 45 g/kg compared with those fed the 90 g/kg (p < .05). Also, lysozyme activity for 90 g/kg group was higher than the 15 g/kg group. Hepatopancreas lipase and amylase activities of shrimp fed 90 and 120 g/kg diets were significantly higher than those of shrimp fed 45 and 150 g/kg diets. Broken‐line regression analysis for weight gain indicated that the dietary lipid requirement of whiteleg shrimp juveniles reared in a biofloc system was estimated to be higher than 56 g/kg but <60 g/kg.  相似文献   

11.
12.
The use of artificial substrates in shrimp aquaculture may allow for production of shrimp at increased densities while providing a growth medium for microbes that assist with water quality processes and provide supplemental nutrition for shrimp. Greenhouse-based shrimp production systems can extend the shrimp production season in temperate climates while conserving water and energy. For this study, we evaluated the effects of providing extra substrate and shrimp density on water quality and shrimp production in greenhouse-based biofloc systems. Four 11-m3, wood framed, and rubber-lined tanks were constructed in each of four high tunnel greenhouses (for a total of 16 tanks). Four treatments were evaluated: high-density stocking with substrate (HDS), high-density stocking with no substrate (HDNS), low-density stocking with substrate (LDS), and low-density stocking with no substrate (LDNS). Each treatment was randomly assigned to one tank in each tunnel to block for location. No artificial heat was used, and shrimp were grown for 120 days. High-density systems were stocked at 200 shrimp/m³ while low-density tanks had 100 shrimp/m³. Adding substrate increased total in-tank surface area by 13.4%. The addition of substrate had no significant effect on any shrimp production or standard water quality parameters. Shrimp had significantly greater final weight, faster growth rate, and lower feed conversion rate in low-density treatments (P ≤ 0.02 for all). Total shrimp biomass production was significantly higher in high-density treatments (HD: 4.0 kg/m3; LD: 2.3 kg/m3; P < 0.05). There were no significant differences in survival between densities (HD: 91.3%; LD: 94.5%; P = 0.43). Peak and overall mean nitrite levels were significantly higher in high-density treatments compared to low-density treatments. Dissolved oxygen levels and pH over the course of the study were significantly lower in high-density treatments, likely due to increased respiration rates in the water column. This project shows the feasibility of shrimp production in temperate climates with no artificial heat using high tunnel greenhouses, few impacts of added substrate on shrimp production, and increased shrimp density can result in much larger harvests with few negative impacts on production metrics.  相似文献   

13.
This study evaluated the influence of different quantities of artificial substrate on water quality and the performance of Litopenaeus vannamei in an integrated biofilm-biofloc culture system. Thus, three treatments were performed: the control, the treatment without the addition of artificial substrate; T200, the treatment with a 200 % increase in the lateral area of the tanks using artificial substrates; and T400, the treatment with a 400 % increase in the lateral area of the tanks using artificial substrates. The study was conducted in nine 800 L tanks over 60 days. The animals were stocked at an initial density of 300 shrimp.m−2 (equivalent to 500 shrimp m-3), with an initial weight of 1.27 g (± 0.48). Ammonia concentrations did not differ significantly between treatments (p > 0.05). Increasing the amount of substrate from 200 % to 400 % did not cause significant differences in the nitrite concentrations between these treatments. However, in the control treatment, nitrite remained high (above 20 mg.L-1) for a long period, negatively affecting shrimp performance. Nitrate was lower in T400, indicating a more dynamic process in the nitrogen cycle when the quantity of artificial substrate increased. Weekly growth rates, final weight, survival, and productivity were higher in the treatments integrating biofilm and biofloc substrates and did not show significant differences between T200 and T400. The results demonstrate the importance of artificial substrates in enhancing the water quality in biofloc culture systems over the long term, mostly in terms of maintaining nitrite concentrations below levels toxic to L. vannamei. The performance of the shrimp and the improved water quality at the end of the study reflected the advantages provided by incorporating artificial substrates in shrimp biofloc culture.  相似文献   

14.
15.
通过实验生态学方法,对体质量为 (1.35±0.37) g的凡纳滨对虾 (Litopenaeus vannamei) 幼虾开展了盐度 (2、4、8、12、16) 和钠离子/钾离子 (Na+/K+) (27、50、75、100、125、150) 双因素胁迫实验,分析其对凡纳滨对虾的72 h成活率及肝胰腺和肌肉组织结构的影响。结果显示,在Na+/K+大于75的条件下,凡纳滨对虾的成活率随盐度的增加而降低;在盐度大于8的条件下,凡纳滨对虾的成活率随Na+/K+的降低而升高。在Na+/K+为27~75条件下,凡纳滨对虾的成活率均大于66.67%。Na+/K+为100条件下,凡纳滨对虾在盐度12和16下的半致死时间 (LT50) 分别为69.78和60.15 h。Na+/K+为125条件下,盐度8、12和16下的LT50分别为76.23、62.61和49.10 h。Na+/K+为150条件下,盐度4、8、12和16下的LT50分别为87.24、68.65、59.4和39.95 h。双因素方差分析表明,Na+/K+、盐度与凡纳滨对虾幼虾第72小时的成活率存在显著交互作用。组织切片显示,当盐度大于8时,高Na+/K+对肌肉和肝胰腺组织结构产生明显影响,主要表现为细胞空泡化或自溶,组织细胞间隙变大、解体,且组织结构损伤程度随盐度的上升而加重。  相似文献   

16.
17.
The relative contribution of the dietary nitrogen supplied by fish meal and a biofloc meal to the growth of Pacific white shrimp was evaluated using stable isotope analysis. Biofloculated material was obtained from an experimental tilapia culture system. Five formulated diets were supplied. Two of them consisted in isotopic controls having only fish meal or biofloc meal as protein source. Three mixed diets were formulated with varying proportions of these ingredients on a dietary nitrogen basis (75:25, 50:50 and 25:75). At the end of the trial, survival rates were similar (92–100%) but significant differences in mean final weight were observed and a negative correlation between the inclusion of biofloc meal and weight gain was evidenced. Mean final weight in shrimp fed on diet containing only fish meal was 2.8 g, while mean final weight of animals fed on diet containing 50% biofloc was 1.9 g. Isotopic mixing models indicated that all diets contributed higher proportions of dietary nitrogen from fish meal than from biofloc meal. Dietary nitrogen available in diets containing 25%, 50% and 75% of biofloc meal was incorporated in muscle tissue as 5%, 41% and 64% respectively. Diet supplying 25% of nitrogen from biofloc was the only mixed diet eliciting growth comparable to diet containing only fish meal. Lower growth and nitrogen deposition in shrimp fed on diets containing high proportions of biofloc meal were possibly associated to the use of only two protein sources and a restriction of essential amino acids.  相似文献   

18.
对从美国进口的选育凡纳滨对虾(Litopenaeus vannamei)海南群体(进口亲虾繁育的第1世代,G1)、山东和饶平群体(G2)、湛江2和湛江3群体(G3)、湛江1和上海群体(G4)共7个养殖群体4个世代1150个个体的生长性状体长和体重进行了分析。7个群体的平均体长(范围)分别为14.76(13.25~15.99)、8.46(6.28~10.48)、9.24(4.28~10.70)、7.75(5.13~9.36)、11.38(8.13~14.12)、5.25(3.47~6.83)和7.14(4.14~9.00),变异系数分别为0.04、0.08、0.08、0.09、0.12、0.14、0.14,平均体重(范围)分别为33.41(24.33~39.74)、5.19(1.80~9.68)、6.95(3.18~11.34)、4.62(1.52~9.87)、15.03(6.00~26.96)、1.47(0.48~3.42)、3.29(0.49~6.20),变异系数分别为0.10、0.23、0.21、0.27、0.32、0.39、0.36。体长和体重的变异系数随着繁育世代的增加而增加,其中体重的变异系数每繁殖1代增加10%,其第1代的变异系数与美国选育的亲本群体相同。体长、体重相关与回归分析表明,体长与体重相关极显著(P<0.01),体长和体重的回归方程为W=0.01L2.93。表明随着繁育世代的增加,生长性状逐代分化。  相似文献   

19.
An indoor trial was conducted for 42 days to evaluate water quality, Vibrio density and growth of Litopenaeus vannamei in an integrated biofloc system (IBS) with Gracilaria birdiae. Four treatments were used, each in triplicate: Control (monoculture shrimp); IBS 2.5 (L. vannamei and 2.5 kg wet weight seaweed m?3); IBS 5.0 (L. vannamei and 5.0 kg wet weight seaweed m?3) and IBS 7.5 (L. vannamei and 7.5 wet weight seaweed m?3). Shrimp individuals (0.34 ± 0.01 g) were stocked at a density of 500 shrimp m?3. No water exchange was carried out during the experimental period. Molasses was added once a day as an organic carbon source to maintain the C:N ratio at 12:1. The IBS significantly decreased (P < 0.05) dissolved inorganic nitrogen (DIN) ranging from 19% to 34% (3.12–3.83 mg L?1), NO3‐N ranging from 19% to 38% (2.40–3.16 mg L?1), Vibrio density ranging from by 8–83% (0.40–2.20 log 103 colony‐forming units mL?1), and FCR ranging from by 20–30% (1.20–1.37), as compared to the control (4.73 mg L?1, 3.93 mg L?1, 2.40 log 103 colony‐forming units mL?1, and 1.74 respectively). Moreover, the IBS significantly increased (P < 0.05) crude protein in whole body shrimp, ranging from 8% to 13% (13.2–13.7% wet weight basis); as well as final weight, ranging from 25% to 32% (3.90–4.12 g), weekly growth ranging from 25% to 34% (0.59–0.63 g), and shrimp yield by 22–39% (1.72–1.96 kg m?3), as compared to control (12.1% wet weight basis, 3.12 g, 0.47 g, and 1.41 kg m?3 respectively). It can thus be concluded that cultivating Gracilaria birdiae in an IBS with L. vannamei can contribute to DIN and NO3‐N removal, lower Vibrio density, increased crude protein in whole body shrimp, higher growth and yield parameters in shrimp culture.  相似文献   

20.
In this study, it evaluated the growth performance of the Pacific white shrimp Litopenaeus vannamei in response to the replacement of fish meal with rendered porcine meat meal (PMM) in its diet. Six isolipidic and isonitrogenous diets were formulated with 0, 25, 35, 45, 55 or 65% replacement of fish meal with PMM on a protein basis. Shrimp grew from 0.55 g to > 3.6 g during the 41-day experimental period. Specific growth rate (SGR) was significantly lower when PMM inclusion was 26.18% or greater, replacing more than 45% fish meal protein. A significant negative relationship was observed between growth response and the level of fish meal protein replacement with PMM protein. Methionine content decreased as PMM inclusion levels increased, consequently compromising growth performance. Dry feed intake (DFI) and the feed conversion ratio (FCR) were unaffected by fish meal replacement levels. The protein efficiency ratio (PER) was highest at the lowest PMM inclusion level. Apparent protein digestibility coefficient (APDC) for PPM was 66.2%. Experimental diets D-0 and D-25 had apparent dry matter digestibility (ADMDs) ranging from 77–81% and ADPs from 82–85%, while the diets with higher PMM inclusion (D-35 to D-65) had a significantly lower ADMD range (70–72%) and APD range (73–78%). It is concluded that porcine meat meal is an acceptable alternative animal protein source that can replace up to 35% of fish meal protein in shrimp diets without significant adverse effects on growth, survival, FCR, PER and body composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号