首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 870 毫秒
1.
In 5 herds in which bovine virus diarrhoea virus (BVDV) had been isolated, all animals were bled for virological and serological examination. After the herd blood test, follow up blood tests were made on calves born up to 6 months later in 1 herd, 9 months later in 1 herd and up to 12 months later in 3 herds. Persistently infected animals (PI animals) were removed and after a time period a small herd sample of 10 animals that were born after removal of the PI animals were examined for BVDV antibodies.At the herd blood test a total of 21 PI animals were detected. During the follow up period another 25 PI animals were born.Among animals in the small herd samples collected after removal of the PI animals, antibody positive animals were found in the 2 herds with the shortest follow up period. In the 3 herds with a 1 year follow up period there were no antibody carriers in the herd sample.It seems possible to prevent further spread of infection with BVDV if all animals in the herds as well as animals born during the following year are examined and PI animals removed.  相似文献   

2.
Wet BVDSim (a stochastic simulation model) was developed to study the dynamics of the spread of the bovine viral-diarrhoea virus (BVDV) within a dairy herd. This model took into account herd-management factors (common in several countries), which influence BVDV spread. BVDSim was designed as a discrete-entity and discrete-event simulation model. It relied on two processes defined at the individual-animal level, with interactions. The first process was a semi-Markov process and modelled the herd structure and dynamics (demography, herd management). The second process was a Markov process and modelled horizontal and vertical virus transmission. Because the horizontal transmission occurs by contacts (nose-to-nose) and indirectly, transmission varied with the separation of animals into subgroups. Vertical transmission resulted in birth of persistently infected (PI) calves. Other possible consequences of a BVDV infection during the pregnancy period were considered (pregnancy loss, immunity of calves). The outcomes of infection were modelled according to the stage of pregnancy at time of infection. BVDV pregnancy loss was followed either by culling or by a new artificial insemination depending on the modelled farmer’s decision. Consistency of the herd dynamics in the absence of any BVDV infection was verified. To explore the model behaviour, the virus spread was simulated over 10 years after the introduction of a near-calving PI heifer into a susceptible 38 cow herd. Different dynamics of the virus spread were simulated, from early clearance to persistence of the virus 10 years after its introduction. Sensitivity of the model to the uncertainty on transmission coefficient was analysed. Qualitative validation consisted in comparing the bulk-milk ELISA results over time in a sample of herds detected with a new infection with the ones derived from simulations.  相似文献   

3.
A stochastic model was designed to calculate the cost-effectiveness of biosecurity strategies for bovine viral diarrhea virus (BVDV) in cow-calf herds. Possible sources of BVDV introduction considered were imported animals, including the calves of pregnant imports, and fenceline contact with infected herds, including stocker cattle raised in adjacent pastures. Spread of BVDV through the herd was modeled with a stochastic SIR model. Financial consequences of BVDV, including lost income, treatment costs, and the cost of biosecurity strategies, were calculated for 10 years, based on the risks of a herd with a user-defined import profile. Results indicate that importing pregnant animals and stockers increased the financial risk of BVDV. Strategic testing in combination with vaccination most decreased the risk of high-cost outbreaks in most herds. The choice of a biosecurity strategy was specific to the risks of a particular herd.  相似文献   

4.
Knowing how bovine viral diarrhoea virus (BVDV) infection spreads via indirect contacts is required in order to plan large-scale eradication schemes against BVDV. In this study, susceptible calves were exposed to BVDV by an unhygienic vaccination procedure, by ambient air and from contaminated pens. Primary BVDV infection was observed in two calves vaccinated with a vaccine against Trichophyton spp that had been contaminated by smearing nasal secretion from a persistently infected (PI) calf on the rubber membrane and penetrating it twice with a hypodermic needle. Four other calves, housed in pairs in two separate housing units near a PI calf for one week--at distances of 1.5 and 10 m, respectively--became infected without having direct contact with the PI calf. Furthermore, two of the three calves housed in a pen directly after removal of a PI calf, but without the pen being cleaned and disinfected, also contracted primary BVDV infection, whereas two calves that entered such a pen four days after removal of another PI calf, did not. In herds where most animals are seronegative to BVDV, indirect airborne transmission of BVDV or contact with a contaminated housing interior may be an important factor in spreading of the virus, once a PI animal is present. However, the spreading of BVDV within herds can be stopped by identifying and removing PI animals and also by ensuring that susceptible breeding animals do not become infected during this procedure. In contrast, injectables contaminated with BVDV may prove to be a significant vector for spreading the infection, not only within an infected herd but, most importantly, also between herds. In our opinion, it is questionable whether medicine bottles, once opened and used within an infected herd, should be used in other herds. In any case, prior knowledge of a herd's BVDV status will help practising veterinarians and technicians to undertake appropriate hygienic measures.  相似文献   

5.
Systematic eradication of BVDV without vaccination started in Scandinavia in 1993. In principle, the schemes include; (1) identification of non-infected and infected herds using different combinations of serological herd tests such as bulk milk tests and spot tests (sample of animals in a certain age), (2) monitoring/certification of non-infected herds by repeated sampling, applying one of the above-mentioned methods and (3) virus clearance in infected herds aimed at removing persistently infected (PI) animals in a cost- and time-efficient manner. In the virus clearance protocol described, an initial test is performed on all animals with subsequent follow-up of calves born as well as of dams seronegative in the initial test. It is generally recommended to perform an initial antibody test on all samples. This should be done not only to screen for seronegative animals on which virus isolation should be attempted (i.e. possible PI animals), but more in order to identify non-immune animals in reproductive age, that is, the key animals in herd-level persistence of infection. In Sweden, a common finding has been self-clearance, where the infection ceases without any other intervention than controlled introduction of new animals. Other epidemiological observations concern the course of events following virus introduction. Important risk factors for spreading BVDV are discussed, where livestock trade is perceived as the most central to control. Live vaccines, imported semen and embryos constitute special hazards, since they may act as vehicles for the introduction of new BVDV strains. The importance of making farmers aware of herd biosecurity and their own responsibility for it is stressed, and in order to maintain a favourable situation after a scheme has been concluded, effort must be put into establishing such a persisting attitude in the farming community.  相似文献   

6.
AIMS: To assess the sensitivity and specificity of a bulk tank milk (BTM) antibody enzyme-linked immunosorbent assay (ELISA) to detect likely infection of a dairy herd with bovine viral diarrhoea virus (BVDV). The ELISA was subsequently used to estimate the prevalence of likely infected herds in parts of the North Island of New Zealand. METHODS: BTM samples from 724 randomly selected dairy herds in the Waikato, Bay of Plenty and Northland regions of New Zealand were tested for BVDV antibodies. From this group, 20 herds were again randomly selected from each of the quartiles of the ELISA percentage inhibition (%INH) result. From each participant herd, serum from 15 randomly selected calves aged 6-18 months and 15 cows was collected and tested using an indirect blocking ELISA for BVDV antibodies. RESULTS: Among serum results from calves from 50 herds available for analysis, 34 (68%) herds were classified as likely non-infected (0-3 seropositive among 15 calves) and 16 (32%) as likely infected (5-15 seropositive among 15 calves). Receiver-operator characteristic (ROC) analysis identified an optimal cut-off for BTM of 80%INH associated with 81% sensitivity and 91% specificity for likely herd infection. The prevalence of BVDV antibodies in cows within herds and %INH for BVDV in bulk milk were positively correlated (p<0.01). The association between bulk milk %INH and the prevalence of BVDV antibodies in calves was stronger than the same association in cows. Based on the threshold of 80%INH, the 95% confidence interval (CI) for prevalence of likely infection in the 724 herds in the Waikato, Bay of Plenty and Northland regions of New Zealand was 12-17%. Vaccination against BVDV was not significantly associated with the likely infection status of the herd based on prevalence of BVDV antibodies among calves. CONCLUSION: An ELISA test result for BVDV antibodies in BTM >/=80%INH can be used as a threshold to indicate the presence of likely infection with BVDV in dairy herds in New Zealand, with 81% sensitivity and 91% specificity.  相似文献   

7.
The prevalence of bovine viral diarrhea virus (BVDV) in persistently infected (PI) cattle in beef breeding herds was determined using 30 herds with 4530 calves. The samples were collected by ear notches and tested for BVDV antigens using immunohistochemistry (IHC) and antigen capture enzyme-linked immunosorbent assay (ACE). Animals with initial positives on both IHC and ACE were sampled again using both tests and serums were collected for viral propagation and sequencing of a viral genomic region, 5′-untranslated region (5′-UTR) for viral subtyping. Samples were also collected from the dams of PI calves. There were 25 PI calves from 4530 samples (0.55%) and these PI calves were from 5 of the 30 herds (16.7%). Two herds had multiple PI calves and 3 herds had only 1 PI calf. Only 1 of the 25 dams with a PI calf was also PI (4.0%). The subtype of all the PI isolates was BVDV1b. Histories of the ranches indicated 23 out of 30 had herd additions of untested breeding females. Twenty-four of the 30 herds had adult cowherd vaccinations against BVDV, primarily using killed BVDV vaccines at pregnancy examination.  相似文献   

8.
A herd is a population structured into groups not all equally in contact, which may influence within-herd spread of pathogens. Herd structure varies among cattle herds. However, published models of the spread of bovine viral diarrhoea virus (BVDV) assume no herd structure or a unique structure chosen as a representative. Our objective was to identify--for different index cases introduced into an initially BVDV--free dairy herd - risky (favourable) herd structures, which increased (decreased) BVDV spread and persistence compared to a reference structure. Classically, dairy herds are divided into calves, young heifers, bred heifers, lactating cows and dry cows. In the reference scenario, groups are all equally in contact. We evaluated the effect of isolating or merging groups. Three index cases were tested: an open persistently-infected (PI) heifer, an open transiently-infected heifer, an immune heifer carrying a PI foetus. Merging all groups and merging calves and lactating cows were risky scenarios. Isolating each group, isolating lactating cows from other groups, and merging calves and young heifers were favourable scenarios. In most structures, the most risky index cases were the following: first, the entry of a PI heifer; second, the birth of a PI calf; last, the entry of a transiently-infected heifer. Recommendations for dairy herds are to raise young animals together before breeding and to isolate lactating cows from others as much as possible. These recommendations will be less efficient if a PI adult enters into the herd.  相似文献   

9.
AIMS: To assess the sensitivity and specificity of a bulk tank milk (BTM) antibody enzyme-linked immunosorbent assay (ELISA) to detect likely infection of a dairy herd with bovine vi- ral diarrhoea virus (BVDV). The ELISA was subsequently used to estimate the prevalence of likely infected herds in parts of the North Island of New Zealand.

METHODS: BTM samples from 724 randomly selected dairy herds in the Waikato, Bay of Plenty and Northland regions of New Zealand were tested for BVDV antibodies. From this group, 20 herds were again randomly selected from each of the quartiles of the ELISA percentage inhibition (%INH) result. From each participant herd, serum from 15 randomly selected calves aged 6–18 months and 15 cows was collected and tested using an indirect blocking ELISA for BVDV antibodies.

RESULTS: Among serum results from calves from 50 herds available for analysis, 34 (68%) herds were classified as likely non-infected (0-3 seropositive among 15 calves) and 16 (32%) as likely infected (5–15 seropositive among 15 calves). Receiver- operator characteristic (ROC) analysis identified an optimal cut-off for BTM of 80%INH associated with 81% sensitivity and 91% specificity for likely herd infection. The prevalence of BVDV antibodies in cows within herds and %INH for BVDV in bulk milk were positively correlated (p<0.01). The association between bulk milk %INH and the prevalence of BVDV antibodies in calves was stronger than the same association in cows. Based on the threshold of 80%INH, the 95% confidence interval (CI) for prevalence of likely infection in the 724 herds in the Waikato, Bay of Plenty and Northland regions of New Zealand was 12–17%. Vaccination against BVDV was not significantly associated with the likely infection status of the herd based on prevalence of BVDV antibodies among calves.

CONCLUSION: An ELISA test result for BVDV antibodies in BTM ≥80%INH can be used as a threshold to indicate the presence of likely infection with BVDV in dairy herds in New Zealand, with 81% sensitivity and 91% specificity.  相似文献   

10.
11.
The dynamics of bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus 3 (PIV-3), bovine corona virus (BCoV) and bovine viral diarrhoea virus (BVDV) infections were studied in 118 dairy herds in south western Sweden. By using serology on paired samples from three approximately 7 vs. approximately 15-month-old calves per herd, the propagation of infections was investigated over about a 1-year period. The results implied that at least 74% of calves had experienced one or more of the monitored infections at the age of approximately 7 months (Sample 1, Spring); 30%, 48%, 34% and 8% were seropositive to BRSV, PIV-3, BCoV and BVDV, respectively. Seroconversions to BRSV, PIV-3, BCoV and BVDV occurred in 26%, 38%, 50% and 3% of seronegative animals and 63% had antibodies against two or more infections at approximately 15 months (Sample 2). In total, 90-97% of animals that were seropositive in Sample 1 remained positive in Sample 2. A significant association was found between BVDV and BCoV (P = 0.01). Moreover, a significantly higher proportion of herds in which no calves had a recorded history of respiratory disease (n = 15) were classified as negative to all four infections monitored when compared to herds in which disease was observed (P = 0.0002). This study showed a high infection burden in young animals and effective spread of BRSV, PIV-3 and BCoV in one area of Sweden. BVDV infections were restricted to a few herds, reflecting the effect of a voluntary control program against BVDV in Sweden.  相似文献   

12.
A spreadsheet model using Monte Carlo simulation was designed to evaluate the introduction of bovine viral diarrhea virus (BVDV) to cow-calf farms and the effect of different testing strategies. Risks were modeled to include imports to the cow-calf herd and stocker calves imported to adjacent pastures. The number of persistently infected (PI) animals imported and the probability of BVDV introduction were monitored for three herd sizes, four import profiles, and six testing strategies. Importing stockers and importing pregnant heifers were the biggest risks for introduction of BVDV. Testing for PI animals in stockers decreased the risk they posed, but testing pregnant heifers was not sufficient to decrease risk unless their calves were also tested. Test sensitivity was more influential than PI prevalence on the likelihood of BVDV introduction, when all imports were tested. This model predicts the risk of BVDV introduction for individual herds based on management decisions, and should prove to be a useful tool to help cow-calf producers in controlling the risk of importing BVDV to a na?ve herd.  相似文献   

13.
OBJECTIVES: To estimate risk and identify risk factors for congenital infection with bovine viral diarrhea virus (BVDV) not resulting in persistent infection and examine effect of congenital infection on health of dairy calves. ANIMALS: 466 calves. PROCEDURES: Calves from 2 intensively managed drylot dairies with different vaccination programs and endemic BVDV infection were sampled before ingesting colostrum and tested with their dams for BVDV and BVDV serum-neutralizing antibodies. Records of treatments and death up to 10 months of age were obtained from calf ranch or dairy personnel. Risk factors for congenital infection, including dam parity and BVDV titer, were examined by use of logistic regression analysis. Effect of congenital infection on morbidity and mortality rates was examined by use of survival analysis methods. RESULTS: Fetal infection was identified in 10.1% of calves, of which 0.5% had persistent infection and 9.6% had congenital infection. Although dependent on herd, congenital infection was associated with high BVDV type 2 titers in dams at calving and with multiparous dams. Calves with congenital infection had 2-fold higher risk of a severe illness, compared with calves without congenital infection. CONCLUSIONS AND CLINICAL RELEVANCE: The unexpectedly high proportion of apparently healthy calves found to be congenitally infected provided an estimate of the amount of fetal infection via exposure of dams and thus virus transmission in the herds. Findings indicate that congenital infection with BVDV may have a negative impact on calf health, with subsequent impact on herd health.  相似文献   

14.
Natural transmission of bovine leukaemia virus (BLV) infection in south-eastern Queensland dairy herds was slow in 2 herds with a low to moderate (13 to 22%) prevalence of infection. Infection spread much more rapidly in a herd that had a higher prevalence (42%) when first tested. In a 13 month study of this herd, the cumulative incidence of infection was 24%. In one herd new infections were confined almost entirely to calves of uninfected dams. Following the end of feeding bulk milk to calves, a common practice in dairy herds, no more calves in this herd became infected. In laboratory experiments, neither prolonged housing of susceptible calves with infected cattle, consumption of drinking water contaminated with infected blood, nor inoculation of sheep with saliva from infected cattle resulted in transmission of BLV infection. Sheep were infected by subcutaneous inoculation of a suspension of purified lymphocytes from an infected heifer. The minimum infective dose was 10(3) lymphocytes, equivalent to the number of lymphocytes in approximately 0.1 microliter blood. Thus, procedures involving the transfer of a very small volume of blood from animal-to-animal have the potential to transmit infection.  相似文献   

15.
The aim of this study was to compare the cumulative incidence of mortality, clinical diarrhoea and respiratory disease in calves, during their first six months of age, in herds with different bovine viral diarrhoea virus (BVDV) infection status. Calves’ health indicators were tested by comparing proportions in 101 farms with dissimilar infection condition. The results indicate that there was a significant relationship between the BVDV status (actively infected herd or not) and the cumulative incidence of mortality and respiratory disorders.  相似文献   

16.
OBJECTIVE: To determine whether use of serologic evaluation of a sentinel sample of calves or cows for antibodies against bovine viral diarrhea virus (BVDV) would accurately predict whether an animal persistently infected with BVDV could be detected in beef herds. SAMPLE POPULATION: 27 cow-calf herds in which the status of persistently infected calves was not known and 11 herds known to have persistently infected calves. Procedure-Detection of persistently infected calves was determined through immunohistochemical testing of tissue obtained at necropsy of all calves that died during calving season and skin (ear notch) specimens obtained from all young stock in the fall of 2002. Serum samples were collected from 30 spring-born calves and 10 mature cows. RESULTS: Optimum serologic test performance at time of weaning was detected when 10 calves were evaluated. At least 3 of 10 randomly selected calves were likely to have a titer > 1:1000 against BVDV type I or II in 53% of herds in which a persistently infected calf was detected during that year (sensitivity, 53%). However, at least 3 of 10 randomly selected calves were also likely to have a titer > 1:1000 in 20% of herds that did not have a persistently infected calf detected during that year (specificity, 80%). CONCLUSIONS AND CLINICAL RELEVANCE: Despite the use of a number of various cutoff values and sample sizes, serologic evaluation of a small number of calves or cows could not be used to accurately predict the presence of persistently infected cattle in a herd.  相似文献   

17.
In the summer of 1996, we screened 18,931 calves in 128 beef herds located in five US states for persistent bovine viral diarrhea virus (BVDV) infection. Of these, 76 herds were randomly selected from the client database of collaborating veterinary practices, and 52 herds were suspected by the collaborating veterinarians to have BVDV infection based on history or clinical signs. Serum was obtained from each calf in the cooperating herds prior to 4 months of age and tested for the presence of BVDV by microtiter virus isolation. Information about each of the herds (including management practices, vaccination history, and breeding- and calving-season production measures) were collected by the collaborating veterinarians using standardized questionnaires. A total of 56 BVDV-positive calves in 13 herds were identified on initial screening. Ten (19%) of the BVDV-suspect herds and three (4%) of the randomly selected herds had > or = 1 BVDV-positive calf at initial screening. Multiple BVDV-positive calves were identified in 10 of those 13 herds. Follow-up information was obtained for 54 of the 56 positive calves. Ten out of 54 (18%) died prior to weaning, and 1 (2%) was sold because of unusually poor growth. Thirty-three out of 54 (61%) of the initially positive calves remained BVDV positive at 6 months of age - confirming persistent-infection (PI) status. Dams of 45 of the 56 positive calves were tested, with 3 (7%) identified as positive - indicating most PI calves were products of acute dam infection during gestation. The proportion of cows that were pregnant at the fall 1995 pregnancy examination was 5% lower in herds with PI calves born during the 1996 calving season than in randomly selected herds without PI calves. Most of the calves we identified with persistent BVDV infections survived to weaning, and could provide a constant source of virus to the herd throughout the breeding season and early gestation.  相似文献   

18.
The objectives of this study were to compare the age distribution of animals persistently infected (PI) with bovine virus diarrhea virus (BVDV) in 12 herds with clinical BVD compared to ten herds without clinical BVD and to examine the incidence of PI calves born after the oldest PI animal. Blood samples from all animals were tested for bovine virus diarrhea virus and antibodies. In five herds, blood samples were obtained from calves born after the whole herd had been tested. All calves born by PI dams were also blood tested. In herds with clinical BVD the median age of PI animals was 248 days and in herds without clinical BVD the median age was 144 days. There was no significant difference between the age of PI animals in herds with clinical BVD compared to herds without clinical BVD (p = 0.48) suggesting similar epidemiology of the occurrences of PI animals in the two herd categories. Thereafter, all herds were used to study the incidence of PI animals. A total of 129 PI animals were found. In ten herds with 72 PI animals the age range of PI animals was more than six months. In these herds 26.3% of the PI animals were born within the first two months after birth of the oldest PI animal, no PI animals were born 2- less than 6 months, 52.7% were born 6- less than 14 months, 6.9% were born 14- less than 22 months and 13.9% (all born by PI dams) were born later than 22 months after the oldest PI animal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Several data from different authors show that Bovine virus diarrhoea virus (BVDV) could be a key component in multiple-etiology diseases, indeed a lower leukocytes number and their impaired functions decrease the resistance to infections. However, most of the information on the impairment of immune function during BVDV infections arise from circumstantial evidence and from experimental infection studies, and few from field data. To assess the effects of BVDV on blood cells parameters, cellular and humoral functions under field conditions, we designed a controlled study in commercial dairy herds, comparing persistent infected (PI) and healthy heifers. A total of 45 heifers were considered, the PI animals were nine, the control animals were 34, while two controls were considered as acute infected animals. The comparison of the mean values in PI calves showed a significant decrease for leukocytes and granulocytes, while platelets showed a significant increase, when compared with control animals. The total number of lymphocytes decreased not significantly in PI animals, while the proportion significantly increased. The number and proportion of monocytes was significantly reduced in PI animals, when compared with controls. The data collected on markers of cellular immunity during our study cannot be compared with the literature because there are no reference values. The presence of a persistent infection affected the cellular enzymes: NAGase, lysozyme and respiratory burst showed a large statistically significant decrease in PI animals when compared with controls. The presence of a persistent infection with BVD virus influenced blood cells number and impaired some blood cell functions. Such impairment confirms that PI animals represent a threat to the herd not only because they could spread BVDV, but also because they are more susceptible to other infectious diseases.  相似文献   

20.
A national eradication programme was designed with the aim of achieving total freedom from bovine viral diarrhea virus (BVDV) infection in the Swiss cattle population. The eradication programme consisted of testing every Swiss bovine for antigen, culling virus-positive animals and applying movement restrictions. Starting in 2008, the campaign achieved the goal of reducing the proportion of newborn calves that were virus-positive from 1.8% to under 0.2% within two years (situation in September 2010). Both good data flow between the parties involved as well as speed and efficiency (e.g. concerning the application of tests, movement restrictions and slaughter) are central to the success of the programme. Since the beginning of the programme 2.85 million cattle have been tested for bovine viral diarrhea virus (BVDV). The BVD-prevalence in cattle at the individual and herd levels following the implementation of the eradication programme was assessed. Using data collected during this campaign a risk factor analysis was conducted in order to identify factors associated with the appearance of virus positive newborn calves in herds where BVD had not previously been detected; these risk factors would allow targeting of future surveillance. Herd size, early death rate (i.e. the number of animals that either die before 15 days of age or are stillborn per number of newborns per year), buying in stock, using communal summer grazing, production type, age structure and management strategy were factors associated with the appearance of new cases of infection. Testing of newborn calves for antigen will continue to be conducted until the end of 2011, this is combined with outbreak investigation of newly infected herds (consisting of re-testing dams of virus-positive calves and if necessary all cattle on or that recently left the farm). This process is done to identify infected animals that may have been missed during prior testing (false negatives), it also serves to identify other factors that may be responsible for the introduction of BVDV onto the farm. Since October 2009, testing of calves for antigen combined with outbreak investigation has led to the detection of 55 infected animals that had tested negative (presumably false negative) during previous rounds of testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号