首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人工生物土壤结皮特性及其集雨潜力的研究   总被引:2,自引:0,他引:2  
为探讨在太行山半干旱区利用人工土壤生物结皮进行集雨的潜力和可行性,以自然生长的生物土壤结皮为种子,通过培育建立人工土壤生物结皮和生物结皮集雨,对人工土壤生物结皮建成后土壤物理性状、渗透率的变化及人工生物结皮集雨面的集流效率进行了研究。结果表明,人工土壤生物结皮与自然生长的生物结皮一样,可显著改变土壤的颗粒组成,使0~1 cm表层土壤的小颗粒物质含量增加、大颗粒物质减少,但对0~5 cm的土壤容重影响不显著。对土壤入渗速率的测定结果表明,人工培育的土壤生物结皮具有降低入渗速率的作用,与自然土壤相比,生物结皮的土壤初始入渗速率和稳定入渗速率分别下降59.1%和44.4%,达到稳定入渗的加水量也减少50.0%。人工营建的生物结皮集雨面的平均集雨效率达60.86%,与自然土面相比,提高23.0%。对集雨面效益分析表明,生物结皮集雨面不仅具有较高的集雨效果,且使用年限较长,并具有明显的减少地表径流沉积物含量,提高土壤抗蚀性的作用。综上结果可以看出,人工土壤生物结皮是一种极具潜力的绿色环保型集雨材料。  相似文献   

2.
在黑龙江东部的张广才岭选择典型次生杂木林进行不同采伐处理,一个生长季后测定了土壤潜在碳矿化速率和活性有机碳含量.结果表明:在28℃条件下经过90d的培养,土壤潜在碳矿化速率和碳矿化总量在所测定的土层中(0-10 cm,10-20 cm,20-30 cm)均表现为:50%强度采伐>皆伐后农作>25%强度采伐≌对照>皆伐后造林的变化趋势,但各处理间差异不显著.土壤易氧化碳含量在3个土层50%强度采伐均显著高于对照.土壤微生物碳含量在0-10 cm和10-20 cm土层,50%强度采伐显著高于对照.在0-10 cm土层,皆伐后造林显著低于对照.水溶性有机碳含量在0-10 cm和10-20 cm土层,50%强度采伐显著高于对照,在20-30cm土层,皆伐后造林显著低于对照,这说明在东北温带次生林中,较大强度的择伐短期内可增加土壤活性有机碳含量.而皆伐后造林可导致土壤活性有机碳出现下降趋势.  相似文献   

3.
Wetlands in the United States are protected by law and are identified by their hydric soils, wetland hydrology, and vegetation. Hydric soils are easily identified by color characteristics termed hydric soil field indicators, that form under saturated and anaerobic conditions, but wetland hydrology is difficult to assess. This study determines how often seven hydric soil field indicators met wetland hydrology requirements which require a water table be within 30 cm of the surface for 14 days or more during the growing season in over half the years. Studies were conducted at five sites in North Carolina in both wetland and upland plots. Soils ranged from Aquic Paleudults to Typic Haplosaprists across all sites. The water-table simulation model DRAINMOD was calibrated to soil conditions in individual plots. Long-term rainfall data were used with the calibrated models to compute 40 years of daily water table data to represent both wet and dry years. It was found that the hydric soils with field indicators composed of organic materials in layers over 20 cm thick (Histosol and Histic epipedon field indicators) met wetland hydrology requirements each year, and in addition were ponded with water for periods between 67 to 139 days on average each year during the growing season. Plots in mineral soils having the Dark Surface (S7) indicator as well as the Sandy Mucky Mineral (S1) indicator also met the saturation requirements for wetland hydrology every year, and were ponded for only 3 days per year on average. Other mineral soils with an Umbric Surface (F13) or a Depleted Matrix (F3) field indicator met wetland hydrology requirements in approximately 95% of the years, and had water tables within 30 cm of the surface for 40 days per year on average. The Redox Depressions (F8) field indicator occurred in a small depression that was saturated for 87% of the year for periods averaging approximately 30 days. These results showed that hydric soil field indicators can be calibrated to long-term water table data that will allow precise assessments of wetland hydrology on-site.  相似文献   

4.

A long-term field experiment was conducted in southern Sweden to evaluate the effect of harvest before crop ripeness on weed infestation. In addition, two stubble heights, 10 cm and 30 cm, were compared. The aim was to determine the potential of the treatments in weed regulation. The harvests were performed on three occasions: milk-ripeness (I), which is the normal harvest time for a green cereal, yellow-ripeness (II) and binder-ripeness (III). In control plots, harvested at full ripeness, herbicides were used in all years. Weed density initially increased exponentially in all treatments except for the control, but had a tendency to level off after 4 years. In all years weed density was higher when harvest was delayed and the stubble was high. Harvest at milk ripeness (I) favoured short-season annuals such as Stellaria media (L) Vill and worked against late-maturing species such as Polygonum tomentosum (Schrank). Weed density differed between the treatment plots during the last year of the experiment. In the treatment harvested at stage I combined with low stubble height, weed density was only slightly higher than in the control. Thus, when harvesting a green cereal, herbicides can be avoided.  相似文献   

5.
Despite the widespread recognition that silvicultural treatments (prescribed harvest residue burning, site preparation and replanting) applied following clearcutting may cause soil erosion and nutrient loss in Chinese fir ( Cunninghamia Lanceolata (Lamb.) Hook) plantations, it is unclear which specific treatment leads to nutrient loss and whether an appropriate implementation of the treatments during the dry season could avert nutrient loss altogether. To address these two questions, nutrient changes in Alliti-Udic Ferrosols soils within a Chinese fir plantation located in Huitong County, Hunan Province, were investigated through the analysis of soil samples sequentially collected at depths of 0–15 cm and 15–30 cm before and after harvest with the residue material kept in place, a prescribed residue burning operation, site preparation and tree replanting initiative took place. Individual treatments significantly affected the soil pH value, organic matter and C and available N at depths of 0–15 cm, but did not significantly influence soil bulk density, total N and P contents and available P contents. The soil pH value decreased with successive application of the treatments. Soil organic C increased by way of the remaining residue after clearcutting, but declined after prescribed residue burning and ultimately returned to pre-harvest values after site preparation as a result of soil displacement and burning ash. Available N contents decreased significantly after clearcutting and residue burning, but the reduction was more or less offset after site preparation took place. Results after all silvicultural treatments were applied showed that no significant reduction in soil organic matter, C and N and P occurred to date in the Chinese fir plantation studied, suggesting that nutrient loss could be averted if the treatments were implemented during the dry season.  相似文献   

6.
Management of crop residue is important for sustaining biological activity in soils during winter and promoting soil water recharge and early spring thaw in cold regions. This study assessed the impact of stubble height and residue placement in a corn (Zea mays L.) production system on the soil microclimate during winter in the northern Corn Belt of the USA. Residue treatments were established in a randomized block design after corn harvest in the autumn of 1993–1995 near Morris, MN. Corn was harvested using a combine that cut stalks at 60, 30 and approximately 0 cm above the soil surface and uniformly spread harvested residue over the soil. Treatments included: (1) 60 cm stubble, (2) 30 cm stubble, (3) 30 cm stubble with alternating bare and residue covered inter-rows, (4) 0 cm stubble, and (5) 0 cm stubble with all residue removed from the soil surface. Snow cover, depth of soil freezing and thawing, soil temperature and water content at various depths in the soil profile, and reflected global and net radiation were monitored during winter from November to March each year. Taller (60 cm) stubble trapped more snow, reduced the depth of frost penetration by at least 0.5 m, and hastened thawing of the soil profile by at least 25 days during winter as compared with short (0 cm) stubble and 0 cm stubble without residue treatments. Near surface, winter soil temperatures were moderated by at least 2 °C in the 60 cm stubble versus 0 cm stubble without residue treatments. Linear regression analysis suggested that 52, 93 and 40% of the variability in soil water recharge caused by residue treatments during successive winters, respectively, could be explained by differences in snow cover, soil water content and thaw depth among treatments. On clear days in autumn and spring, albedo was highest for the 0 cm stubble and lowest for the 0 cm stubble without residue treatments. Net radiation, however, was lowest for the 0 cm stubble and highest for the 0 cm stubble without residue treatments as compared with other residue treatments. Results from this study suggest that corn production systems in the northern Corn Belt which retain tall stubble on the soil surface will promote warmer soils during winter and earlier spring thaw as compared with those which retain short or no stubble on the soil surface.  相似文献   

7.
在长江中下游稻麦轮作区,水稻秋收期阴雨连绵现象时有发生,收割机械因农田土壤过湿而无法及时下田收割。如果建设暗管排水系统,则可及时降低地下水埋深,保证机械收割的顺利进行。该文以江苏省扬州市江都区昭关灌区为例,以地下水埋深降至60~80 cm作为适于一般机械收割的田间排水要求,运用田间水文模型-DRAINMOD模拟了满足1~5 d机械下田条件的暗管排水布局,并分析了相应的田间水文效应以及模型主要输入参数的敏感性。根据研究区1954-2016年逐日气象数据(包含降雨、气温、湿度、风速和日照时数等)的模拟结果显示:考虑大型机械收割要求(地下水埋深大于80 cm),当暗管埋深为90~150 cm时,满足98%、95%和90%保证率的最大暗管间距分别为7.42~18.74 m、13.01~26.20 m和15.27~28.72 m;满足小型机械收割要求(地下水埋深大于60 cm)的暗管布置间距则可更大,满足98%、95%和90%保证率的最大暗管间距分别为10.36~19.59 m、18.17~30.90 m和22.88~33.02 m。多年平均机械收割天数对侧向饱和导水率、不透水层深度、土壤蒸发蒸腾量、潜水上升通量和土壤可排空体积5类参数最为敏感。研究成果可为类似水稻种植区基于机械收割要求的农田暗管排水系统设计提供理论依据。  相似文献   

8.
Over 100 native herbaceous forest perennials are harvested in the United States. Management of these populations for continued survival requires information on the long-term effects of varied harvesting levels on populations of forest perennials. Allium tricoccum Ait. is a species that is harvested throughout its range for its edible bulb. We examined the recovery of A. tricoccum populations over a 5-year period following experimental harvests of different intensity to predict the number of years required to return to pre-harvest levels and to establish guidelines for sustainable harvesting. Our harvest treatments included removal of 0, 25, 50, 75, and 100% of plants within experimental plots. Treatments were repeated at three sites. Population recovery was monitored for 4 years at two sites and 7 years at one site. We found a relationship between the level of harvest and the negative impacts on populations of A. tricoccum, with limited population recovery in the 4 years following harvesting. We projected recovery times as a function of harvest level using a population projection model. Deterministic projections of recovery time ranged from 148 years for a 95% harvest to 2.5 years for a 5% harvest. Incorporating stochasticity into our projections increased the uncertainty in our estimates of recovery time. For example the recovery time from a 5% harvest ranged from 1 to 89 years (95% confidence limit). Based on our results, a 10% harvest once every 10 years would, on average, be a sustainable level of harvest for A. tricoccum in southern Appalachian forests.  相似文献   

9.
Long-term field experiments are among the best means to predict soil management impacts on soil carbon storage. Soil organic carbon (SOC) and natural abundance 13C (δ13C) were sensitive to tillage, stover harvest, and nitrogen (N) management during 13 years of continuous corn (Zea mays L.), grown on a Haplic Chernozem soil in Minnesota. Contents of SOC in the 0–15 cm layer in the annually-tilled [moldboard (MB) and chisel (CH)] plots decreased slightly with years of corn after a low input mixture of alfalfa (Medicago sativum L.) and oat (Avena sativa L.) for pasture; stover harvest had no effect. Storage of SOC in no-till (NT) plots with stover harvested remained nearly unchanged at 55 Mg ha−1 with time, while that with stover returned increased about 14%. The measured δ13C increased steadily with years of corn cropping in all treatments; the NT with stover return had the highest increase. The N fertilization effects on SOC and δ13C were most evident when stover was returned to NT plots. In the 15–30 cm depth, SOC storage decreased and δ13C values increased with years of corn cropping under NT, especially when stover was harvested. There was no consistent temporal trend in SOC storage and δ13C values in the 15–30 cm depth when plots received annual MB or CH tillage. The amount of available corn residue that was retained in SOC storage was influenced by all three management factors. Corn-derived SOC in the 0–15 cm and the 15–30 cm layers of the NT system combined was largest with 200 kg N ha−1 and no stover harvest. The MB and CH tillage systems did not influence soil storage of corn-derived SOC in either the 0–15 or 15–30 cm layers. The corn-derived SOC as a fraction of SOC after 13 years fell into three ranges: 0.05 for the NT with stover harvested, 0.15 for the NT with no stover harvest, and 0.09–0.10 for treatments with annual tillage; N rate had no effect on this fraction. Corn-derived SOC expressed as a fraction of C returned was positively biased when C returned in the roots was estimated from recovery of root biomass. The half-life for decomposition of the original or relic SOC was longer when stover was returned, shortened when stover was harvested and N applied, and sharply lengthened when stover was not harvested and N was partially mixed with the stover. Separating SOC storage into relic and current crop sources has significantly improved our understanding of the main and interacting effects of tillage, crop residue, and N fertilization for managing SOC accumulation in soil.  相似文献   

10.
Harvest residue management is a key issue for the sustainability of short rotation plantations of fast growing tree species established on poor soils and for potential carbon (C) accretion in many soils. By measuring the C isotope composition (δ13C) of different soil organic matter fractions and microbial respiration, we examined the effects of organic residue management at harvest on soil C dynamics in a tropical eucalypt plantation established on a savannah at the end of the third rotation on three treatments repeated at each harvest. We compared plots where the standard harvesting method in Congolese commercial plantations was applied (SWH; only removing the debarked commercial-sized boles) with plots where all the aboveground biomass and the litter layer from the previous rotations were removed at harvest (R) and plots where the residues from a whole tree harvest treatment were added (double slash, DS). Organic residue removal decreased the accretion of eucalypt-derived C in coarse and fine particulate organic matter (POM) fractions and in the organo-mineral fraction, resulting in 44% less total soil C in the top soil (0–0.05 m) but did not affect the amount of savannah-derived C in any SOM fraction. In contrast, increasing the amount of harvest residue by 36% in comparison with the reference practice did not increase the amount of C stored in the soil nor the accretion of eucalypt-derived C in any soil organic matter fractions, but the amount of savannah-derived C remaining in the coarse POM fraction was higher. We concluded that carbon accretion may be limited by the low C saturation level of these sandy-structured soils but that higher rates of residue retention may reduce priming on older savannah-derived C.  相似文献   

11.
ABSTRACT

Understanding the composition of the soil solution of tropical peatlands is important because it directly affects nutrient availability and environmental degradation. The objectives of this study were to investigate temporal fluctuations in the soil solution composition in tropical peatlands in West Kalimantan and Riau, Indonesia and identify the factors controlling these fluctuations. In each site, we established four study plots consisting of three plots under oil palm (Elaeis guineensis Jacq.) plantation and one plot under uncultivated land as the control. Triplicate soil solution samples were collected at 50 and 200 cm depths, fortnightly. During the drought, the pH at 50 cm was low (3.7–4.0), which was influenced by oxidation reactions such as organic acids and NO3? generations. The pH at a depth of 200 cm was high (5.9–6.8), due to reduction reactions such as denitrification. High cation concentrations at both depths would result from organic matter decomposition and the limited downward movement of water. Rewetting the West Kalimantan peatland caused a sharp decrease in pH and ionic concentrations at 50 and 200 cm depths, because of the transportation of ions from the upper acidified layer. However, the lower rainfall levels in Riau than West Kalimantan resulted in a gradual decrease in pH and Ca2+ concentration. The higher pH levels and ion concentrations in West Kalimantan than in Riau would be influenced by the enhanced microbial activity due to water supply from the risen water table in this site. This study showed that seasonal rainfall and water table movement were the main factors controlling the fluctuations in the chemical composition of soil solutions.  相似文献   

12.
The mycorrhizal enhancement of plant growth is generally attributed to increased nutrients uptake. A greenhouse experiment was conducted to investigate the effect of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and nutrient uptake of directly seeded wetland rice. Seeds were germinated and inoculated with arbuscular mycorrhizal fungi or left uninoculated. The plants were grown at 60% of ‐0.03 MPa to establish the mycorrhizas. After 5 weeks, half of the pots were harvested and the rest were flooded with deionized water to maintain 3–5 cm of standing water until harvesting (122 days after sowing). Mycorrhizal fungal colonization of rice roots was 36.2% at harvest. Mycorrhizal fungi inoculated rice seedlings grew better compared to uninoculated seedlings and had increased grain yield (10%) at the harvesting stage. Shoot and root growth were effectively increased by AMF inoculation at the harvesting stage. The nitrogen (N) and phosphorus (P) acquisition of direct seeding wetland rice were significantly increased by AMF inoculation. The AMF enhanced N and P translocation through the hyphae from soils to roots/shoots to grains effectively.  相似文献   

13.
为寻求降低林地土壤蒸发量的经营措施,以江都地区6 a生女贞人工林为例,研究了稻草、枯落物、石砾覆盖以及50%和70%强度移植对其土壤含水量季节动态的影响,以及含水量与毛管孔隙度、温度等关系。结果表明:覆盖增加土壤表层含水量,4,11月稻草覆盖的保水效果最好,7月枯落物覆盖的保水效果最好,石砾覆盖缩小各土壤层间含水量差异。随移植强度增大,覆盖对表层土壤含水量的增加效果减弱,土壤保水性降低。研究可为建设节水型绿地提供一定的科学依据。  相似文献   

14.
[目的]研究自然及管理因素下草地土壤水分变化特征,为退化草地的生态恢复提供科学参考。[方法]通过定点监测12个坡面小区,利用TDR水分测定仪及其探头测定灰钙土和棕红土两种退化草地坡面表层0—10 cm的土壤含水量,采用数据对比分析和统计分析相结合的方法,分析降雨、气温、坡位等自然因素和灌溉、土壤管理因素对坡面表层土壤水分动态变化的影响。[结果]降雨和气温对表层土壤含水量的变化有显著性影响,不同降雨量对表层土壤含水量的影响不同;坡位对草地坡面表层土壤含水量没有显著性影响;棕红土持水性强,表层土壤含水量高于灰钙土;各管理措施中,水平沟处理能够在降雨后最大化的增大表层土壤含水量,枯草覆盖处理能显著减缓降雨后表层土壤含水量的下降速率。不同集雨补灌方式下,表层土壤含水量差异不明显,但集雨补灌措施可以在短时内提高表层土壤含水量。[结论]表层土壤水分主要受降雨、管理等因素的控制,能够通过人为管理调控土壤水分,从而达到植被恢复的目的。  相似文献   

15.
PAM改善黄土水土环境及对玉米生长影响的田间试验研究   总被引:10,自引:8,他引:10  
在干旱半干旱地区,为了充分利用有限的降水资源,促进农作物的生长,采用聚丙烯酰胺(PAM)进行了减少玉米田土壤表面的径流,增加土壤入渗的试验。试验区位于内蒙古自治区清水河县境内,在试验区挑选一块坡面相对比较平整坡度在5%~7%的连片玉米田,分别在玉米田的土壤表面采用4个不同的处理,即PAM覆盖率80%、60%、40%和对照,试验采用3个重复。通过小区试验,测定降雨在土壤表面形成径流量、土壤的含水量的变化情况和玉米生长发育的状况,以及玉米的全干物质产量。结果表明,PAM能够很好地增加土壤的有效降雨量并促进玉米的生长。  相似文献   

16.
为了研究盐碱地上微咸水膜下滴灌不同灌水下限对土壤水盐运移和玉米产量的影响,在长胜试验站开展了微咸水膜下滴灌玉米的大田试验。试验采用负压计指导灌溉,控制滴头下20cm深处的土壤基质势下限分别为-10,-20,-30,-40kPa,每个处理重复3次,按随机区组布置。结果表明:膜下滴灌湿润体形状在垂直于滴灌带的滴头所在竖直剖面上近似为半椭圆形,随着灌水下限的增大,湿润层土体含水率增大;玉米根部附近均出现盐分低值区,膜外表层均出现盐分高值区;-20kPa和-30kPa灌水下限适中,既能较充分淋洗膜内表层土壤盐分,又不会造成微咸水中的盐分滞留累积;在玉米生育期内,膜内、膜外地下100cm土体均积盐;-10kPa和-20kPa下限处理对应的湿润体垂直深度约为60cm;玉米收获后,地下100cm土体均积盐,需要进行秋浇或春汇,大量淋洗土壤盐分,保证耕地盐分不逐年累积;试验条件下,玉米产量随着灌水下限的降低而减少。  相似文献   

17.
The effects of timber harvesting and the resultant soil disturbances (compaction and forest floor removal) on relative soil water content, microbial biomass C and N contents (Cmic and Nmic), microbial biomass C:N ratio (Cmic-to-Nmic), microbial respiration, metabolic quotient (qCO2), and available N content in the forest floor and the uppermost mineral soil (0-3 cm) were assessed in a long-term soil productivity (LTSP) site and adjacent mature forest stands in northeastern British Columbia (Canada). A combination of principal component analysis and redundancy analysis was used to test the effects of stem-only harvest, whole tree harvest plus forest floor removal, and soil compaction on the studied variables. Those properties in the forest floor were not affected by timber harvesting or soil compaction. In the mineral soil, compaction increased soil total C and N contents, relative water content, and Nmic by 45%, 40%, 34% and 72%, respectively, and decreased Cmic-to-Nmic ratio by 29%. However, these parameters were not affected by stem only harvesting or whole tree harvesting plus forest floor removal, contrasting the reduction of white spruce and aspen growth following forest floor removal and soil compaction reported in an earlier study. Those results suggest that at the study site the short-term effects of timber harvesting, forest floor removal, and soil compaction are rather complex and that microbial populations might not be affected by the perturbations in the same way as trees, at least not in the short term.  相似文献   

18.
为了探究不同地下水埋深条件下膜下滴灌农田的水盐运移规律,于2012—2016年在新疆库尔勒绿洲,对采用膜下滴灌结合冬春灌压盐的棉田开展定位观测,在不同位置处150 cm深土壤剖面进行水盐监测,探究不同生育阶段地下水埋深与土壤水盐含量的关系。结果表明,膜下滴灌农田土壤水分呈反"S"型分布,土壤盐分呈"酒杯"状表聚型分布;试验期内地下水埋深从2~3 m增加到5~6 m,相应地苗期和非生育期返盐程度显著降低,收获期盐分含量下降;5a来土壤含盐量从6.5 g/kg下降到1 g/kg,土壤累积含盐量与地下水埋深呈负的指数关系;深层水分交换量表明土壤水和地下水间的联系明显减弱。建议将类似地区的地下水埋深控制在3.5 m左右,膜下滴灌结合冬春灌淋洗可有效抑制土壤层盐分累积,并可保证自然植被的生态需水。  相似文献   

19.
晋北丘陵风沙区不同植被恢复模式的水土保持效应   总被引:1,自引:1,他引:0  
通过对山西右玉贾家窑阳坡退耕还林约20年后的4种植被恢复模式(自然恢复草地、油松林、柠条灌丛和油松—柠条林)土壤水分、理化性质、径流量和侵蚀量的测定,探讨了不同植被恢复模式的水土保持效应。结果表明:(1)4种植被恢复模式0—100cm土层土壤平均含水量无显著差异,油松林和自然恢复草地的土壤容重高于油松—柠条林和柠条灌丛,土壤总孔隙度的变化趋势与容重相反;(2)4种植被恢复模式0—20cm土层土壤粒度组成、pH、有机质、铵态氮和速效磷无显著差异,硝态氮和速效钾差异明显(P0.05);(3)4种植被恢复模式径流量没有明显差异,但土壤侵蚀量自然恢复草地和油松林显著高于柠条灌丛和油松—柠条林(P0.05);(4)覆盖度相似条件下,根系密度、近地表植被盖度和枯枝落叶层厚度是影响林草植被水土保持效应的主要因素。  相似文献   

20.
The effect of harvesting bamboo savanna on the dynamics of soil nutrient pools, N mineralization, and microbial biomass was examined. In the unharvested bamboo site NO inf3 sup- -N in soil ranged from 0.37 to 3.11 mg kg-1 soil and in the harvested site from 0.43 to 3.67 mg kg-1. NaHCO3-extractable inorganic P ranged from 0.55 to 3.58 mg kg-1 in the unharvested site and from 1.01 to 4.22 mg kg-1 in the harvested site. Over two annual cycles, the N mineralization range in the unharvested and harvested sites was 0–19.28 and 0–24.0 mg kg-1 soil month-1, respectively. The microbial C, N, and P ranges were 278–587, 28–64, and 12–26 mg kg-1 soil, respectively, with the harvested site exhibiting higher values. Bamboo harvesting depleted soil organic C by 13% and total N by 20%. Harvesting increased N mineralization, resulting in 10 kg ha-1 additional mineral N in the first 1st year and 5 kg ha-1 in the 2nd year following the harvest. Microbial biomass C, N and P increased respectively by 10, 18, and 5% as a result of bamboo harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号