首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunology of the porcine respiratory disease complex.   总被引:1,自引:0,他引:1  
PRDC is a multifactorial respiratory syndrome that includes several respiratory pathogens. As can be observed in this article, although the pathogenesis of some of the respiratory pathogens of pigs is fairly well defined, the host response and the immune response necessary to control the pathogen often remain unclear. As our ability to evaluate the porcine immune system and its ability to respond to disease improves, the knowledge of how each of these respiratory pathogens alter and evade the immune system will increase. The pathogens most commonly isolated from pigs with clinical signs of PRDC either infect the cells of the immune system or induce significant immunopathology. Thus, PRRSV and M. hyopneumoniae, the two most common pathogens associated with PRDC, alter the ability of the respiratory immune system to respond to their presence and the presence of other pathogens. By changing the respiratory immune system, these two common pathogens increase the susceptibility to the many other pathogens associated with PRDC. As we learn more about the pathogens of the respiratory system, their interactions with each other, and the mechanisms by which they modulate the immune system, our ability to develop effective control measures will improve.  相似文献   

2.
Thirty-eight natural cases of aetiologically unclear non-suppurative encephalitis in pigs were studied retrospectively. Brain samples were examined for the presence of porcine circovirus type 2 (PCV-2), porcine respiratory and reproductive syndrome virus (PRRSV), porcine enteroviruses (PEVS), ovine herpesvirus type 2 (OvHV-2), Borna disease virus (BDV) and suid herpesvirus type 1 (SuHV-1) by molecular biological and immunohistochemical methods. Histological examination of the brains revealed variable degrees of lymphohistiocytic encephalitis or meningoencephalitis, characterised predominantly by perivascular mononuclear infiltrates. Two cases could be attributed to PCV-2 infection by in situ hybridisation: viral nucleic acid was found in the mesencephalon, the cerebellum and the medulla oblongata, mainly in the cytoplasm of macrophages, endothelial cells and some glial cells, which were predominantly found in the meninges and around blood vessels. Real-time PCR detected PCV-2 dna in brain samples from seven other pigs. There was no evidence of PRRSV, BDV, SuHV-1, PEVS or OvHV-2 in any of the brain samples examined.  相似文献   

3.
4.
To investigate cytokine alterations in pigs infected in-utero with porcine reproductive and respiratory syndrome virus (PRRSV), constitutive mRNA expression by peripheral blood mononuclear cells (PBMCs) was measured. PBMC from in-utero PRRSV-infected pigs displayed significantly increased IL-6, IL-10, and IFN-gamma mRNA expression at 0 and 14 days of age compared with age-matched control pigs. There were no significant differences in IL-2, IL-4, and IL-12 mRNA expression between in-utero PRRSV-infected and control pigs. However, the IL-10/IL-12 ratio was significantly increased in in-utero PRRSV-infected pigs at 0 and 14 days of age, suggesting the imbalance of IL-10 and IL-12 mRNA production. The abnormal mRNA expression of cytokines in in-utero PRRSV-infected pigs occurred concurrently with a significant decrease in the CD4(+)/CD8(+) T-cell ratio in peripheral blood. PRRSV was not isolated from the sera of pigs at 9 weeks of age that had been viremic at 0 and 14 days old. Delayed type hypersensitivity (DTH) responses to Tuberculin and analysis of cytokine mRNA expression by PBMC showed that cell-mediated immune response and cytokine message profiles in pigs infected in-utero with PRRSV had returned to levels similar to those of control pigs by 9 weeks of age. We conclude that in-utero infection with PRRSV results in significant alteration of cytokine mRNA expression that may cause transient immunomodulation. However, at 10 weeks of age the pigs' immune responses seemed to recover. This may help to understand the immunopathogenesis of in-utero PRRSV infection and the increased susceptibility to secondary bacterial pathogens in neonatal piglets.  相似文献   

5.
猪繁殖与呼吸综合征病毒GP5蛋白研究进展   总被引:2,自引:1,他引:1  
猪繁殖与呼吸综合征(PRRS)是由猪繁殖与呼吸综合征病毒(PRRSV)引起的猪的传染病,对养猪业危害很大.GP5蛋白是PRRSV ORF5基因编码的一个糖基化的囊膜蛋白,具有较好的免疫原性,能够诱导产生中和抗体.因此,GP5蛋白在PRRSV的致病性、诊断、预防与控制等方面研究中具有重要意义,是研制基因工程疫苗的最佳候选基因.近年来对GP5蛋白的研究取得了重要的进展,现就GP5蛋白的特征、免疫作用及疫苗等方面做一综述.  相似文献   

6.
Vaccination is a useful option to control infection with porcine reproductive and respiratory syndrome virus (PRRSV), and several modified live-PRRSV vaccines have been developed. These vaccines have shown some efficacy in reducing the incidence and severity of clinical disease as well as the duration of viremia and virus shedding but have failed to provide sterilizing immunity. The efficacy of modified live-virus (MLV) vaccines is greater against a homologous strain compared with heterologous PRRSV strains. The objective of this study was to evaluate the efficacy of Fostera PRRS MLV vaccine in protecting against challenge with a heterologous field strain widely circulating in the swine herds of eastern Canada. Forty-six piglets were divided into 4 groups: nonvaccinated-nonchallenged; nonvaccinated-challenged; vaccinated-challenged; and vaccinated-nonchallenged. The animals were vaccinated at 23 d of age with Fostera PRRS and challenged 23 d later with a heterologous field strain of PRRSV (FMV12-1425619). Overall, the vaccine showed some beneficial effects in the challenged animals by reducing the severity of clinical signs and the viral load. A significant difference between nonvaccinated and vaccinated animals was detected for some parameters starting 11 to 13 d after challenge, which suggested that the cell-mediated immune response or other delayed responses could be more important than pre-existing PRRSV antibodies in vaccinated animals within the context of protection against heterologous strains.  相似文献   

7.
猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)能导致母猪繁殖障碍及仔猪呼吸困难等症状,严重威胁全球养猪业的健康发展。目前,PRRSV的致病机制及其与宿主的互作机理并不完全清楚。近年来,随着高通量测序技术的快速发展,转录组测序技术已被广泛应用于PRRSV的研究中,为深入解析PRRSV的致病机理及其与宿主的互作机制提供了一种全新的研究工具。作者从感染应答、蛋白功能、毒株、疫苗、抗病品种5个方面对近年来转录组测序技术在PRRSV研究中的应用进行了综述分析,对其筛选的差异表达基因(DEGs)和通路进行总结,以期为未来PRRSV转录组学研究提供参考。  相似文献   

8.
猪繁殖与呼吸综合征(porcine reproductive and respiratory syndrome,PRRS)是一种主要表现为母猪繁殖障碍与仔猪呼吸道症状的传染病。近年来,猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)变异株不断出现,免疫逃避及持续性感染使得猪群发病率或复发率均相继增高,给养猪业带来了巨大的损失。目前所采用的胃肠道途径接种活疫苗或灭活疫苗的方法无法诱导对猪群的全面保护作用。为减少养猪业的经济损失,亟需研制新防制方法和新疫苗接种途径。作者主要从黏膜免疫的免疫部位、呼吸道保护性黏膜免疫反应诱导、黏膜免疫途径、佐剂的选择及病毒的免疫抑制反应等方面简要论述了有效防制PRRSV的黏膜免疫方法的研究进展,为进一步了解黏膜免疫抵御PRRSV突变株感染及黏膜疫苗研制等方面提供有用的信息。  相似文献   

9.
10.
The objective of this study was to evaluate the role of different variables (animal age, bacterial coinfection, and isolate pathogenicity) on the shedding of Porcine reproductive and respiratory syndrome virus (PRRSV) in aerosols. Animals were grouped according to age (2 versus 6 mo) and inoculated with a PRRSV isolate of either low (MN-30100) or high (MN-184) pathogenicity. Selected animals in each group were also inoculated with Mycoplasma hyopneumoniae. The pigs were anesthetized and aerosol samples (1000 breaths/sample) collected on alternating days from 1 to 21 after PRRSV inoculation. The results indicated that animal age (P = 0.09), M. hyopneumoniae coinfection (P = 0.09), and PRRSV isolate pathogenicity (P = 0.15) did not significantly influence the concentration of PRRSV in aerosols. However, inoculation with the PRRSV MN-184 isolate significantly increased the probability of aerosol shedding (P = 0.00005; odds ratio = 3.22). Therefore, the shedding of PRRSV in aerosols may be isolate-dependent.  相似文献   

11.
To investigate the genetic diversity of prevailing porcine reproductive and respiratory syndrome virus (PRRSV) in Henan Province of China, 61 ORF5 gene sequences, originating from Henan Province during 2003–2010, were subjected to amino acid variation and phylogenetic analysis. The analyzed PRRSV ORF5 sequences carried evidence of one unique recombination event. Phylogenetic analysis revealed that all Henan isolates belonged to type 2 genotype and were divided into two subgroups. The dominant isolates had shifted from subgroup 1 to subgroup 2 during 2003–2010. Amino acid variation analysis of the glycoprotein 5 revealed that Henan PRRSV strains tended to accumulate more substitutions within the N-terminus and hypervariable region. Selective pressure analysis revealed evidence that some ORF5 sites have likely evolved in response to immune pressure.  相似文献   

12.
Innate immunity provides frontline antiviral protection and bridges adaptive immunity against virus infections. However, viruses can evade innate immune surveillance potentially causing chronic infections that may lead to pandemic diseases. Porcine reproductive and respiratory syndrome virus (PRRSV) is an example of an animal virus that has developed diverse mechanisms to evade porcine antiviral immune responses. Two decades after its discovery, PRRSV is still one of the most globally devastating viruses threatening the swine industry. In this review, we discuss the molecular and cellular composition of the mammalian innate antiviral immune system with emphasis on the porcine system. In particular, we focus on the interaction between PRRSV and porcine innate immunity at cellular and molecular levels. Strategies for targeting innate immune components and other host metabolic factors to induce ideal anti-PRRSV protection are also discussed.  相似文献   

13.
This paper reviews in vivo studies on the interaction between porcine reproductive and respiratory syndrome virus (PRRSV) and LPS performed in the authors' laboratory. The main aim was to develop a reproducible model to study the pathogenesis of PRRSV-induced multifactorial respiratory disease. The central hypothesis was that respiratory disease results from an overproduction of proinflammatory cytokines in the lungs. In a first series of studies, PRRSV was shown to be a poor inducer of TNF-alpha and IFN-alpha in the lungs, whereas IL-1 and the anti-inflammatory cytokine IL-10 were produced consistently during infection. We then set up a dual inoculation model in which pigs were inoculated intratracheally with PRRSV and 3-14 days later with LPS. PRRSV-infected pigs developed acute respiratory signs for 12-24h upon intratracheal LPS inoculation, in contrast to pigs inoculated with PRRSV or LPS only. Moreover, peak TNF-alpha, IL-1 and IL-6 titers were 10-100 times higher in PRRSV-LPS inoculated pigs than in the singly inoculated pigs and the cytokine overproduction was associated with disease. To further prove the role of proinflammatory cytokines, we studied the effect of pentoxifylline, a known inhibitor of TNF-alpha and IL-1, on PRRSV-LPS induced cytokine production and disease. The clinical effects of two non-steroidal anti-inflammatory drugs (NSAIDs), meloxicam and flunixin meglumine, were also examined. Pentoxifylline, but not the NSAIDs, significantly reduced fever and respiratory signs from 2 to 6h after LPS. The levels of TNF-alpha and IL-1 in the lungs of pentoxifylline-treated pigs were moderately reduced, but were still 26 and 3.5-fold higher than in pigs inoculated with PRRSV or LPS only. This indicates that pathways other than inhibition of cytokine production contributed to the clinical improvement. Finally, we studied a mechanism by which PRRSV may sensitize the lungs for LPS. We hypothesized that PRRSV would increase the amount of LPS receptor complex in the lungs leading to LPS sensitisation. Both CD14 and LPS-binding protein, two components of this complex, increased significantly during infection and the amount of CD14 in particular was correlated with LPS sensitisation. The increase of CD14 was mainly due to infiltration of strongly CD14-positive monocytes in the lungs. The PRRSV-LPS combination proved to be a simple and reproducible experimental model for multifactorial respiratory disease in pigs. To what extent the interaction between PRRSV and LPS contributes to the development of complex respiratory disease is still a matter of debate.  相似文献   

14.
Although much research has been performed on porcine reproductive and respiratory syndrome virus (PRRSV), little quantitative information is available on the relationships between virulence and in vivo virus replication, among isolates recovered at different times in the history of PRRS, or the relative levels of virulence associated with individual virus isolates. In this study, the in vivo growth properties of virulent field isolates and attenuated PRRSV isolates were compared. The results show that virulent PRRSV isolates exhibit longer and more elevated levels of viremia, induce faster and more intense humoral immune responses, negatively affect body weight gain, induce higher death rates, and cause more severe clinical signs in a respiratory disease model. We found that the more virulent field isolates grew to significantly higher levels in pigs than did cell-culture adapted isolates. We concluded that the pathogenic consequences and immunological responses of pigs to PRRSV are directly related to viral load in acute infection as reflected in viral titers in blood.  相似文献   

15.
作为一种RNA病毒,猪繁殖与呼吸综合征病毒(PRRSV)极易变异,具有快速演化且易与其他毒株发生重组的特性,不同PRRSV毒株又存在着明显的致病性表型差异,异源毒株间交叉保护较差,这也是迄今为止PRRSV未得到有效控制的最主要的原因之一,PRRSV给全球养猪业带来了不可估量的经济损失。自上世纪80年代发现以来,基因2型PRRSV不断变异与演化,根据ORF5基因遗传进化分析,其被划分为9个谱系,我国主要以谱系1,3,5,8为主。本文从自然流行毒株、疫苗演化毒株、重组毒株3个方面对基因2型PRRSV的遗传变异与演化进行了综述,以期为PRRSV分子流行病学的研究及其免疫防控提供参考依据。  相似文献   

16.
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) impairs local pulmonary immune responses by damaging the mucociliary transport system, impairing the function of porcine alveolar macrophages and inducing apoptosis of immune cells. An imbalance between pro- and anti-inflammatory cytokines, including tumour necrosis factor-α and interleukin-10, in PRRS may impair the immune response of the lung. Pulmonary macrophage subpopulations have a range of susceptibilities to different PRRSV strains and different capacities to express cytokines. Infection with PRRSV decreases the bactericidal activity of macrophages, which increases susceptibility to secondary bacterial infections. PRRSV infection is associated with an increase in concentrations of haptoglobin, which may interact with the virus receptor (CD163) and induce the synthesis of anti-inflammatory mediators. The balance between pro- and anti-inflammatory cytokines modulates the expression of CD163, which may affect the pathogenicity and replication of the virus in different tissues. With the emergence of highly pathogenic PRRSV, there is a need for more information on the immunopathogenesis of different strains of PRRS, particularly to develop more effective vaccines.  相似文献   

17.
ABSTRACT: Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus that shows a restricted in vivo tropism for subsets of porcine macrophages, with alveolar macrophages being major target cells. The virus is associated with respiratory problems in pigs of all ages and is commonly isolated on farms with porcine respiratory disease complex (PRDC). Due to virus-induced macrophage death early in infection, PRRSV hampers the innate defence against pathogens in the lungs. In addition, the virus might also directly affect the antimicrobial functions of macrophages. This study examined whether interaction of European genotype PRRSV with primary alveolar macrophages (PAM) affects their phagocytic capacity. Inoculation of macrophages with both subtype I PRRSV (LV) and subtype III PRRSV (Lena) showed that the virus inhibits PAM phagocytosis. Similar results were obtained using inactivated PRRSV (LV), showing that initial interaction of the virion with the cell is sufficient to reduce phagocytosis, and that no productive infection is required. When macrophages were incubated with sialoadhesin- (Sn) or CD163-specific antibodies, two entry mediators of the virus, only Sn-specific antibodies downregulated the phagocytic capacity of PAM, indicating that interaction with Sn, but not CD163, mediates the inhibitory effect of PRRSV on phagocytosis. In conclusion, this study shows that European genotype PRRSV inhibits PAM phagocytosis in vitro, through the interaction with its internalization receptor Sn. If similar events occur in vivo, this interaction may be important in the development of PRDC, as often seen in the field.  相似文献   

18.
Bovine respiratory syncytial virus (BRSV) causes severe respiratory disease in young cattle. Much like the human respiratory syncytial virus, BRSV induces immunomodulation in the infected host, favoring a Th2 response. Several groups have demonstrated IgE responses to BRSV proteins during infection and particularly in response to vaccination with formalin-inactivated vaccine in the field and experimentally. Newer vaccine modalities that favor a shift to Th1 cytokine production have provided promising results. Infection with BRSV is a major contributor to the multi-pathogen disease, bovine respiratory disease complex. This review stresses the unique immunomodulatory aspects of BRSV infection, vaccination and its interaction with the host's immune system.  相似文献   

19.
猪繁殖与呼吸综合征病毒细胞受体研究进展   总被引:1,自引:1,他引:0  
猪繁殖与呼吸综合征病毒(PRRSV)是引起猪繁殖与呼吸综合征(PRRS)的病原,对PRRSV细胞受体的研究将有助于揭示PRRSV的感染途径、复制过程、致病机理和疫病预防及控制等一系列问题,细胞受体的研究已经成为目前PRRSV研究中的重要领域。论文从硫酸乙酰肝素受体、唾液酸黏附素受体、CD163分子、波形蛋白等方面综述了PRRSV细胞受体研究进展。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号