首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat contains phenolic compounds concentrated mainly in bran tissues. This study examined the distribution of phenolics and antioxidant activities in wheat fractions derived from pearling and roller milling. Debranning (pearling) of wheat before milling is becoming increasingly accepted by the milling industry as a means of improving wheat rollermilling performance, making it of interest to determine the concentration of ferulic acid at various degrees of pearling. Eight cultivar samples were used, including five genotypes representing four commercial Canadian wheat classes with different intrinsic qualities. Wheat was pearled incrementally to obtain five fractions, each representing an amount of product equivalent to 5% of initial sample weight. Wheat was also roller milled without debranning. Total phenolic content of fractions was determined using the modified Folin‐Ciocalteau method for all pearling fractions, and for bran, shorts, bran flour, and first middlings flour from roller milling. Antioxidant activity was determined on phenolic extracts by a method involving the use of the free radical 2,2‐diphenyl‐l‐picrylhydrazyl (DPPH). Total phenolics were concentrated in fractions from the first and second pearlings (>4,000 mg/kg). Wheat fractions from the third and fourth pearlings still contained high phenolic content (>3,000 mg/kg). A similar trend was observed in antioxidant activity of the milled fractions with ≈4,000 mg/kg in bran and shorts, ≈3,000 mg/kg in bran flour, and <1,000 mg/kg in first middlings flour. Total phenolic content and antioxidant activity were highly correlated (R2 = 0.94). There were no significant differences between red and white wheat samples. A strong influence of environment (growing location) was indicated. Pearling represents an effective technique to obtain wheat bran fractions enriched in phenolics and antioxidants, thereby maximizing health benefits associated with wheat‐based products.  相似文献   

2.
Consumption of whole‐wheat products, including whole‐wheat spaghetti, is associated with beneficial health effects. Flavonoids and lignans are antioxidant phytochemicals that have received much attention from researchers. Investigations were conducted on the content of flavonoid glycosides, lignan diglucoside, and secoisolariciresinol diglucoside (SDG) as contributors to the health‐promoting properties of whole‐wheat spaghetti. Flavonoid glycosides present in regular and whole‐wheat spaghetti samples were identified as 6‐C‐glucosyl‐8‐C‐arabinosyl apigenin and the sinapic acid ester of apigenin‐C‐diglycoside while, in a previous study, the sinapic acid ester of apigenin‐C‐diglycoside was found only in wheat germ tissues. The content of these compounds was significantly higher in whole‐wheat spaghetti (17.0 and 15.1 μg of apigenin equivalent/g) compared to the regular brands (9.5 and 5.8 μg apigenin equivalent/g). SDG content was also significantly higher in whole‐wheat spaghetti (41.8 μg/g) compared to the regular brands (12.9 μg/g). These findings lend further support to the notion that phenolic compounds, along with dietary fiber, are concentrated in the bran layers of the wheat kernel; hence, consumption of whole grain products is strongly recommended to obtain significant levels of health‐promoting phytochemicals.  相似文献   

3.
To release bound phenolic acids, a microwave-assisted extraction procedure was applied to bran and flour fractions obtained from eight sorghum and eight maize cultivars varying in hardness. The procedure was followed by HPLC analysis, and the identities of phenolic acids were confirmed by MS/MS spectra. The extraction of sorghum and maize bound phenolic acids was done for 90 s in 2 M NaOH to release ferulic acid and p-coumaric acid from bran and flour. Two diferulic acids, 8-O-4'- and 8-5'-benzofuran form, were identified and quantitated in sorghum bran, and only the former was found in maize bran. The contents of ferulic acid and diferulic acids in sorghum bran were 416-827 and 25-179 μg/g, respectively, compared to 2193-4779 and 271-819 μg/g in maize. Phenolic acid levels of sorghum were similar between hard and soft cultivars, whereas those of maize differed significantly (p < 0.05) except for ferulic acid in flour. Sorghum phenolic acids were not correlated with grain hardness as measured using a tangential abrasive decortication device. Maize ferulic acid (r = -0.601, p < 0.01), p-coumaric acid (r = -0.668, p < 0.01), and 8-O-4'-diferulic acid (r = -0.629, p < 0.01) were significantly correlated with hardness.  相似文献   

4.
Free radical scavenging properties and phenolic content of extracts from a novel Chinese black-grained wheat were evaluated for comparison with selected wheat controls. Extracts of bran and whole meal were compared for their scavenging activities against the 2,2-diphenyl-1-picryhydrazyl (DPPH) free radical. The total phenolic content and phenolic acid levels were determined using colorimetric and high-performance liquid chromatography (HPLC) methods, respectively. There were significant differences in radical scavenging activities and phenolic contents among bran or whole meal samples of Chinese black-grained wheat and selected wheat controls. Chinese black-grained wheat had the strongest scavenging activity and the highest total phenolic content among the wheat samples. The scavenging activity and total phenolic content of wheat bran was generally twice as high as that of whole meal. A positive correlation was found between DPPH radical scavenging activity and total phenolic content of bran (R = 0.86) and whole meal (R = 0.96). In addition, HPLC analysis detected the presence of gallic, p-hydroxybenzoic, caffeic, syringic, p-coumaric, vanillic, gentisic, o-coumaric acid, and ferulic acids in wheat bran. Ferulic acid content was highest among the phenolic acids. Chinese black-grained wheat may be considered as a potential source of natural antioxidants given its high free radical scavenging ability and phenolic content. Additional research is needed to further investigate other phenolic compounds and evaluate their contribution to the antioxidant activity in order to understand the nutraceutical value of the novel black-grained wheat genotype.  相似文献   

5.
The influence of bran particle size on bread‐baking quality of whole grain wheat flour (WWF) and starch retrogradation was studied. Higher water absorption of dough prepared from WWF with added gluten to attain 18% protein was observed for WWFs of fine bran than those of coarse bran, whereas no significant difference in dough mixing time was detected for WWFs of varying bran particle size. The effects of bran particle size on loaf volume of WWF bread and crumb firmness during storage were more evident in hard white wheat than in hard red wheat. A greater degree of starch retrogradation in bread crumb stored for seven days at 4°C was observed in WWFs of fine bran than those of coarse bran. The gels prepared from starch–fine bran blends were harder than those prepared from starch–unground bran blends when stored for one and seven days at 4°C. Furthermore, a greater degree of starch retrogradation was observed in gelatinized starch containing fine bran than that containing unground bran after storage for seven days at 4°C. It is probable that finely ground bran takes away more water from gelatinized starch than coarsely ground bran, increasing the extent of starch retrogradation in bread and gels during storage.  相似文献   

6.
Growing conditions, kernel characteristics, and genetics affect wheat kernel color. As a result, red and white wheats sometimes cannot be differentiated by visual examination. Soaking wheat kernels in a sodium hydroxide solution enhances the difference in color; red wheat turns a darker red, and white wheat turns straw‐yellow. Previously, when NaOH was used for wheat determination of color class, only a visual assessment was made under arbitrary conditions, many times not suitable for field work. In the present work, visible reflectance spectroscopy and visual assessments were used to optimize NaOH (2 mL/g of wheat) soak time (10 min), concentration (5M or 20%), and temperature (60°C). The optimal procedure will provide users who are not laboratory trained with inexpensive, safe procedures to definitively assign wheat color class in the shortest time in field locations. Calibration and prediction of several wheat cultivars using partial least square regression were used to validate the optimal test procedure. The test differentiated even rain‐bleached wheat and cultivars that were difficult to classify visually. No distinct correlation occurred between predicted color value and the number of red genes.  相似文献   

7.
The objective of this research was to analyze the antioxidant capacity directly of water‐extractable nonstarch polysaccharides (NSP) and feruloylated arabinoxylans (WEAX) following their characterization. NSP were isolated from barley, wheat, and wheat fractions (germ, bran, and aleurone). WEAX were extracted only from wheat fractions. Antioxidant capacity of NSP measured with the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH), 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS), and oxygen radical absorbance capacity (ORAC) assays was 24.0–99.0, 40.0–122.0, and 140.0–286.0μM Trolox equivalents (TE)/g, respectively. The antioxidant capacity of WEAX was 75.7–84.0, 58.0–105.0, and 110.0–235.0μM TE/g for those three assays. DPPH and ABTS were highly correlated to xylose content (R2 = 0.85), degree of substitution (R2 = −0.99), total phenolic acids (R2 = >0.73), total phenolic content (TPC) (R2 = >0.78), and ferulic acid content (R2 = >0.86). ORAC was only influenced by TPC (R2 = 0.63). By taking yield and antioxidant capacity into account, NSP would provide about 0.4–4.2, 0.6–5.1, and 2.8–12.0μM TE/g of flour of radical scavenging activity as measured by DPPH, ABTS, and ORAC, respectively, compared with WEAX (0.4–1.0, 0.3–1.3, and 0.6–2.8μM TE/g). Our results suggest that NSP or WEAX may play a role in protection against free radicals in a food matrix and likely in the gastrointestinal tract.  相似文献   

8.
Reflectance spectra (400 to 1700 nm) of single wheat kernels collected using the Single Kernel Characterization System (SKCS) 4170 were analyzed for wheat grain hardness using partial least squares (PLS) regression. The wavelengths (650 to 700, 1100, 1200, 1380, 1450, and 1670 nm) that contributed most to the ability of the model to predict hardness were related to protein, starch, and color differences. Slightly better prediction results were observed when the 550–1690 nm region was used compared with 950–1690 nm region across all sample sizes. For the 30‐kernel mass‐averaged model, the hardness prediction for 550–1690 nm spectra resulted in a coefficient of determination (R2) = 0.91, standard error of cross validation (SECV) = 7.70, and relative predictive determinant (RPD) = 3.3, while the 950–1690 nm had R2 = 0.88, SECV = 8.67, and RPD = 2.9. Average hardness of hard and soft wheat validation samples based on mass‐averaged spectra of 30 kernels was predicted and compared with the SKCS 4100 reference method (R2 = 0.88). Compared with the reference SKCS hardness classification, the 30‐kernel (550–1690 nm) prediction model correctly differentiated (97%) between hard and soft wheat. Monte Carlo simulation technique coupled with the SKCS 4100 hardness classification logic was used for classifying mixed wheat samples. Compared with the reference, the prediction model correctly classified mixed samples with 72–100% accuracy. Results confirmed the potential of using visible and near‐infrared reflectance spectroscopy of whole single kernels of wheat as a rapid and nondestructive measurement of bulk wheat grain hardness.  相似文献   

9.
Acetylation of high‐amylose (70%) maize starch to high degree of substitution (DS) was studied by reacting starch with acetic anhydride using 50% aqueous NaOH as the catalyst. DS increased with increasing reaction times and increasing ratios of acetic anhydride to starch. Reaction efficiency (RE) increased with longer reaction times and decreased with increases in the ratios of acetic anhydride to starch for extended reaction times. Increasing the amount of NaOH increased both DS and RE. A series of starch acetates with DS values of 0.57–2.23 were prepared and their crystalline structures, chemical structures, thermal stability, and morphological properties were investigated. After acetylation, and as DS increased from 0.57 to 2.23, the crystalline structures of starch steadily disappeared. The carbonyl group's peak at 1,740 cm‐1 appeared in the FTIR spectra. The intensity of this peak increased with a decrease in the peak intensity of the hydroxyl groups at 3,000‐3,600 cm‐1, indicating that the hydroxyl groups on starch were replaced by the acetyl groups. Thermal stability of starch acetates increased. The smooth surface of the starch granules became rough with acetylation. Further acetylation led to the loss of the starch granules and the formation of beehive‐ and fibrous‐like structures.  相似文献   

10.
An automated single kernel near‐infrared (NIR) sorting system was used to separate single wheat (Triticum aestivum L.) kernels with amylose‐free (waxy) starch from reduced‐amylose (partial waxy) or wild‐type wheat kernels. Waxy kernels of hexaploid wheat are null for the granule‐bound starch synthase alleles at all three Wx gene loci; partial waxy kernels have at least one null and one functional allele. Wild‐type kernels have three functional alleles. Our results demonstrate that automated single kernel NIR technology can be used to select waxy kernels from segregating breeding lines or to purify advanced breeding lines for the low‐amylose kernel trait. Calibrations based on either amylose content or the waxy trait performed similarly. Also, a calibration developed using the amylose content of waxy, partial waxy, and wild‐type durum (T. turgidum L. var durum) wheat enabled adequate sorting for hard red winter and hard red spring wheat with no modifications. Regression coefficients indicated that absorption by starch in the NIR region contributed to the classification models. Single kernel NIR technology offers significant benefits to breeding programs that are developing wheat with amylose‐free starches.  相似文献   

11.
Swiss red wheat grain, bran, aleurone, and micronized aleurone were examined and compared for their free radical scavenging properties against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH*), radical cation ABTS*+ and peroxide radical anion O(2)*-, oxygen radical absorbance capacity (ORAC), chelating capacity, total phenolic content (TPC), and phenolic acid composition. The results showed that micronized aleurone, aleurone, bran, and grain may significantly differ in their antioxidant properties, TPC, and phenolic acid composition. Micronized aleurone had the greatest antioxidant activities, TPC, and concentrations of all identified phenolic acids, suggesting the potential of postharvesting treatment on antioxidant activities and availability of TPC and phenolic acids. Ferulic acid was the predominant phenolic acid in Swiss red wheat and accounted for approximately 57-77% of total phenolic acids on a weight basis. Ferulic acid concentration was well correlated with scavenging activities against radical cation and superoxide anion, TPC, and other phenolic acid concentrations, suggesting the potential use of ferulic acid as a marker of wheat antioxidants. In addition, 50% acetone and ethanol were compared for their effects on wheat ORAC values. The ORAC value of 50% acetone extracts was 3-20-fold greater than that of the ethanol extracts, indicating that 50% acetone may be a better solvent system for monitoring antioxidant properties of wheat. These data suggest the possibility to improve the antioxidant release from wheat-based food ingredients through postharvesting treatment or processing.  相似文献   

12.
Ferulic acid bioavailability is dependent on its form present in food. This necessitates a methodology to quantify different groups of ferulic acid derivatives in food products, especially cereal‐based products. The aim of the proposed methodology is to separate and quantify ferulic acid ester‐linked to mono‐ and/or oligosaccharides (OF), to soluble polysaccharides (SPF), and to insoluble polysaccharides (IPF) as well as in its free form. Development and partial validation of this method, which was widely based on liquid/liquid extraction and precipitation steps, was performed using characterized standard materials isolated from corn bran. As the determination of OF was one of the major goals of this methodology, three different feruloylated mono‐ and oligosaccharides were used for method development and validation. To determine the accuracy of the method, ferulic acid–containing standard materials added to a starch matrix were extracted and separated according to the developed protocol. The separated ferulic acid esters were saponified before ferulic acid was analyzed by reversed phase HPLC. Recovery rates were generally between 70 and 103%, with the lowest recovery rates for SPF and highest recovery rates for IPF and OF. Finally, the applicability of the method to unprocessed and processed wheat bran samples was demonstrated.  相似文献   

13.
《Cereal Chemistry》2017,94(3):471-479
Commercial success of whole wheat products has warranted development of new analytical approaches for differentiating whole grain products from conventional food products made from refined grains. Here, we have analyzed three different wheat fractions (namely, bran, germ, and refined flour) of two wheat varieties. In addition, a whole wheat sample containing all three fractions was also included in the study to investigate the application of two spectral fingerprinting methods—proton nuclear magnetic resonance (1H‐NMR) and near‐infrared (NIR) spectroscopy—for differentiating the three fractions and the whole wheat. Results show that both these methods provide unique spectral fingerprints for the bran, germ, refined, and whole wheat flours. In addition, we were able to distinguish whole grain composed of different ratios of the germ, bran, and refined grain, exemplifying the potential applicability of both fingerprinting methods (NIR and NMR) for the differentiation of whole and refined wheat samples. Principal component analysis on 1H‐NMR data with four different bin sizes (0.02, 0.04, 0.08, and 0.16 ppm) did not have significant influence on differentiation of the four fractions.  相似文献   

14.
In the present study, bioprocessing with eight microbial strains including Bacillus species, yeasts, and filamentous fungi was evaluated for its potential to improve the phenolic acid composition and antioxidant activity of wheat bran. The soluble free and soluble conjugated fractions of ethanolic extracts of the treated bran samples were compared for their total phenolic contents, phenolic acid composition, and in vitro antioxidant activities. In general, total phenolic content in the soluble free fraction increased significantly, accounting for 241.11 ± 1.25 μg of gallic acid equivalents (GE)/g (Rhizopus oryzae), 230.50 ± 1.05 μg of GE/g (Mucor circinelloides), and 230.19 ± 1.02 μg of GE/g (Saccharomycopsis fibuligera). The phenolic acid composition, especially of the soluble free fraction, was improved most by S. fibuligera (hydroxybenzoic, vanillic, syringic, and trans‐ferulic acids), M. circinelloides (chlorogenic acid), and R. oryzae (protocatechuic, trans‐coumaric, and benzoic acids). Comparatively, bioprocessing exhibited less effectiveness on conjugated phenolic acid composition. Fermented wheat bran displayed enhanced reducing capacity, superoxide anion radical scavenging activity, and 1,1‐diphenyl‐2‐picrylhydrazyl radical scavenging activity in comparison with the nonfermented sample. The antioxidant activity was significantly correlated to the total phenolic content.  相似文献   

15.
Color is a key quality trait of wheat products, and polyphenol oxidase (PPO) is implicated as playing a significant role in darkening and discoloration. In this study, total and soluble PPO activities were characterized in whole kernel assays and bran extracts. In whole kernel assays similar to AACC Approved Method 22–85, four wheat cultivars were ranked the same for both total and soluble (leached) PPO activity with L‐DOPA (diphenol) as the substrate. Total kernel PPO activity was much greater than soluble PPO activity in three hexaploid wheat cultivars, indicating that insoluble PPO was the major contributor to kernel PPO measurements. Tyrosine (monophenol) was an excellent PPO substrate in kernel assays as expected but had no activity as a substrate for soluble PPO. However, soluble PPO activity with tyrosine was activated by the addition of the diphenols chlorogenic acid and caffeic acid. When PPO was assayed in homogenized bran, 89–95% of total PPO activity remained insoluble, associated with the bran particles. The kernel assay detected <2% of PPO measured in an equivalent amount of homogenized bran. However, total PPO activity was 2‐fold higher in Klasic than in ID377s, both when measured in the kernel assay and in homogenized bran, indicating that the kernel assay was an accurate predictor of relative total extracted PPO activity in these two cultivars. Adding detergents (0.1% SDS plus 0.2% NP‐40) to the bran extraction buffer increased both soluble and insoluble PPO activity. Results indicate that relative PPO activities among wheat cultivars are similar in whole kernel and kernel leachate assays, and that the predominant insoluble fraction of PPO, which is relatively uncharacterized, may be largely responsible for wheat product discoloration.  相似文献   

16.
The aim of this work was to elucidate the underlying physical mechanism(s) by which bran influences whole grain dough properties by monitoring the state of water and gluten secondary structure in wheat flour and bran doughs containing 35–50% moisture and 0–10% added bran. The system was studied with attenuated total reflectance (ATR) FTIR spectroscopy. Comparison of the OH stretch band of water in flour dough with that in H2O‐D2O mixtures having the same water content revealed the formation of two distinct water populations in flour dough corresponding to IR absorption frequencies at 3,600 and 3,200 cm–1. The band intensity at 3,200 cm–1, which is related to water bound to the dough matrix, decreased and shifted to lower frequencies with increasing moisture content of the dough. Addition of bran to the dough caused redistribution of water in the flour and bran dough system, as evidenced by shifts in OH stretch frequency in the 3,200 cm–1 region to higher frequencies and a reduction in monomeric water (free water). This water redistribution affected the secondary structure of gluten in the dough, as evidenced by changes in the second‐derivative ATR‐FTIR difference spectra in the amide I region. Bran addition caused an increase in β‐sheet content and a decrease in β‐turn (β‐spiral) content. However, this bran‐induced transconformational change in gluten was more significant in the 2137 flour dough than in Overley flour dough. This study revealed that when bran is added to flour dough, water redistribution among dough components promotes partial dehydration of gluten and collapse of β‐spirals into β‐sheet structures. This transconformational change may be the physical basis for the poor quality of bread containing added bran.  相似文献   

17.
Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were investigated using an in vitro copper-catalyzed human LDL oxidation assay. The most abundant ferulic acid dehydrodimer (diFA) found in rye, 8-O-4-diFA, was a slightly better antioxidant than ferulic acid and p-coumaric acid. The antioxidant activity of the 8-5-diFA was comparable to that of ferulic acid, but neither 5-5-diFA nor 8-5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 microM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts was significantly correlated with their total content of monomeric and dimeric hydroxycinnamates, and the rye bran extract was the most potent. The data suggest that especially rye bran provides a source of dietary phenolic antioxidants that may have potential health effects.  相似文献   

18.
《Cereal Chemistry》2017,94(6):963-969
Single‐pass and multipass milling systems were evaluated for the quality of whole wheat durum flour (WWF) and the subsequent whole wheat (WW) spaghetti they produced. The multipass system used a roller mill with two purifiers to produce semolina and bran/germ and shorts (bran fraction). The single‐pass system used an ultracentrifugal mill with two configurations (fine grind, 15,000 rpm with 250 μm mill screen aperture; and coarse grind, 12,000 rpm with 1,000 μm mill screen aperture) to direct grind durum wheat grain into WWF or to regrind the bran fraction, which was blended with semolina to produce a reconstituted WWF. Particle size, starch damage, and pasting properties were similar for direct finely ground WWF and multipass reconstituted durum flour/fine bran blend and for direct coarsely ground WWF and multipass reconstituted semolina/coarse bran blend. The semolina/fine bran blend had low starch damage and had desirable pasting properties for pasta cooking. WW spaghetti was better when made with WWF produced using the multipass than single‐pass milling system. Mechanical strength was greatest with spaghetti made from the semolina/fine bran or durum flour/fine bran blends. The semolina/fine bran and semolina/coarse bran blends made spaghetti with high cooked firmness and low cooking loss.  相似文献   

19.
Health benefits of consuming whole grains are reduced risk of heart disease, stroke, and cancer. The U.S. Health and Human Services and USDA dietary guidelines recommend consumption of 6–10 oz of grain products daily and one‐half of that amount should contain whole grains. Whole grains contain vitamins, minerals, fiber, and phytonutrients. Bile‐acid‐binding capacity has been related to cholesterol lowering potential of food fractions. Lowered recirculating bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of cancer. Bile‐acid‐binding potential has been related to lowering the risk of heart disease and that of cancer. It has been reported that bile‐acid‐binding of wheat bran is not related to its total dietary fiber (TDF) content. Whole (W) grain as well as pearled (P) hard red winter wheat (Hrw), hard white winter wheat (Hww), and durum wheat (DU) cooked grains were evaluated for in vitro, bile‐acid‐binding relative to cholestryramine (a cholesterol lowering bile‐acid‐binding drug). On dry matter basis (db) relative bile‐acid‐binding values were 7.7% WHrw; 7.5% WHww; 6.3% PHww; 6.0% PHrw; 5.5% WDU; and 5.4% PDU. On a TDF basis, binding values were 42–57% of that for cholestyramine for the whole and pearled wheat grains tested. Bile‐acid‐binding values (db) for WHrw and WHww were similar and significantly higher than those of PHww, PHrw, WDU and PDU. Similar bile‐acid‐binding of WHww to that of WHrw suggest that the red color commonly associated with whole grain may not necessarily indicate more healthful potential. Data suggest that cooked WHrw and WHww wheat have significantly higher health‐promoting potential than pearled grains. WDU or PDU wheat health‐promoting potential was similar to that of PHww or PHrw. Consumption of products containing WHrw and WHww are recommended.  相似文献   

20.
Pup‐loaf bread was made with 10, 30, and 50% substitution of flour with wheat starch phosphate, a cross‐linked resistant starch (XL‐RS4), while maintaining flour protein level at 11.0% (14% mb) by adding vital wheat gluten. Bread with 30% replacement of flour with laboratory‐prepared XL‐RS4 gave a specific volume of 5.9 cm3/g compared with 6.3 g/cm3 for negative control bread (no added wheat starch), and its crumb was 53% more firm than the control bread after 1 day at 25°C, but 13% more firm after 7 days. Total dietary fiber (TDF) in one‐day‐old bread made with commercial XL‐RS4 at 30% flour substitution increased 3–4% (db) in the control to 19.2% (db) in the test bread, while the sum of slowly digestible starch (SDS) plus resistant starch (RS), determined by a modified Englyst method, increased from 24.3 to 41.8% (db). The reference amount (50 g, as‐is) of that test bread would provide 5.5 g of dietary fiber with 10% fewer calories than control bread. Sugar‐snap cookies were made at 30 and 50% flour replacement with laboratory‐prepared XL‐RS4, potato starch, high‐amylose (70%) corn starch, and commercial heat‐moisture‐treated high‐amylose (70%) corn starch. The shape of cookies was affected by the added starches except for XL‐RS4. The reference amount (30 g, as‐is) of cookies made with commercial XL‐RS4 at 30% flour replacement contained 4.3 g (db) TDF and 3.4 g (db) RS, whereas the negative control contained 0.4 g TDF and 0.6 g RS. The retention of TDF in the baked foods containing added XL‐RS4 was calculated to be >80% for bread and 100% for cookies, while the retention of RS was 35–54% for bread and 106–113% for cookies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号