首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prepared bread dough A (a mixture of wheat flour, sugar, salt, and water), bread dough B (a mixture of bread dough A and yeast), and bread dough C (first‐proofed, molded, and second‐proofed bread dough B) and froze them at –20°C for six days. They were thawed at 4°C for 16 hr and subjected to their breadmaking processes. The results indicated that breadmaking properties (bread height [mm] and specific volume [cm3/g]) after bread dough A and B processes were the same as those of control bread dough (unfrozen dough). However, in the case of bread dough C, the resulting bread showed depression of the properties. The amount of centrifuged liquid from thawed bread dough C increased. Sugar was added to thawed bread dough C (bread dough C‐1), and then yeast was further added to bread dough C‐1 (bread dough C‐2), and they were subjected to the breadmaking process. The results showed that the breadmaking properties of bread dough C‐2 were the same as those of the control. It was further found that when the first proof step in the bread dough C‐2 process was omitted, the breadmaking properties were depressed. Frozen and thawed bread dough C was packed into a plastic tube, and extension of the dough was compared with that of control dough under reduced pressure. Bread dough C extended to 50 mm, compared with 70 mm for control dough. First proof, mold, and second proof steps of dough C‐2 caused it to extend to the same height as control dough. It was concluded that the increased amount of the separated liquid in thawed dough C caused depression of breadmaking properties resulting from lack of water in the appropriate places to provide the expected properties, but these properties could be restored to the levels of control bread dough by the addition of sugar and yeast following the first proof, mold, and second proof steps.  相似文献   

2.
The objective of this study was to examine treatments that directly influence Norwegian lean doughs destined to be frozen. Therefore a strip-block experimental design with four dough treatment factors (wheat flour blend, diacetyl tartaric acid esters of monoglycerides [DATEM], water absorption, and dough temperature) and two storage factors (frozen storage time and thawing time) was used. Four levels were selected for frozen storage time and two levels were selected for the remaining factors. After frozen storage (2–70 days), the doughs were thawed and baked. Principal component analysis showed that to obtain a high loaf volume and bread score after freezing, a high dough temperature after mixing (27°C) was essential. The highest form ratio (height/width) level was obtained after 28 days of frozen storage and with a short thawing time (6 hr). Analysis of variance (ANOVA) of dough treatments showed that an increase in dough temperature from 20 to 27°C after mixing resulted in a significant increase in loaf volume (1,653 to 2,264 mL), form ratio (0.64 to 0.69), and bread score (1.7 to 3.2), and a reduction in loaf weight (518.4 to 512.5 g) and crumb score (7.9 to 5.9, i.e., a more open bread crumb). Also, the addition of DATEM significantly increased loaf volume (1,835 to 2,081 mL), form ratio (0.64 to 0.69), and bread score (2.2 to 2.6). Frozen dough storage time significantly affected loaf volume, loaf weight, bread score, and crumb score. Increasing thawing time from 6 to 10 hr significantly increased loaf volume (1,855 to 2,121 mL), and reduced the form ratio (0.69 to 0.63) and loaf weight (516.8 to 511.4 g). ANOVA of the interaction between dough treatment and frozen storage time showed that decreasing water absorption significantly increased the loaf volume.  相似文献   

3.
We examined the effects of baking time and temperature for the preparation of par‐baked French bread, and of thawing and second baking conditions on the characteristics of bread prepared from par‐baked bread. Par‐baked French bread with loaf volume and crumb structure comparable to fully baked bread (control) was obtained with ≥6 min baking at 218°C, which increased the crumb temperature to 97°C. Freezing, thawing, and second baking of par‐baked bread decreased loaf volume by ≥100 mL. The second baking time of par‐baked bread, which was adjusted to have the bread crumb subjected to 97°C for 14 min based on the crumb temperature profile, produced a darker crust of bread compared with the control. The par‐baked bread with 6 min of initial baking at 218°C and frozen at ‐30°C required 12 min of second baking after thawing for 180 min to ≈20°C to produce crust color, crumb moisture, and firmness comparable to that of the control. When thawing time of par‐baked bread was shortened from 180 to 0 min, the second baking time required to yield crust color similar to the control increased from 12 to 16 min. The crumb moisture content was higher in bread baked for 16 min without thawing par‐baked bread than those baked after thawing for 45 or 180 min. Lowering the initial baking temperature of par‐baked bread from 246 to 163°C with the adjustment of baking time from 4 to 12 min decreased crumb firmness of the re‐baked (218°C, 16 min) bread from 2.5 to 1.5 N at 2 hr after baking and from 9.8–10.3 to 6.2–6.3 N at 48 hr.  相似文献   

4.
The improving effects of transglutaminase (TGase) were investigated on the frozen dough system and its breadmaking quality. Rheological properties and microstructure of fresh and frozen doughs were measured using a Rapid Visco‐Analyser (RVA), dynamic rheometer, and scanning electron microscopy (SEM). The frozen doughs with three storage periods (1, 3, and 5 weeks at –18°C) were studied at three levels (0.5, 1.0, and 1.5%) of TGase. As the amount of TGase increased, hot pasting peak viscosity and final viscosity from the RVA decreased, but breakdown value increased. The TGase content showed a positive correlation with both storage modulus G′ (elastic modulus) and the loss modulus G″ (viscous modulus): G′ was higher than G″ at any given frequency. The SEM micrographs showed that TGase strengthened the gluten network of fresh, unfrozen dough. After five weeks of frozen storage at –18°C, the gluten structure in the control dough appeared less continuous, more disrupted, and separated from the starch granules, while the dough containing 0.5% TGase showed less fractured gluten network. Addition of TGase increased specific volume of bread significantly (P < 0.05) with softer bread texture. Even after the five weeks of frozen storage, bread volume from dough with 1.5% TGase was similar to that of the fresh control bread (P < 0.05). The improving effects of TGase on frozen dough were likely the result of the ability of TGase to polymerize proteins to stabilize the gluten structure embedded by starch granules in frozen doughs.  相似文献   

5.
The amount, morphology, and distribution of ice in prefermented frozen bread dough were investigated by differential scanning calorimetry (DSC) and cryoscanning electron microscopy (cryo‐SEM). Bread dough was frozen after proofing, stored frozen at ‐22 ± 3°C and analyzed without previous thawing. At constant storage conditions, the ice fraction amounted to 53% of the total water and remained constant even over a period of 56 days. Unlike other frozen food foams, ice crystals were observed in the gas pores of the dough. Ice crystals were already present at 1 hr after freezing. Crystal growth and rounding off by recrystallization was observed after 1 day of frozen storage. After 149 days, crystal size reached several 100 μm. It is concluded that growth of ice crystals leads to a redistribution of water in the dough mix in the form of ice, which in turn affects the properties of polymeric compounds in dough and reduces the baking performance of prefermented frozen doughs.  相似文献   

6.
The effects of freezing and frozen storage of bread dough and compressed yeast on bread quality were studied. Besides, the effects of compressed yeast freezing on cell viability, gas production and release of substances by the yeast cells were examined. Freezing and frozen storage of dough made with fresh yeast had more negative effects on baking quality than the addition of frozen yeast to dough. When the compressed yeast is frozen and stored at ‐18°C, the CO2 production decreased, while the amount of dead cells, the total protein, and the total reducing substances leached from the yeast increased as the length of yeast frozen storage increased. SDS‐PAGE showed that the substances leached from frozen yeast caused an increase in the solubility of some gluten proteins. On the other hand, size‐exclusion chromatography (SEC) pointed out that the relative amount of two protein fractions of low molecular weight leached from frozen yeast increased for longer yeast frozen storage periods. The yeast leachates had an adverse effect on loaf volume.  相似文献   

7.
《Cereal Chemistry》2017,94(2):242-250
The global market for frozen bread dough is rising; however, its quality could deteriorate during extended storage. Our previous study indicated that undesirable changes caused by freezing could be reduced by adding arabinoxylan‐rich fiber sources. The present study investigated the changes in arabinoxylan properties of yeasted dough during frozen storage. Dough samples made from refined, whole, and fiber‐enriched (15% either wheat aleurone or bran) flours were stored at –18°C for nine weeks, and structural properties of arabinoxylan were probed during storage. Water‐extractable arabinoxylan (WEAX) content in dough samples increased by about 19–33% during the first three weeks of storage. Prolonged storage of dough (weeks 6 and 9), however, correlated with a decline in WEAX content. Average molecular weight and intrinsic viscosity of WEAX decreased during storage for all frozen dough samples. Arabinose‐to‐xylose ratios also decreased by 11 and 6% for control and composite dough samples, respectively. There was a significant positive correlation (r = 0.89, P < 0.0001) between WEAX content of dough and bread quality throughout the storage period. The results demonstrated that changes in dough quality during frozen storage were related to changes in the content and structure of WEAX that took place during frozen storage.  相似文献   

8.
Freezing and prolonged frozen storage of dough results in constant deterioration in the overall quality of the final product. In this study the effect of wheat bran and wheat aleurone as sources of arabinoxylan (AX) on the quality of bread baked from yeasted frozen dough was investigated. Wheat fiber sources were milled to pass through a 0.5 mm screen, prehydrated for 15 min, and incorporated into refined wheat flour at 15% replacement level. Dough products were prepared from refined flour (control A), whole wheat flour (control B), aleurone composite flour (composite flour A), and bran composite flour (composite flour B) and stored at –18°C for 28 weeks. Dough samples were evaluated for breadmaking quality at zero time, 14 weeks, and 28 weeks of storage. Quality parameters evaluated were loaf weight, loaf specific volume, and crumb firmness. Composite flour bread samples showed the most resistance to freeze damage (less reduction in the overall product quality), indicating a possible role of some fiber components (e.g., AX) in minimizing water redistribution in the dough system and therefore lessening adverse modifications to the gluten structure. The data suggest that the shelf life of frozen dough and quality of obtained bread can be improved with the addition of an AX source.  相似文献   

9.
Storage of dough at low temperatures (‐20°C) has a considerable effect on the final quality of baked bread; this is most obviously reflected in lowered specific volumes. In this study, a suite of structural characterization techniques is applied to examine the underlying mechanism of storage damage at the molecular, microstructural, and macroscopic level. By using infrared spectroscopy, the dehydration of the gluten component could be established at the molecular level, and its kinetics could be monitored in time. Time‐domain nuclear magnetic resonance (NMR) showed increased water mobility, which could be attributed to a release of water from the gluten matrix. At the microstructural level, the growth of ice crystals could be monitored by means of cryogenic scanning electron microscopy (cryo‐SEM). These ice crystals are preferably formed in gas cells with kinetics that are slower than those during infrared spectroscopy but similar to those in time‐domain NMR. At the macroscopic level, ice crystals are not evenly distributed over the molded dough, nor are the gas cells homogeneously distributed over the dough. This has implications for the macroscopic water distribution during frozen storage, which could be substantiated by magnetic resonance imaging (MRI) measurements.  相似文献   

10.
This study investigated the antifreeze activity (AF) of γ‐polyglutamic acid (γ‐PGA), freezing resistance of yeast cells and sweet dough, and the mechanism influenced by γ‐PGA. Properties studied included AF of γ‐PGA, water‐holding capacity of flour, survival ratio and oxidation resistance capability of yeast cells, ice melting enthalpy (ΔH), and fermentation and breadmaking properties of sweet dough. The AF of γ‐PGA was 8.03 g of unfrozen water/g of sample, indicating good AF. γ‐PGA was tested on yeast cells and sweet dough stored frozen for 0, 1, 2, 4, and 8 weeks at four levels (0, 0.5, 1, and 3%). Survival ratio of yeast cells with γ‐PGA was significantly higher than the corresponding control. A possible mechanism might be related to the modulation of oxidation resistance capability of yeast cells by γ‐PGA. A decrease in glutathione release from frozen yeast cells and an increase in water‐holding capacity of wheat dough were observed with the addition of γ‐PGA. In the presence of γ‐PGA, ΔH, ice melting temperature, and proofing time of frozen sweet dough decreased significantly, and fermentation parameters improved, compared with the corresponding control sample. Specific volume of bread made from frozen sweet dough with 0.5, 1, and 3% γ‐PGA increased by 6.3, 8.9, and 3.3%, respectively, after 8 weeks of frozen storage. γ‐PGA enhanced the freezing resistance of yeast cells and sweet dough effectively, and the effect on specific volume of bread was not linear, with 1% showing better results.  相似文献   

11.
Functional properties of gluten prepared from wheat flour are altered by separation and drying. Gluten was separated and concentrated by batterlike laboratory methods: development with water, dispersion of the batter with the displacing fluid, and screening to collect the gluten. Two displacing fluids were applied, water or cold ethanol (70% vol or greater, ‐13°C). Both the water‐displaced gluten (W‐gluten) and ethanol‐displaced‐ gluten (CE‐gluten) were freeze‐dried at ‐20°C as a reference. Samples were dried at temperatures up to 100°C using a laboratory, fluidized‐bed drier. Tests of functionality included 1) mixing in a mixograph, 2) mixing in a farinograph, and 3) the baked gluten ball test. Dough‐mixing functionality was assessed for Moro flour (9.2% protein) that was fortified up to 16% total protein with dried gluten. In the mixograph, CE‐gluten (70°C) produced improved dough performance but W‐gluten (70°C) degraded dough performance in proportion to the amount added in fortification. In the microfarinograph, there was a desirable and protein‐proportional increase in stability time for CE‐gluten (70°C) but no effect on stability for W‐gluten (70°C). Baking was evaluated using the baked gluten ball test and the percentage increase in the baked ball volume relative to the unbaked gluten volume (PIBV). PIBV values were as high as 1,310% for freeze‐dried CE‐gluten and as low as 620% for W‐gluten dried at 70°C. PIBV for CE‐gluten was reduced to 77% of the freeze‐dried control by fluid‐bed drying at 70°C. Exposure of CE‐gluten to 100°C air gave a PIBV that was 59% of the reference, but this expansion was still greater than that of W‐gluten dried at 70°C. The highest values of PIBV occurred at the same mixing times as the peak mixograph resistance.  相似文献   

12.
Frozen storage increased the amount of liquid phase and decreased the storage modulus of water-flour mixtures. The liquid phase was studied by ultracentrifugation. The most significant change occurred during the first week of storage. The negative effects of ice crystals could be controlled by reducing the water content, which was seen as smaller amounts of liquid phase and higher dough rigidity after frozen storage (G′ values). Reduced water content also prevented an increase in the self-diffusion coefficient during frozen storage (1H NMR studies). Prefermented frozen doughs were examined under different conditions: with and without Skimo (additive from Puratos, Belgium), prefermentation time of 25 or 40 min, and reduced water content. The results obtained with autoradiographic method correlated best with the baking results and showed that S-kimo and shorter prefermentation time improve the water distribution of frozen prefermented doughs. Doughs contained small ice crystals after frozen storage and there were no large water patches in thawed doughs. Reduced water content and exclusion of S-kimo decreased the liquid phase of fermented doughs and increased dough rigidity. The baking properties of frozen prefermented doughs were better predicted by large deformation rheology (expansion potential of samples during oscillation). In general, flour quality had an obvious effect on the parameters. There was no correlation between the rheological properties and the values of liquid phase, but in most cases a high correlation between the total water content and rheological properties was observed.  相似文献   

13.
Thermostable ice structuring proteins (TSISPs) extracted from Chinese privet (Ligustrum vulgare) leaves were used in frozen dough. TSISPs extract thermal hysteresis activity ranged from 0 to 0.27°C based on different ice fractions in solution. The effects of the TSISPs extract on melting enthalpy of ice (ΔH), water molecular state, microstructure, rheofermentation capacity, and baking properties of doughs during frozen storage were investigated by differential scanning calorimetry, thermal gravimetric analysis, scanning electron microscopy, rheofermentometer, and texture analyzer. The addition of TSISPs in frozen dough caused a decrease in freedom of water molecules and ΔH, which resulted in improved microstructure, fermentation capacity, and baking properties of frozen doughs. Residual gluten fibril increased, exposed starch granules decreased, and gas production and retention of frozen doughs was enhanced. These effects resulted in an increase in specific volume and a decrease in crumb hardness of baked frozen dough.  相似文献   

14.
《Cereal Chemistry》2017,94(5):834-839
The effect of bran prehydration on the composition and bread‐baking quality was determined using bran and flour of two wheat varieties. Bran was hydrated in sodium acetate buffer (50mM, pH 5.3) to 50% moisture at 25 or 55°C for 1.5 or 12 h. The soluble sugar content in bran increased with prehydration. Decreases in phytate and soluble fiber were observed in prehydrated bran, but insoluble fiber was not affected by prehydration. Likewise, free phenolic content decreased, and there was little change in the content of bound phenolics in prehydrated bran. The compositional changes were greater in the bran prehydrated at 55 than at 25°C, and for 12 than for 1.5 h. Addition of prehydrated bran delayed dough development of bran and flour blends and slightly increased water absorption of dough. A higher loaf volume of fresh bread and lower crumb firmness of bread stored for 10 days were observed in bread containing bran prehydrated at 25°C than in bread containing nonhydrated bran or bran prehydrated at 55°C. The prehydration of bran at 25°C before being incorporated into refined flour for dough mixing improved bread quality by altering bran compositional properties, allowing enough water to be absorbed by fibrous materials in the bran and preventing water competition among dough constituents.  相似文献   

15.
The objective of this study was to evaluate how Rhyzopertha dominica infestation of stored wheat grain affects the rheological and baking properties of bread made with the milled flour. Wheat samples were infested with R. dominica and stored for up to 180 days at room temperature. Every 45 days, samples of wheat were collected and evaluated for insect population and flour yield. Flour milled from these wheat samples was evaluated for color reflectance, pH, fat acidity, and rheological properties which were measured by a farinograph. Loaves of bread were baked using a straight-dough procedure. Volume, height, and weight of the loaves were evaluated. None of the analyses performed on the control wheat flours showed any changes during the storage period, and they were similar to the initial wheat. The insect population increased during storage of the wheat up to 90 days, and the flour yield decreased with the storage up to 180 days. Flours from insect-infested wheat absorbed more water than did flours from control wheat. Dough stability and dough development times of infested flours decreased. Bread volume showed a progressive decline throughout the storage experiment. In conclusion, flour from insect-infested wheat exhibited changes in rheological properties such as dough stability, dough development times, water absorption, and mixing stability; bread had an offensive odor; and volume and loaf characteristics were negatively affected.  相似文献   

16.
Effect of freezing and frozen storage of doughs on bread quality   总被引:3,自引:0,他引:3  
The effects of freezing and storage in frozen conditions on bread quality, crumb properties, and aggregative behavior of glutenins were analyzed. The effect of different additives on bread quality was also studied. The results obtained showed that freezing and storage at -18 degrees C decreased the bread quality. Samples stored in frozen conditions supplemented with diacetyl-tartaric acid ester of monoglycerides, gluten, and guar gum produced breads of greater volume and more open crumb structure than those prepared with the base formulation (without additives). All additives analyzed increased the proof time. Crumb firmness increased with dough frozen storage and bread aging time at 4 degrees C. A decrease in the amount of glutenin subunits of high molecular mass was observed by electrophoresis analysis of the SDS-soluble proteins aggregates extracted from the frozen dough. This result suggested that the protein matrix of bread underwent depolymerization during storage in frozen conditions.  相似文献   

17.
The dough properties and baking qualities of a novel high‐amylose wheat flour (HAWF) and a waxy wheat flour (WWF) (both Triticum aestivum L.) were investigated by comparing them with common wheat flours. HAWF and WWF had more dietary fiber than Chinese Spring flour (CSF), a nonwaxy wheat flour. Also, HAWF contained larger amounts of lipids and proteins than WWF and CSF. There were significant differences in the amylose and amylopectin contents among all samples tested. Farinograph data showed water absorptions of HAWF and WWF were significantly higher than that of CSF, and both flours showed poorer flour qualities than CSF. The dough of WWF was weaker and less stable than that of CSF, whereas HAWF produced a harder and more viscous dough than CSF. Differential scanning calorimetry data showed that starch in HAWF dough gelatinized at a lower temperature in the baking process than the starches in doughs of WWF and CSF. The starch in a WWF suspension had a larger enthalpy of gelatinization than those in HAWF and CSF suspensions. Amylograph data showed that the WWF starch gelatinized faster and had a higher viscosity than that in CSF. The loaves made from WWF and CSF were significantly larger than the loaves made from HAWF. However, the appearance of bread baked with WWF and HAWF was inferior to the appearance of bread baked with CSF. Bread made with WWF became softer than the bread made with CSF after storage, and reheating was more effective in refreshing WWF bread than CSF bread. Moreover, clear differences in dough and bread samples were revealed by scanning electron microscopy. These differences might have some effect on dough and baking qualities.  相似文献   

18.
The influence of bran particle size on bread‐baking quality of whole grain wheat flour (WWF) and starch retrogradation was studied. Higher water absorption of dough prepared from WWF with added gluten to attain 18% protein was observed for WWFs of fine bran than those of coarse bran, whereas no significant difference in dough mixing time was detected for WWFs of varying bran particle size. The effects of bran particle size on loaf volume of WWF bread and crumb firmness during storage were more evident in hard white wheat than in hard red wheat. A greater degree of starch retrogradation in bread crumb stored for seven days at 4°C was observed in WWFs of fine bran than those of coarse bran. The gels prepared from starch–fine bran blends were harder than those prepared from starch–unground bran blends when stored for one and seven days at 4°C. Furthermore, a greater degree of starch retrogradation was observed in gelatinized starch containing fine bran than that containing unground bran after storage for seven days at 4°C. It is probable that finely ground bran takes away more water from gelatinized starch than coarsely ground bran, increasing the extent of starch retrogradation in bread and gels during storage.  相似文献   

19.
The combination of Rhizopus chinensis lipase (RCL) and transglutaminase (TG) was previously reported to improve the quality of frozen dough bread. In this study, the effects of RCL, TG, and their combination on the modification of glutenin macropolymer (GMP) and rheological properties of dough during frozen storage were investigated. Frozen storage changed both GMP and rheology properties of dough. TG treatment significantly decreased the ratio of high‐molecular‐weight glutenin subunits to low‐molecular‐weight glutenin subunits and GMP content in fresh dough, and GMP particle size increased. The effect of RCL on GMP properties was not significant, but its combination with TG dramatically increased the proportion of the larger particles and weighted average volume (D4.3) in GMP. The treatment with the enzyme combination could have inhibited the depolymerization of GMP, which slowed down the decrease rate of some parameters such as GMP content, proportion of larger particles, D4.3, and release of free amino and thiol groups during frozen storage. The modification of GMP properties by enzyme treatment weakened the effect of the freezing process on rheological properties of dough, especially TG treatment and its combination with RCL. Correlation between GMP particle size and dough properties (dough tensile force and elastic modulus) after freezing and enzyme treatment were confirmed.  相似文献   

20.
The effects of amylose content on thermal properties of starches, dough rheology, and bread staling were investigated using starch of waxy and regular wheat genotypes. As the amylose content of starch blends decreased from 24 to 0%, the gelatinization enthalpy increased from 10.5 to 15.3 J/g and retrogradation enthalpy after 96 hr of storage at 4°C decreased from 2.2 to 0 J/g. Mixograph water absorption of starch and gluten blends increased as the amylose content decreased. Generally, lower rheofermentometer dough height, higher gas production, and a lower gas retention coefficient were observed in starch and gluten blends with 12 or 18% amylose content compared with the regular starch and gluten blend. Bread baked from starch and gluten blends exhibited a more porous crumb structure with increased loaf volume as amylose content in the starch decreased. Bread from starch and gluten blends with amylose content of 19.2–21.6% exhibited similar crumb structure to that of bread with regular wheat starch which contained 24% amylose. Crumb moisture content was similar at 5 hr after baking but higher in bread with waxy starch than in bread without waxy starch after seven days of storage at 4°C. Bread with 10% waxy wheat starch exhibited lower crumb hardness values compared with bread without waxy wheat starch. Higher retrogradation enthalpy values were observed in breads containing waxy wheat starch (4.56 J/g at 18% amylose and 5.43 J/g at 12% amylose) compared with breads containing regular wheat starch (3.82 J/g at 24% amylose).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号