共查询到20条相似文献,搜索用时 21 毫秒
1.
Eleni Papantoniou Eugene W. Hammond Fiona Scriven Michael H. Gordon J. David Schofield 《Cereal Chemistry》2001,78(6):663-665
A preparative high‐performance liquid chromatographic method was developed for the isolation of polar lipid classes of mono‐ and digalactosyldiacylglycerols (MGDG and DGDG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylcholine (PC) from wheat flour lipid extracts in relatively large quantities. The method allowed the separation of ≤100 mg/injection of lipid mixture. MGDG, DGDG, and PC were isolated as pure lipid classes, whereas PE was isolated in a mixture with PG, PC, and lysophosphatidylcholine (LPC). The availability of this methodology will facilitate research aimed at investigating the functional role of such lipids in foods. 相似文献
2.
The aim of this study was to isolate high‐molecular‐weight (HMW) gliadins from wheat flour and to characterize the protein components that contribute to HMW gliadins. Wheat flour Akteur was extracted with a modified Osborne procedure, and the fraction soluble in 60% ethanol (total gliadins) was separated by gel‐permeation HPLC, yielding three fractions, GP1–GP3. GP1 (21.5%) consisted of oligomeric HMW gliadins, GP2 (15.2%) of ω5‐gliadins, and GP3 (63.3%) of ω1,2‐, α‐, and γ‐gliadins. Two‐dimensional SDS‐PAGE of HMW gliadins showed that interchain disulfide bonds were present in HMW gliadins. The molecular mass distribution of HMW gliadins determined by gel‐permeation HPLC was in a range from 66,000 to 680,000 with an average degree of polymerization of 13. Reduced HMW gliadins were further separated by preparative reversed‐phase HPLC into four subfractions (RP1, RP2, RP3, and RP4), which were characterized by SDS‐PAGE and semiquantitative N‐terminal sequencing. HMW gliadins of the wheat flour Akteur contained all types of gluten proteins: 48% low‐molecular‐weight glutenin subunits, 18% γ‐gliadins, 13% α‐gliadins, 9% ω1,2‐gliadins, 8% HMW glutenin subunits, and 4% ω5‐gliadins. We postulate that the existence of HMW gliadins can be explained by the presence of terminators, which interrupt the polymerization of glutenin subunits during biosynthesis and lead to polymers of limited size (oligomers) that are still soluble in aqueous ethanol. 相似文献
3.
The total protein of gluten obtained by the cold‐ethanol displacement of starch from developed wheat flour dough matches that made by water displacement, but functional properties revealed by mixing are altered. This report characterizes mixing properties in a 10‐g mixograph for cold‐ethanol‐processed wheat gluten concentrates (CE‐gluten) and those for the water‐process concentrates (W‐gluten). Gluten concentrates were produced at a laboratory scale using batter‐like technology: development with water as a batter, dispersion with the displacement fluid, and screening. The displacing fluid was water for W‐gluten and cold ethanol (≥70% vol, ‐12°C) for CE‐gluten. Both gluten types were freeze‐dried at ‐10°C and then milled. Mixograms were obtained for 1) straight gluten concentrates hydrated to absorptions of 123–234%, or 2) gluten blended with a low protein (9.2% protein) soft wheat flour to obtain up to 16.2% total protein. The mixograms for gluten or gluten‐fortified flour were qualitatively and quantitatively distinguishable. We found differences in the mixogram parameters that would lead to the conclusion of greater stability and strength for CE‐gluten than for W‐Gluten. Differences between the mixograms for these gluten types could be markedly exaggerated by increasing the amount of water to the 167–234% range. Mixograms for evaluation of gluten have not been previously reported in this hydration range. Mixograms for fortification suggest that less CE‐gluten than W‐gluten would be required for the same effect. 相似文献
4.
Whole‐grain wheat flour is used in baking to increase fiber content and to provide vitamins from the bran layers of the kernel. We surveyed whole‐grain soft flour samples from North America to determine the nutritional profile using recently revised fiber quantification protocols, Codex 2009.1. Standard compositional and vitamin analyses were also included in the survey. Three separate studies were included in the survey: sampling of commercial whole‐grain soft wheat flour, a controlled study of two cultivars across three years and two locations, and a regional study of soft white and soft red grain from commercial grain production. The Codex method for fiber measurement estimated total fiber concentration in the commercial sampling at 15.1 g/100 g, dry weight basis (dwb). In the controlled research trial, the largest source of variation in total fiber concentration was attributed to year effects, followed by genotype effects. For the two locations used in this study, location effects on fiber concentration were significant but an order of magnitude less important than the year and genotype effects. The third study of regional variation within North America found limited variation for total fiber, with the resistant oligosaccharide fraction having the greatest variation in concentration. When all three studies were combined into a meta‐analysis, the average total fiber concentration was 14.8 g/100 g dwb. In the meta‐analysis, concentrations of folate, thiamin, riboflavin, niacin, and pyridoxine were lower than in previous summary reports. Vitamin E and pantothenic acid were the exceptions, with concentrations that were nearly identical to previous standard reports. Several other recent studies also point to current cultivars and production systems as producing lower concentrations of the essential vitamins than previously reported. The results suggest that vitamin concentrations in diets of populations using grain‐based diets from modern cereal‐production systems may require review to determine if previous assumptions of vitamin consumption are accurate. 相似文献
5.
High‐amylose wheat flour was used to substitute for normal wheat flour in breadmaking and formation of resistant starch (RS) in bread during storage was determined. Substitution with high‐amylose wheat flour (HAF) decreased peak and final viscosities, breakdown, and setback. Doughs with HAF substitutions were weaker and less elastic, and absorbed more water than those of the normal wheat flour. After baking, RS contents in breads with 10, 30, and 50% HAF substitutions were 1.6, 2.6, and 3.0% (db), respectively, higher than that of the control (0.9%, db). The levels of RS increased gradually during storage for one, three, and five days. With substitutions of 30 and 50% HAF, the total levels of dietary fiber (DF) and RS in bread after five days of storage were 15.5 and 16.8% (db), respectively, as compared to 13.0% (db) in bread from the normal wheat flour. The loaf volumes and appearances of bread crumbs made from HAF substitutions of 10 and 30% were not significantly different from those of the control, whereas the substitution with 50% HAF decreased loaf volume and resulted in inferior appearance of breadcrumbs. The firmness of breadcrumbs increased along with increase in the level of HAF substitutions after baking. During storage, the firmness of breadcrumb with 10% HAF substitutions was higher than that of the control, whereas breads with 30 and 50% HAF substitutions had similar firmness to the control. As a result, HAF might be used to substitute for up to 50% normal wheat flour to make bread with acceptable bread quality and significantly high amount of RS. 相似文献
6.
The effects of a laccase from the fungus Pycnoporus cinnabarinus on the mixing of a wheat flour dough with or without added ferulic acid (FA) were studied. Laccase reduced dough time‐to‐peak and accelerated dough breakdown in comparison with the control. Its effect was enhanced with FA. The water extractability of arabinoxylans (AX) increased during mixing of a dough free of added laccase, especially with exogenous FA. At the same time, the extractability of FA decreased during mixing. Added FA may have competed with endogenous AX feruloyl esters, inhibiting partly oxidative gelation. Laccase decreased AX extractability by chain cross‐linking through oxidative dimerization of feruloyl esters. FA and, moreover, FA plus laccase, increased the oxidation of sulfhydryl (SH) groups. FA and, even more, FA in combination with laccase, increased the rate of protein depolymerization during mixing. FA and the products of FA laccase oxidation participated in a redox reaction involving SH groups. A coupling reaction involving enzymatically generated feruloyl radicals and thiol radicals generated through the mechanical breakdown of inter‐chain disulfide bonds might explain these results. 相似文献
7.
Fractionation and reconstitution studies of a flour from 1B/1R wheat showed that the factor causing sticky dough was water soluble. In addition, these studies showed that enzymes and lipids in the flour were not responsible for producing sticky dough. Dialysis experiments showed that the active component was nondialyzable. Gel-filtration chromatography of the retentate fraction showed that the substance causing sticky dough contained both a carbohydrate and a UV-absorbing material. Treatment of the active fraction with base caused the fraction to lose its ability to cause stickiness. The UV-absorbing material and the carbohydrate fraction had to be covalently linked for the compound to be active. Gas chromatography-mass spectrometry and HPLC analysis showed that the UV-absorbing moiety was predominantly trans-ferulic acid, and the carbohydrate part was a glucose polymer. The glucose polymer was not degraded by α-amylase but was degraded by lichenase, suggesting that the glucose polymer was a mixed-linkage β-glucan. 相似文献
8.
Wheat flour dough adhesiveness was evaluated using a new instrumental method based on the extrusion of a dough strip through a specific Plexiglas cell, and the measurement of adhesiveness to a Plexiglas probe attached to a texturometer (TA.XT2‐250N). Experimental conditions for adherence measurement were based on a central composite experimental design (four parameters, five levels). Effects of both dough water content and dough strip thickness were studied. As dough water content increases, bulk stretching of the dough increases, which gives rise to a shoulder on the recorded force‐displacement curve (in addition to the formation of visible fibrils), more pronounced at higher water contents, and to an increase in the specific energy of separation ω (J/m2). Increasing dough thickness also increases ω, due to additional energy dissipation in a higher volume of dough. The new strip method was then compared with a method using a screen located between dough and probe. The former gave more reproducible and discriminant results. 相似文献
9.
The effect of different protein sources (soy flour, lupin flour, egg albumin, gelatin powder, protein‐rich beer yeast flour) on wheat dough functionality was tested by determining gluten index, texture properties, and thermomechanical parameters. Transglutaminase (TG) was also added to improve the dough functionality by forming cross‐links. The presence of protein sources had a significant effect on the gluten index, with the exception of lupin flour. Gelatin and the presence of TG resulted in significant single effects on the texture properties of the wheat‐protein dough. All the protein sources significantly modified the mixing characteristics of the dough or the thermal behavior. Capillary electrophoresis studies of the water‐soluble, salt‐soluble, and glutenin proteins indicated that interactions were mainly within proteins, thus homologous polymers. Scanning electron microscopy studies of the doughs made from blends of wheat and protein sources doughs supported the formation of heterologous structures in the wheat‐lupin blends. The combination of TG and lupin would be a promising method to be used on the treatment of insect‐damaged or weak flours, to increase the gluten strength. 相似文献
10.
Extrudate expansion of cereal‐based products is largely dependent on the molecular interactions and structural transformations that proteins undergo during extrusion processing. Such changes strongly influence the characteristic rheological properties of the melt. It is possible to modify rheological properties of wheat flour during extrusion processing, in particular shear viscosity, with cysteine. The objective of this work was to further develop an understanding of the molecular interactions and structural transformations of wheat flour from dynamic oscillatory rheological measurements. Temperature and frequency sweeps were conducted in the linear viscoelastic range of the material. Changes in the storage modulus (G′), the loss modulus (G″) and the loss tangent (tan δ) of 25% moisture wheat flour disks as a function of cysteine concentration (0–0.75%) were monitored. Molecular weight between cross‐links (Mc) and the number of cross‐links (Nc) per glutenin molecule were determined from frequency sweep data. Increasing cysteine concentration broke cross‐links by decreasing G′ maximum and increasing tan δ values. Molecular weight between cross‐links increased and the number of cross‐links decreased. G′ values from temperature sweeps showed a similar trend. This information leads to a better understanding of the viscoelastic behavior of wheat flour doughs during extrusion cooking and elucidation of protein‐protein reaction mechanisms and other interactions in extruded cereal‐based snack foods. 相似文献
11.
The objective of this research was to identify and define mixing characteristics of gluten‐fortified flours attributable to differences in the method for producing the gluten. In these studies, a wheat gluten concentrate (W‐gluten) was produced using a conventional process model. This model applied physical water displacement of starch (dispersion and screening steps), freeze‐drying, and milling. W‐gluten was the reference or “vital” gluten in this report. An experimental W‐concentrate was produced using a new process model. The new model applied coldethanol (CE) displacement of starch (dispersion and screening steps), freeze‐drying, and milling. Freeze‐drying was used to eliminate thermal denaturation and thereby focus on functional changes due only to the separation method. The dry gluten concentrates were blended with a weak, low‐protein (9.2%), soft wheat flour and developed with water in a microfarinograph. We found that both water and cold‐ethanol processed gluten successfully increased the stability (St) and improved mixing tolerance index (MTI) to create in the blended flour the appearance of a breadbaking flour. Notably, in the tested range of 9–15% protein, the St for CE‐gluten was always higher then the St for W‐gluten. Furthermore, the marginal increase in St (slope of the linear St vs. protein concentration) for the CE‐gluten was ≈57% greater than that for the W‐gluten. The slope of the MTI vs. protein data was lower for the CE‐gluten by 24%. Flour fortified with CE‐gluten exhibited higher water absorption (up to 1.8% units at 13.5% P) than flour fortified with W‐gluten. 相似文献
12.
Liming Cai Induck Choi Choon‐Ki Lee Kwang‐Keun Park Byung‐Kee Baik 《Cereal Chemistry》2014,91(4):398-405
Variations in physical and compositional bran characteristics among different sources and classes of wheat and their association with bread‐baking quality of whole grain wheat flour (WWF) were investigated with bran obtained from Quadrumat milling of 12 U.S. wheat varieties and Bühler milling of six Korean wheat varieties. Bran was characterized for composition including protein, fat, ash, dietary fiber, phenolics, and phytate. U.S. soft and club wheat brans were lower in insoluble dietary fiber (IDF) and phytate content (40.7–44.7% and 10.3–17.1 mg of phytate/g of bran, respectively) compared with U.S. hard wheat bran (46.0–51.3% and 16.5–22.2 mg of phytate/g of bran, respectively). Bran of various wheat varieties was blended with a hard red spring wheat flour at a ratio of 1:4 to prepare WWFs for determination of dough properties and bread‐baking quality. WWFs with U.S. hard wheat bran generally exhibited higher dough water absorption and longer dough mixing time, and they produced smaller loaf volume of bread than WWFs of U.S. soft and club wheat bran. WWFs of two U.S. hard wheat varieties (ID3735 and Scarlet) produced much smaller loaves of bread (<573 mL) than those of other U.S. hard wheat varieties (>625 mL). IDF content, phytate content, and water retention capacity of bran exhibited significant relationships with loaf volume of WWF bread, whereas no relationship was observed between protein content of bran and loaf volume of bread. It appears that U.S. soft and club wheat bran, probably owing to relatively low IDF and phytate contents, has smaller negative effects on mixing properties of WWF dough and loaf volume of bread than U.S. hard wheat bran. 相似文献
13.
The conventional corn wet‐milling process requires a long steeping time and has environmental and health concerns from the use of SO2. A recently proposed two‐stage enzymatic milling procedure with the first stage of water soaking and coarse grinding of corn and the second stage of incubating with enzymes has been shown to reduce the soaking time and possibly eliminate the need for SO2 addition. This current work explored the applications of protease and high‐intensity ultrasound in the second stage of the two‐stage enzymatic milling for corn starch isolation to further shorten the process time without use SO2. of The starch yield from sonication alone was 55.2–67.8% (starch db) as compared with 53.4% of the water‐only control with stirring for 1 hr and 71.1% of the conventional control with SO2 and lactic acid steeping for 48 hr. Protease digestion alone for 2 hr was not effective (45.8–63.9% yield) in isolating corn starch, but the starch recovery was increased to 61.2–76.1% when protease was combined with sonication. The preferred combination was neutral protease digestion for 2 hr followed by sonication at 75% amplitude for 30 min. The results demonstrated that combinations of high‐intensity ultrasound and neutral protease could replace SO2 and shorten the steeping time in the enzymatic wet‐milling process for corn starch isolation. 相似文献
14.
Effect of High‐Molecular‐Weight Glutenin Subunit Allelic Composition on Wheat Flour Tortilla Quality
Tom O. Jondiko Novie J. Alviola Dirk B. Hays Amir Ibrahim Michael Tilley Joseph M. Awika 《Cereal Chemistry》2012,89(3):155-161
Wheat cultivars possessing quality attributes needed to produce optimum quality tortillas have not been identified. This study investigated the effect of variations in high‐molecular‐weight glutenin subunits encoded at the Glu‐1 loci (Glu‐A1, Glu‐B1, and Glu‐D1) on dough properties and tortilla quality. Flour protein profiles, dough texture, and tortilla physical quality attributes were evaluated. Deletion at Glu‐D1 resulted in reduced insoluble polymeric protein content of flour, reduced dough compression force, and large dough extensibility. These properties produced very large tortillas (181 mm diameter) compared with a control made with commercial tortilla wheat flour (161 mm). Presence of a 7 + 9 allelic pair at Glu‐B1 increased dough strength (largest compression force, reduced extensibility, and small‐diameter tortillas). Deletion at Glu‐A1 produced large tortillas (173 mm) but with unacceptable flexibility during storage (score <3.0 at day 16). In general, presence of 2* at Glu‐A1, in combination with 5 + 10 at Glu‐D1, produced small‐diameter tortillas that required large force to rupture (tough texture). Presence of 2 + 12 alleles instead of 5 + 10 at Glu‐D1 produced tortillas with a good compromise between diameter (>165 mm) and flexibility during storage (>3.0 at day 16). These allele combinations, along with deletion at Glu‐D1, show promise for tortilla wheat development. 相似文献
15.
16.
Malena Moiraghi Leonardo Vanzetti Carlos Bainotti Marcelo Helguera Alberto Len Gabriela Prez 《Cereal Chemistry》2011,88(2):130-136
Nowadays in Argentina, cookies, crackers, and cakes are made of flour obtained from bread wheat with additives or enzymes that decrease the gluten strength but increase production costs. The present research work aims to study the relationship between flour physicochemical composition (particle size average [PSA], protein, damaged starch [DS], water soluble pentosans [WSP], total pentosans [TP], and gluten), alkaline water retention capacities behavior, solvent retention capacities profile (SRC) and cookie‐making performance in a set of 51 adapted soft wheat lines with diverse origin to identify better flour parameters for predicting cookie quality. Cookie factor (CF) values were 5.06–7.56. High and significant negative correlations between sucrose SRC (–0.68), water SRC (–0.65), carbonate SRC (–0.59), and CF were found, followed by lactic SRC that presented a low negative but significant correlation (r = –0.35). The flour components DS (r = –0.67), WSP (r = –0.49), and TP (r = –0.4) were negatively associated to CF. PSA showed a negative correlation with CF (r = –0.43). Protein and gluten were the flour components that affected cookie hardness, but no significant correlation were found with pentosan or DS content. A prediction equation for CF was developed. Sucrose SRC, PSA, and DS could be used to predict 68% of the variation in cookie diameter. The cluster analysis was conducted to assess differences in flour quality parameters among genotypes based on CF. Clusters 1 and 4 were typified by lower CF (5.70 and 5.23, respectively), higher DS, pentosan content, and SRC values. Cluster 2 with a relative good CF (6.47) and Cluster 3 with the best cookie quality, high CF (7.32) and low firmness, and the lowest DS, TP, WSP content, and sucrose SRC values. 相似文献
17.
George H. Robertson William Hurkman Olin D. Anderson Charlene K. Tanaka Trung K. Cao William J. Orts 《Cereal Chemistry》2013,90(1):13-23
Wheat protein composition and organization play interrelated roles in determining physical properties for technological purposes. In prior research, a number of isogenic wheat lines of Bobwhite that have high levels of expression of the native Dx5 and/or Dy10 high‐molecular‐weight glutenin subunits (HMW‐GS) were examined vis‐à‐vis physical properties related to separation. In particular, these altered lines were characterized by poor mixing properties, the formation of mixtures in water that could not be separated by conventional mechanical methods, reduced water absorption, unique milling properties, and severely limited development of microscopic fibrils. These attributes suggested inherent organizational differences at submicroscopic and molecular levels among the various lines. Therefore, proteins were fractionated from whole meals using 70% ethanol to elucidate solubility characteristics and compositions and to infer structural properties. Capillary zone electrophoresis and one‐ and two‐dimensional SDS‐PAGE (2DE) revealed striking differences in the protein composition and solubility among these new lines and the Bobwhite from which they were derived. Generally, Bobwhite yielded soluble protein that included not only what would be considered as classical gliadins but also some of each of the HMW‐GS as monomers or polymers with low degrees of polymerization, whereas the genetically altered lines produced far less total soluble protein and very limited amounts of HMW‐GS. In the extreme, high levels of expression of Dx5 subunit not only led to reduced solubility of the HMW‐GS but also limited the solubility of the many other proteins that are normally soluble. In addition, a matrix association factor similar to the classical separation factor of analytical chemistry and chemical engineering was introduced and applied to 2DE data for insoluble and soluble protein to summarize and index relative involvement of specifically enhanced proteins in the insoluble gluten matrix after equilibration with ethanol. The highest relative association was determined for the HMW‐GS lines enriched in Dx5 or Dy10 protein and the lowest for Bobwhite. Greater association was indicated for Dx5 than for Dy10 protein in these lines. The value of the association factor was likely influenced by differences in glutamine‐to‐cysteine ratios and differences in altered glutenin chain configurations stemming from high levels of expression of a single or limited number of HMW‐GS. 相似文献
18.
The consumer acceptance of white salted Asian noodles depends on starch characteristics, and the purpose of this study has been to investigate the potential of exogenous α‐amylases to enhance textural characteristics of this product. Noodles were prepared from commercial flours with low α‐amylase activity, and the endogenous enzyme remained relatively stable during various processing and storage treatments. α‐Amylase preparations of bacterial origin and from barley malt were incorporated, and the products were assessed by texture analysis and electron microscopy, as well as for color characteristics. On addition of the amylase preparations, noodles were softer when texture was assessed using either a flat cylinder probe or an axial blade. Some discoloration occurred in treated noodle sheets, although this was minimal in final products that had been cooked immediately after preparation or following drying. Scanning electron microscopy confirmed that the α‐amylase of bacterial origin had greater impact upon starch than that from barley malt. The results have implications for understanding of the adverse impact of preharvest sprouting on product characteristics. The results show that softer noodles have been obtained at these levels of enzyme additions. This was true for both enzyme preparations used. Differences in hardness (as measured using the flat cylinder probe) were greater than those for firmness (as measured using the axial blade). 相似文献
19.
The practical applications of flour from waxy (amylose‐free) hexaploid wheat (Triticum aestivum L.) were assessed. The applications evaluated were bread, cakes, white salted noodles, and pasta for gyoza. An excessive addition of waxy hexaploid wheat flour to total wheat flour (>20%) resulted in poorer functional properties (sticky, lumpy, or less crispy textures) in almost every end use product. However, incorporation of <20% waxy hexaploid wheat flour, produced considerable improvement in shelf‐life characteristics. After one day of storage, the bread from flour including waxy hexaploid wheat flour maintained moistness, softness, and stickiness. This application of waxy hexaploid wheat flour as an antistaling ingredient was also confirmed in cake products. Tests were also conducted on alimentary pasta products. In alimentary pasta, waxy hexaploid wheat flour was most effective when utilized for frozen fried dumplings (gyoza). By using flour including 30 or 50% waxy hexaploid wheat flour, the problem of firmness was solved without other ingredients. In conclusion, flour from waxy hexaploid wheat may be useful in developing more increased staling‐ and freezing‐tolerant grain‐based foods. Starch properties could be responsible for these improved characteristics. 相似文献