首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sum of wheat flour and corn starch was replaced by 10, 20, or 30% whole amaranth flour in both conventional (C) and reduced fat (RF) pound cakes, and the effects on physical and sensory properties of the cakes were investigated. RF presented 33% fat reduction. The increasing amaranth levels darkened crust and crumb of cakes, which decreased color acceptability. Fresh amaranth‐containing cakes had similar texture characteristics to the controls, evaluated both instrumentally and sensorially. Sensory evaluation revealed that replacement by 30% amaranth flour decreased C cakes overall acceptability scores, due to its lower specific volume and darker color. Amaranth flour levels had no significant effect on overall acceptability of RF cakes. Hence, the sum of wheat flour and corn starch could be successfully replaced by up to 20% amaranth flour in C and up to 30% in RF pound cakes without negatively affecting sensory quality in fresh cakes. Moisture losses for all the cakes were similar, ≈1% per day during storage. After six days of storage, both C and RF amaranth‐containing cakes had higher hardness and chewiness values than control cakes. Further experiments involving sensory evaluation during storage are necessary to determine the exact limit of amaranth flour replacement.  相似文献   

2.
Freeze-thaw stability of amaranth, corn, wheat, and rice starches was determined measuring the percent of syneresis by centrifugation. Thermal properties were calculated by differential scanning calorimetry (DSC). The effects of salt (NaCl at 2 and 5%) and sugars (sucrose, glucose, and fructose at 10, 20, and 30%) on the freeze-thaw stability of amaranth starch were also studied. Based on DSC and centrifugation methods, amaranth starch had better stability after freezing and thawing through four cycles than did corn, wheat, and rice starches. Amaranth starch with added salt showed similar stability as compared with a control when measured by centrifugation and showed increased stability when measured by DSC. Adding sugars to amaranth starch gels had varying results, but for the most part, they showed similar or increased stability when compared with a control.  相似文献   

3.
High‐intensity ultrasound (sonication) was investigated as a method to rapidly purify starch from sorghum and other cereal grains. To improve the process, buffers were optimized to solubilize sorghum proteins in combination with the sonication. Protein content and starch color were determined to evaluate the efficiency of the extraction process. Sonication times, SDS concentration, different types and concentrations of reducing agents (sodium metabisulfite, dithiothreitol, and β‐mercaptoethanol), and centrifugation speeds of the starch washing procedure were tested. Protein content of isolated sorghum starch was reduced to 0–0.14% (db) after 2 min of sonication (using any of the reducing agents tested). Sodium metabisulfite was chosen as the preferred reducing agent because of its lower toxicity and odor compared with other reducing agents tested. The optimum conditions for producing high‐purity sorghum starches (0.06% protein) were obtained using the following conditions: 2 min of sonication time with 12.5 mM sodium borate buffer, pH 10, containing 0.5% SDS (w/v) and 0.5% sodium metabisulfite (w/v) using 1,500 rpm centrifugation speed during starch washing. Starches separated by this method showed significantly less protein content and b values (yellowness) compared with starches separated by enzymatic methods or methods using NaCl solutions and protein extraction buffers with multiple washing steps, both of which take several hours to complete. Differential scanning calorimetry thermogram values for starches isolated by three different methods showed similar patterns, except that starches obtained with the enzymatic method had slightly higher values of To, Tp, and ΔH. Other cereal starches from whole wheat meal, wheat flour, corn, rice, and barley were also obtained rapidly using sonication.  相似文献   

4.
Granule bound starch synthase1 (GBSS1) is a key enzyme in amylose biosynthesis and is encoded by the A, B and D GBSS1 wx loci in wheat. Wheat lines with mutations at the three GBSS1 loci have been identified. We have characterized and compared the grain starch of CDCW6 wheat line (null B and D for GBSS1) with PI235238 (null A and B for GBSS1), waxy (null A, B and D for GBSS1), and AC Reed (wild type wheat) grain starches. The grain starch of waxy, CDCW6, PI235238, and AC Reed lines contained ≈0, 12, 23, and 25% amylose (w/w), respectively. Waxy, partially waxy, and wild wheat grain starches showed significant differences in onset and peak transition temperatures as determined by differential scanning calorimetric analysis. Grain starches extracted from waxy, CDCW6, and PI235238 also had higher enthalpy of gelatinization values than did wild wheat starch. X-ray diffraction analysis revealed the highest crystallinity for starch extracted from waxy wheat, followed by CDCW6. The starch produced from the CDCW6 line may find special food and industrial applications because of its relatively low amylose concentration.  相似文献   

5.
Resistant starches (RS) were prepared by phosphorylation of wheat, waxy wheat, corn, waxy corn, high‐amylose corn, oat, rice, tapioca, mung bean, banana, and potato starches in aqueous slurry (≈33% starch solids, w/w) with 1–19% (starch basis) of a 99:1 (w/w) mixture of sodium trimetaphosphate (STMP) and sodium tripolyphosphate (STPP) at pH 10.5–12.3 and 25–70°C for 0.5–24 hr with sodium sulfate or sodium chloride at 0–20% (starch basis). The RS4 products contain ≤100% dietary fiber when assayed with the total dietary fiber method of the Association of Official Analytical Chemists (AOAC). In vitro digestion of four RS4 wheat starches showed they contained 13–22% slowly digestible starch (SDS) and 36–66% RS. However after gelatinization, RS levels fell by 7–25% of ungelatinized levels, while SDS levels remained nearly the same. The cross‐linked RS4 starches were distinguished from native starches by elevated phosphorus levels, low swelling powers (≈3g/g) at 95°C, insolubilities (<1%) in 1M potassium hydroxide or 95% dimethyl sulfoxide, and increased temperatures and decreased enthalpies of gelatinization measured by differential scanning calorimetry.  相似文献   

6.
Starch was isolated from Amaranthus cruentus seeds by different alkaline treatments and combinations of low alkaline steeping and protease treatments. For low alkaline-protease treatments, amaranth seeds were steeped in a NaOH solution (0.05%, pH 12) for 22 hr to loosen the protein matrix and ground. The pH of the ground slurry was adjusted to 7.5 and subjected to a protease (from Aspergillus sojae) treatment. The slurry was incubated with 1 or 0.5% of the protease (based on total amount of seeds) for 2 hr at 37°C and 50 rpm. The starch was then isolated by screening and centrifugation. This method produced starch with a low protein content (≤0.2%) and a high recovery (≈80%). Amaranth starch isolated by alkaline treatments were also studied by using various concentrations of NaOH steeping solutions and with or without alkaline solution during grinding and washing. The properties of amaranth starch isolated by alkaline and low alkaline-protease treatments were analyzed and compared. The properties of the amaranth starch were also compared with those of normal and waxy maize starches.  相似文献   

7.
The rheological properties of granular materials and dispersions of solid particles in fluids are dependent on the packing characteristics of the particles. Maximum packing fractions (Φm) have been measured for corn, wheat, rice, potato, and amaranth starches, in the dry state and dispersed in either ethanol or hexane, using a tapping method. The observed maximum packing fraction increases with tapping time to a constant value. Values measured for dry starches were lower than those measured in liquids and reflect the effects of granule shape and intergranular friction. Values measured in fluids for potato, corn, and wheat starches were all similar in magnitude, and in the range of values (0.58–0.63) for random loose packing and random close packing of monodisperse spheres. Values for amaranth and rice starches were significantly lower due to agglomeration and clumping of individual granules. Blends of corn and potato starches show a slight enhancement of packing, with some Φm values greater than potato starch, consistent with data for bimodal blends of spheres. Blends of rice and potato starches displayed enhanced packing above ideal mixing but did not exceed the packing fraction of the potato starch. Knowledge of starch packing fractions is required for fundamental understanding of the rheological properties of granular starch‐filled materials and important for predicting processing characteristics.  相似文献   

8.
Starches from garden orach (Atriplex hortensis) and sweet quinoa (Chenopodium quinoa Willd. ‘Surumi’) seeds were isolated, examined for compositional characteristics, and compared with bitter quinoa (Cheno‐podium quinoa Willd.) starch. Garden orach and sweet quinoa seeds were similar in fat and ash contents, while garden orach seeds contained ≈10% more protein. Starches were isolated from seeds following a 12‐hr soak in dilute alkaline solution using a series of grinding, screening, centrifugation, and washing steps. Isolated starches viewed by scanning electron microscopy yielded angular, polygonal granules ≈1–2 μm in diameter. Starches displayed typical A‐type crystalline packing arrangements as determined by X‐ray powder diffractometry. Apparent amylose contents for garden orach (21.2%), sweet quinoa (20.6%), and bitter quinoa (19.8%) were determined according to colorimetric procedure. Differential scanning calorimetry data indicated a higher and wider gelatinization temperature range for garden orach as compared with sweet and bitter quinoa starches. Starch pasting profiles generated using a Rapid Visco Analyser indicated a reduced peak paste viscosity for garden orach starch relative to sweet and bitter quinoa and common corn starches.  相似文献   

9.
Wheat starches were isolated from three wheat flours. Two vital wheat glutens, one from a commercial source and another one isolated from straight-grade flour, were combined with wheat starches to form reconstituted flours with a protein level of 10%. Several characteristics of tortillas made with the hot-press method were measured. No significant difference (P < 0.05) occurred in texture of tortillas made with hard wheat gluten and soft wheat gluten. Wheat starches did not have any significant (P < 0.05) effect on tortilla stretchability or foldability. Analysis of variance confirmed that wheat starch and gluten had limited effects on tortilla texture. The possible reasons were that the solubles of wheat flour were not included, and the shortening in the tortilla formula interfered with the interaction of gluten and starch.  相似文献   

10.
Resistant starches (RS) were prepared from wheat starch and lintnerized wheat starch by autoclaving and cooling and by cross‐linking. Heat‐moisture treatment also was used on one sample to increase RS. The experimental resistant starches made from wheat starch contained 10–73% RS measured as Prosky dietary fiber, whereas two commercial resistant starches, Novelose 240 and 330, produced from high‐amylose maize starch, contained 58 and 40%, respectively. At 25°C in excess water, the experimental RS starches, except for the cross‐linked wheat starch, gained 3–6 times more water than the commercial RS starches, and at 95°C gained 2–4 times more. Cross‐linked RS4 wheat starch and Novelose 240 showed 95°C swelling powers and solubilities of 2 g/g and 1%, and 3 g/g and 2%, respectively. All starches showed similar water vapor sorption and desorption isotherms at 25°C and water activities (aw) < 0.8. At aw 0.84–0.97, the resistant starches made from wheat starch, except the cross‐linked wheat starch, showed ≈10% higher water sorption than the commercial resistant starches.  相似文献   

11.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules.  相似文献   

12.
The physicochemical properties of small‐ and large‐granule wheat starches were investigated to reveal whether gelatinization properties and rheological behavior differ between size classes of wheat starch. All samples contained 60% water (w/w, wb). The starch granule size and shape were examined by scanning electron microscopy in the separated A‐ and B‐type granule populations and in the whole wheat starch granule population. Differential scanning calorimetry (DSC) and electron spin resonance (ESR) analyses were performed in parallel with rheological measurements using dynamic mechanical thermal analysis (DMTA) to relate the viscoelastic changes to modifications in dynamic properties of aqueous solutions and structural disorganization of starch. The small (B‐type) granules had slightly higher gelatinization temperature and lower gelatinization enthalpy than did the large (A‐type) granules. Also, B‐type granules had higher enthalpy for the amylose‐lipid complex transition. Moreover, our results suggested that small granules have higher affinity for water at room temperature. It seems that there is a less ordered arrangement of the polysaccharide chains in the smaller granules when compared with the larger ones. These differences in functional properties of small and large granules suggested that the granule size distribution is an important parameter in the baking process.  相似文献   

13.
Environmental fate and dissipation of the sulfonylurea herbicide sulfosulfuron was investigated in soil (inceptisol) and wheat plant under predominant cropping conditions. Studies were conducted in natural field conditions and in a simulated model ecosystem. Thirty days after the wheat seeds had been sown, sulfosulfuron [N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-2-(ethylsulfonyl)imidazo[1,2-a]pyridine-3-sulfonamide] 75% w/w WG formulation was applied once in the field. The dosages were 25 and 50 g of active ingredient (ai)/ha. Studies were conducted in significantly separated individual plots to avoid contamination. In a predetermined interval, soil samples were collected and analyzed for the residues of sulfosulfuron. At harvest, wheat grain, straw, and soil samples were analyzed for the residues. Similar experiments were conducted in a model ecosystem. Apart from this, after harvest, the succeeding crops coriander (Coriandrum sativum) and edible amaranth (Amaranthus mangostanus L.) were raised in the model ecosystem and studied for the residues. No residues were detected in wheat grain, straw, and soil samples collected at harvest from both experiments or in the succeeding crops coriander and edible amaranth in the model ecosystem when tested at the minimum detection level of 0.001 microg/g. The dissipation of sulfosulfuron was found to have first-order kinetics in soil and plant in both studies. The dissipation data of sulfosulfuron in the model ecosystem were compared with those from the natural field conditions.  相似文献   

14.
Commercial corn starch, treated with stearoyl chloride in carbon tetrachloride and triethylamine, is surface-derivatized without noticeable swelling. Granules that are reacted with chloroacetic acid under similar conditions undergo surface etherification, visibly identified by their color binding with fuchsin. Interestingly, the dye experiment indicates surface-derivatization as well as derivatization of the granule central interior, suggesting reagent penetration to the granule interior through pores and derivatization of a lower density porous center. Esterification of corn starch granules treated with glucoamylase have five times greater esterification than normal corn starch granules. Placed in water, these and palmitoylated granules have a fatty feel to the fingers. Stearoylated corn and amaranth starches showed indications for use as fat replacers in frozen desserts.  相似文献   

15.
Instant noodles were prepared by substituting hard red winter (HRW) wheat flour with Great Northern bean powder (GNBP) at selected levels (0–60%) using a pilot‐scale noodle processing machine. The functional properties, water absorption, water solubility, and pasting profiles of flour mixtures were tested to verify the process tolerances of ingredients. Prepared noodle samples were evaluated for color, cooking quality, texture, and sensory properties. Slight color differences, an increased cooking loss, and reduced chewiness, cohesiveness, and hardness were observed in cooked noodles that were prepared with GNBP up to 25% of HRW wheat flour weight. The results suggest that HRW wheat flour could be replaced up to 20% (w/w) with GNBP, while still using the conventional processing conditions, to improve the product nutritional value (i.e., increased protein and fiber contents and reduced fat content) (P < 0.05).  相似文献   

16.
The effects of prolonged frozen storage on the starch, rheological, and baking properties of doughs were investigated. Four hard red spring (HRS) wheat cultivars exhibiting consistently different gluten characteristics were used. Gelatinization properties of starches isolated from fresh and thawed frozen doughs over 16 weeks of frozen storage were examined using differential scanning calorimetry (DSC). Significance of results varied with cultivar, but all cultivars showed a significant increase in ΔH with increased frozen storage time, indicating water migration and ice crystallization. The amount of freezable water in frozen doughs increased for all cultivars with frozen storage, but the rate of increase varied. Glupro showed a consistent increase in freezable water during frozen storage (41.6%), which may be associated with its high protein content and strong gluten characteristics. Rheological strength of the frozen doughs which was determined by decreases in extensigraph resistance and storage modulus (G′), declined throughout frozen dough storage. Proofing time increased from 45 min for fresh doughs to an average of 342 min for frozen doughs stored 16 weeks. Concomitantly, loaf volumes decreased from an average of 912 cm3 for fresh doughs to an average of 738 cm3 for the frozen doughs. Longer proof times and greater loaf volume loss were obtained for the cultivars exhibiting greater gluten strength characteristics.  相似文献   

17.
Chemical treatments in wet milling could improve the physico‐chemical properties of starch isolated from high‐tannin sorghums. Sorghums Chirimaugute (medium‐tannin), DC‐75 (high‐tannin), and SV2 (tannin‐free) were steeped in water, dilute HCl (0.9%, v/v), formaldehyde (0.05%, v/v), and NaOH (0.3%, w/v) solutions before wet milling and starch separation. Pasting, textural, and thermal properties of starch were determined. Steeping in NaOH resulted in starches with higher peak viscosity (PV), cool paste viscosity (CPV), and setback than when water, HCl, and formaldehyde were used. The time to PV (Ptime) and PV temperature (Ptemp) were markedly reduced by treatment with NaOH. NaOH could have caused a degree of pregelatinization. HCl treatment gave starches with higher Ptemp and P time, presumably due to delayed granule swelling. Gel hardness was largely determined by the starch amylase content. The low hardness of DC‐75 starch gels was slightly improved in NaOH‐treated grains. Gelatinization temperatures of sorghum starches were generally low, regardless of steeping treatment. Starch from NaOH‐treated grain generally had slightly higher gelatinization temperatures than when water, HCl, or HCHO was used. Chemical treatments during steeping of sorghum grains greatly affected starch properties. Dilute alkali steeping during wet milling could be used to improve properties of starch isolated from tannin‐containing sorghums.  相似文献   

18.
Mineral content, as determined and expressed by ash content, serves as an index of wheat flour quality for flour millers and food manufacturers who prefer flour of low mineral content, even though the significance of mineral content on the functional properties of wheat flour is not well understood. We explored whether minerals have any influence on the functional properties of wheat flour and product quality of white salted noodles. Ash, obtained by incinerating wheat bran, was incorporated into two hard white spring wheat flours and their starches to raise the total ash content to 1, 1.5, or 2%. Pasting properties were determined using a rapid visco analyzer (RVA). Addition of ash increased the peak viscosity of the flours in both water and buffer solution but did not affect the peak viscosity of starch. Wheat flours with added ash showed lower pasting temperature by approximately 10°C in buffer solution. Mineral extracts (15.3% ash) isolated from wheat bran, when added to increase the ash content of wheat flour and starch to 2%, increased the peak viscosity and lowered the pasting temperature of flour by 13.2–16.3% but did not affect the pasting properties of the isolated starch. The mineral premix also increased peak viscosity of wheat flour but not in starch. Added ash increased noodle thickness and lowered water retention of cooked noodles while it exhibited no significant effect on cooked noodle texture as determined using a texture analyzer.  相似文献   

19.
Carboxymethyl rice starches (CMRS) were prepared from nine strains of native rice starches with amylose contents of 14.7–29.1%. The reaction was conducted at 50°C for 120 min using monochloroacetic acid as a reagent under alkaline conditions and 1-propanol as a solvent. After determining the degree of substitution (DS), the physicochemical properties including water solubility, pH, and viscosity of 1% (w/v) solution, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses of the granules, as well as some pharmaceutical properties of CMRS powders and pastes were investigated. The DS range was 0.25–0.40. All CMRS dissolved in unheated water and formed viscous gel. A good positive correlation was observed between amylose content and DS (r = 0.9278) but not viscosity. SEM and XRD concurrently revealed significant physical alteration of CMRS granules compared with those of native starches, which reflected the changes in the properties of CMRS. At 3% (w/w), CMRS can function as tablet binder in the wet granulation of both water-soluble and water-insoluble diluents. The tablets compressed from these granules showed good hardness with fewer capping problems compared with those prepared using the pregelatinized native rice starch as a binder. In addition, most CMRS pastes formed clear films with varying film characteristics, depending upon the amylose content of the native starches. This type of modified rice starch can potentially be employed as a tablet binder and film-former for pharmaceutical dosage formulations.  相似文献   

20.
Starches of wheat, corn, smooth and wrinkled peas, and chickpeas were modified to a free‐flowing powder of granular cold‐water gelling (GCWG) starch using liquid ammonia and ethanol at 23°C and atmospheric pressure. Amylose content of starches was 26.3% in wheat, 27.1% in corn, 35.4% in chickpeas, 43.2% in smooth peas, and 79.9% in wrinkled peas. The modified starches remained in granular form with an increased number of grooves and fissures on the surface of the granules compared with native starch, while the crystallinity was mostly lost, as shown by X‐ray diffractograms and DSC endothermic enthalpies. Pasting viscosity of modified starches at 23°C was 171 BU and 305 BU in wheat and corn, respectively, and much higher in legume starches, ranging from 545 BU to 814 BU. Viscosities of modified legume starches at 23°C were at least twice as high as those of native starches determined at 92.5°C. Swelling power of modified starches at 23°C ranged from 8.7 g/g to 15.3 g/g, while swelling power of native starches heated to 92.5°C ranged from 4.8 g/g to 16.0 g/g. GCWG starches exhibited higher dextrose equivalent (DE) values of enzymatic hydrolysis, ranging from 25.2 to 27.0 compared with native starches (1.5–2.9). Modified starches from wheat, corn, smooth peas, and chickpeas formed weak gels without heat treatment and experienced no changes in gel hardness during storage, while native starch gels formed by heat treatment showed an increase in hardness by 1.1–7.5 N during 96 hr of storage at 4°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号