首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
The effects of amylose content and other starch properties on concentrated starch gel properties were evaluated using 10 wheat cultivars with different amylose content. Starches were isolated from grains of two waxy and eight nonwaxy wheat lines. The amylose content of waxy wheat lines was 1.4–1.7% and that of nonwaxy lines was 18.5–28.6%. Starch gels were prepared from a concentrated starch suspension (30 and 40%). Gelatinized starch was cooled and stored at 5°C for 1, 8, 16, 24, and 48 hr. The rheological properties of starch gels were studied by measuring dynamic viscoelasticity with parallel plate geometry. The low‐amylose starch showed a significantly lower storage shear modulus (G′) than starches with higher amylose content during storage. Waxy starch gel had a higher frequency dependence of G′ and properties clearly different from nonwaxy starches. In 40% starch gels, the starch with lower amylose showed a faster increase in G′ during 48 hr of storage, and waxy starch showed an extremely steep increase in G′. The amylose content and concentration of starch suspension markedly affected starch gel properties.  相似文献   

2.
The gelatinization, pasting, and dynamic rheological parameters of rice starch dispersions from Kaoshiung Sen 7 (KSS7), Taichung Waxy 70 (TCW70), and their blends were examined in relation to total starch concentration (Ct) and the property of starch components. Mixing the rice starches, especially at equivalent ratios, resulted in decreasing onset temperature for gelatinization or developing viscosity and in cold‐paste viscosity, accompanied by a synergistically increased peak viscosity. The logarithmic of storage moduli, G′, for all starch dispersions except the retrograded systems of Ct = 20–30 wt%, showed two linear dependencies on the weight‐average amylose content (AC) of the blends separating at a critical AC of 20 wt% (i.e., TCW70 = 25 wt%). Interestingly, the temperatures at which G′ started to increase drastically maximized on heating, and the exponent n of G′ ∝ Ctn also maximized at the same TCW70 starch concentration Generally, the elasticity of the systems after complete gelatinization and retrogradation followed the isostress models of Takayanagi's blending laws at Ct = 10 wt%, but changed to the intermediates of isostress and isostrain at Ct = 20–30 wt%. The changes in these parameters can be explained by competitive swelling behavior, the strengthening effect of swollen granules, and shear disintegration.  相似文献   

3.
The differences in pasting properties involving gelatinization and retrogradation of rice starches from IR24 and Sinandomeng cultivars during heating‐cooling processes were investigated using a Rapid Visco Analyser (RVA)and a dynamic rheometer. The results were discussed in relation to the molecular structure, actual amylose content (AC), and concentration of the starches. Generally, both starches possessed a comparable AC (≈11 wt%), amylose average chain length (CL), iodine absorption properties, and dynamic rheological parameters on heating to 95°C at 10 wt% and on cooling to 10°C at higher concentrations. In contrast to Sinandomeng, IR24 amylose had a greater proportion of high molecular weight species and number‐average degree of polymerization (DPn). IR24 amylopectin possessed a lower DPn and greater CL, exterior CL (ECL), and interior CL (ICL). Comparing the results of RVA analysis and dynamic rheology, the gelatinization properties and higher retrogradation tendencies of IR24 starch can be related to the structural properties and depend on starch concentration. In addition, the exponent n of starch concentration for storage moduli at 25°C (G25Cn) increased linearly with increasing AC.  相似文献   

4.
Starches were isolated from 12 soft wheat (Triticum aestivum L.) cultivars and were characterized for waxy (Wx) allelic expression, thermal pasting characteristics, and starch granule size. Gels were produced from the thermally degraded starches and were evaluated using large deformation rheological measurements. Data were compared with cultivar kernel texture, milling characteristics, starch chemical analyses, and flour pasting characteristics. Larger flour yields were produced from cultivars that had larger starch granules. Flour yield also was correlated with lower amylose content and greater starch content. Harder starch gels were correlated with higher levels of amylose content and softer kernel texture. The cultivar Fillmore, which had a partial waxy mutation at the B locus, produced the highest peak pasting viscosity and the lowest gel hardness. Softer textured wheats had greater lipid‐complexed amylose and starch phosphorus contents and had less total starch content. Among these wheats of the soft market class, softer textured wheats had larger starch granules and harder textured wheats had smaller starch granules. In part, this may explain why soft wheats vary in texture. The smaller granules have larger surface area available for noncovalent bonding with the endosperm protein matrix and they also may pack more efficiently, producing harder endosperm.  相似文献   

5.
Starch samples isolated from wheat flour that represented four possible waxy states (0, 1, 2, and 3‐gene waxy) were subjected to crushing loads under both dry and wet conditions. Calibrated loads of 0.5–20 kg were applied to the starch samples and the percentage of damaged granules was visually determined. Under dry crushing conditions, starches containing amylose (0, 1, and 2‐gene waxy) had between 1% (5‐kg load) to 3% (15‐ and 20‐kg load) damaged granules, whereas waxy starch (3‐ gene waxy; <1% amylose) began rupturing at 0.5‐kg load (3.5% damaged granules) and had 13% damaged granules when ≥10‐kg load was applied. Under wet crushing conditions, normal and partial waxy starch (0, 1, and 2‐gene waxy) showed little difference in percentage of damaged granules when compared to the results of dry crushing. Waxy starch (3‐gene waxy), however, showed substantially increased numbers of damaged granules: 12% damaged granules at 0.5‐kg load, rising to 55% damaged granules at 15‐kg load. The results indicate that waxy starch granules are less resistant to mechanical damage than normal starch granules. Furthermore, blends of normal and waxy wheats or wheat flours intended to have a particular amylose‐amylopectin ratio will be a complex system with unique processing and formulation considerations and opportunities.  相似文献   

6.
The rheological properties of cooked white salted noodles made from eight wheat cultivars with varied amylose content were analyzed at small and large deformation. Their dynamic shear viscoelasticity was measured using a rheometer with parallel plate geometry. Compressive force and creep‐recovery curves were measured using various probes and sample shapes. Noodles with lower amylose content showed a lower storage shear modulus (G′) and a higher frequency dependence of G′. The G′ values of noodles were highly correlated with amylose content in wheat flour and with G′ values of 30 and 40% starch gels. Remarkable differences in the characteristics of creep‐recovery curves were observed between cultivars. The difference in amylose content in wheat flour reflected the creep‐recovery properties of noodles. A negative correlation was demonstrated between amylose content and both maximum creep and recovery compliance. The compressive force required for 20, 50, 80, and 95% strains was compared. At 20 and 50% strain, noodles made from lower amylose wheat flour showed lower compressive force. Noodles of waxy wheat had a higher compressive force than nonwaxy noodles when the strain was >80%, indicating the waxy wheat noodles are soft but difficult to completely cut through.  相似文献   

7.
Starch and gluten were isolated from 10 wheat cultivars or lines with varied amylose content. The rheological properties of 30% wheat flour gel, starch gel, and the gel of isolated gluten mixed with common starch were determined in dynamic mechanical testing under shear deformation, creep‐recovery, and compression tests under uniaxial compression. Variation of wheat samples measured as storage shear modulus (G′), loss shear modulus (G″), and loss tangent (tan δ = G″/G′) was similar between flour and starch gels and correlated significantly between flour and starch gel. The proportion of acetic acid soluble glutenin exhibited a significant relationship with tan δ of gluten‐starch mixture gel. The small difference in amylose content strongly affected the rheological parameters of flour gels in creep‐recovery measurement. Wheat flour gel with lower amylose content showed higher creep and recovery compliance that corresponded to the trend in starch gel. Compressive force of flour gel at 50 and 95% strain correlated significantly with that of starch gel. Gel mixed with the isolated gluten from waxy wheat lines appeared to have a weaker gel structure in dynamic viscoelasticity, creep‐recovery, and compression tests. Starch properties of were primarily responsible for rheological changes in wheat flour gel.  相似文献   

8.
Differential scanning calorimetry (DSC) was used to study the effect of sucrose on wheat starch glass transition, gelatinization, and retrogradation. As the ratio of sucrose to starch increased from 0.25:1 to 1:1, the glass transition temperature (Tg, Tg′) and ice melting enthalpy (ΔHice) of wheat starch‐sucrose mixtures (with total moistures of 40–60%) were decreased to a range of −7 to −20°C and increased to a range of 29.4 to 413.4 J/g of starch, respectively, in comparison with wheat starch with no sucrose. The Tg′ of the wheat starch‐sucrose mixtures was sensitive to the amount of added sucrose, and detection was possible only under conditions of excess total moisture of >40%. The peak temperature (Tm) and enthalpy value (ΔHG) for gelatinization of starch‐sucrose systems within the total moisture range of 40–60% were increased with increasing sucrose and were greater at lower total moisture levels. The Tg′ of the starch‐sucrose system increased during storage. In particular, the significant shift in Tg′ ranged between 15 and 18°C for a 1:1 starch‐sucrose system (total moisture 50%) after one week of storage at various temperatures (4, 32, and 40°C). At 40% total moisture, samples with sucrose stored at 4, 32, and 40°C for four weeks had higher retrogradation enthalpy (ΔH) values than a sample with no sucrose. At 50 and 60% total moisture, there were small increases in ΔH values at storage temperature of 4°C, whereas recrystallization of samples with sucrose stored at 32 and 40°C decreased. The peak temperature (Tp), peak width (δT), and enthalpy (ΔH) for the retrogradation endotherm of wheat starch‐sucrose systems (1:0.25, 1:0.5, and 1:1) at the same total moisture and storage temperature showed notable differences with the ratio of added sucrose. In addition, Tp increased at the higher storage temperature, while δT increased at the lower storage temperature. This suggests that the recrystallization of the wheat starch‐sucrose system at various storage temperatures can be interpreted in terms of δT and Tp.  相似文献   

9.
The objective of the present work was to study the effect of annealing and concentration of Ca(OH)2 (lime) and calcium salts on the thermal and rheological properties of maize starch during an ecological nixtamalization process. Thermal and rheological properties of maize starch changed during the ecological nixtamalization process because of three main causes: the annealing phenomenon, type of calcium salt, and calcium salt concentration. In all treatments thermal properties (To, Tp, and Tf) of nixtamal starch increased owing to the annealing process, whereas the type of salt or lime increased thermal properties and decreased pasting properties in this order: CaCl2 > CaSO4 > Ca(OH)2 ≈ CaCO3. This behavior was because of the dissociation of each salt or lime in water. Anions (OH) can penetrate much more easily into the starch granule and start the gelatinization process by rupturing hydrogen bonds. Additionally, amylose‐lipid complexes were formed during the nixtamalization processes, as indicated by an increasing peak at 4.5 Å in X‐ray diffraction patterns.  相似文献   

10.
Seven wheat cultivars with different starch contents were used as materials to investigate the distribution of grain starch granule size under irrigated and rainfed conditions. In mature grains, the diameter of starch granules was 0.37–52.6 μm, and the percent volume distribution showed a two‐peak curve with the mean particle diameter of 5 (B‐type) and 25 μm (A‐type) at each peak. The volume percentages of A‐ and B‐types were 52.7–65.5% and 34.5–47.3%, respectively. A two‐peak curve is also shown in percent surface area distribution of starch granules, but only one peak in percent number. Both irrigated and rainfed conditions had a significant effect on the starch granule size distribution of the seven cultivars. As compared with irrigated treatment, rainfed treatment affected the distribution of starch granules in grains of all cultivars through increasing the volume percentage and surface area percentage of 2–9.8 and <9.8 μm starch granules and decreasing those of >9.8 and >18.8 μm starch granules. The soil water deficit also decreased the contents of amylose and starch in grains and increased protein content, indicating that different water regimes had an evident effect on grain quality. According to correlation coefficients (r), the contents of amylose, starch, and protein in grains was significantly correlated with the volume percentage of starch granules with different diameter ranges.  相似文献   

11.
The physicochemical properties of small‐ and large‐granule wheat starches were investigated to reveal whether gelatinization properties and rheological behavior differ between size classes of wheat starch. All samples contained 60% water (w/w, wb). The starch granule size and shape were examined by scanning electron microscopy in the separated A‐ and B‐type granule populations and in the whole wheat starch granule population. Differential scanning calorimetry (DSC) and electron spin resonance (ESR) analyses were performed in parallel with rheological measurements using dynamic mechanical thermal analysis (DMTA) to relate the viscoelastic changes to modifications in dynamic properties of aqueous solutions and structural disorganization of starch. The small (B‐type) granules had slightly higher gelatinization temperature and lower gelatinization enthalpy than did the large (A‐type) granules. Also, B‐type granules had higher enthalpy for the amylose‐lipid complex transition. Moreover, our results suggested that small granules have higher affinity for water at room temperature. It seems that there is a less ordered arrangement of the polysaccharide chains in the smaller granules when compared with the larger ones. These differences in functional properties of small and large granules suggested that the granule size distribution is an important parameter in the baking process.  相似文献   

12.
Eight soft spring wheat (Triticum aestivum L.) genotypes representing the four granule bound starch synthase I (GBSSI) classes were evaluated with respect to flour/starch characteristics and pasting behaviors. Native starch was isolated from genotype straight‐grade flours (94.8–98.1% of starch recovered) to approximate the starch populations of the parent flours. As anticipated, amylose characteristics varied among the genotypes according to GBSSI class and accounted for the primary compositional difference between genotypes. Total (TAM), apparent (AAM), and lipid‐complexed (LAM) amylose contents ranged from 1.0–25.5 g, 0.7–20.4 g, and 0.3–5.6 g/100 g of native starch, respectively, and gradually decreased with the progressive loss of active Wx alleles. In addition, genotype flour total starch (FTS) and A‐type starch granule contents, which ranged from 81.7–87.6 g/100 g of flour (db) and 61.6–76.8 g/100 g of native starch (db), respectively, generally decreased with an increase in waxy character in parallel with amylose characteristics, as likely secondary effects of Wx gene dosage. Though amylose characteristics predominantly accounted for the majority of genotype flour pasting properties, FTS content and ratios of A‐ to B‐type granules also exhibited significant influence. Thus, loss of one or more Wx genes appeared to induce measurable secondary effects on starch characteristics and properties.  相似文献   

13.
Starch granule composition and amylopectin structure affect starch digestibility, an important factor influencing wheat grain utilization for human food consumption. Six bread wheat cultivars with four belonging to the Canada Western Red Spring (CWRS) and two Canada Prairie Spring Red (CPSR) market classes were analyzed for the relationship between their grain constituents and in vitro enzymatic hydrolysis of starch. CPSR cultivars had higher starch and amylose concentrations compared with CWRS cultivars, which had a higher protein concentration. Starch granule size distribution did not differ among the genotypes, except AC Foremost, which had significantly (P < 0.05) higher volume percent of B‐type starch granules (≈15%) and lower volume percent of A‐type starch granules (≈9%) compared with other cultivars. Fluorophore‐assisted capillary electrophoresis revealed a lower content of R‐IV (DP 15–18, ≈6%) and a higher content of R‐VII (DP 37–45, ≈7%) chains in the CPSR cultivars compared with the CWRS cultivars. Starch in vitro enzymatic hydrolysis showed that compared with CWRS cultivars, the two CPSR cultivars had reduced amounts of readily digestible starch and higher amounts of slowly digestible starch and resistant starch. Consequently, the two CPSR cultivars also showed lower hydrolysis indexes in grain meal as well as extracted starch. CPSR cultivars, with higher starch and amylose concentrations, as well as a higher content of long chains of amylopectin, showed a reduced starch in vitro enzymatic hydrolysis rate.  相似文献   

14.
We evaluated the qualitative and quantitative effects of wheat starch on sponge cake (SC) baking quality. Twenty wheat flours, including soft white and club wheat of normal, partial waxy, and waxy endosperm, as well as hard wheat, were tested for amylose content, pasting properties, and SC baking quality. Starches isolated from wheat flours of normal, single‐null partial waxy, double‐null partial waxy, and waxy endosperm were also tested for pasting properties and baked into SC. Double‐null partial waxy and waxy wheat flours produced SC with volume of 828–895 mL, whereas volume of SC baked from normal and single‐null partial waxy wheat flours ranged from 1,093 to 1,335 mL. The amylose content of soft white and club wheat flour was positively related to the volume of SC (r = 0.790, P < 0.001). Pasting temperature, peak viscosity, final viscosity, breakdown, and setback also showed significant relationships with SC volume. Normal and waxy starch blends having amylose contents of 25, 20, 15, and 10% produced SCs with volume of 1,570, 1,435, 1,385, and 1,185 mL, respectively. At least 70 g of starch or at least 75% starch in 100 g of starch–gluten blend in replacement of 100 g of wheat flour in the SC baking formula was needed to produce SC having the maximum volume potential. Starch properties including amylose content and pasting properties as well as proportion of starch evidently play significant roles in SC baking quality of wheat flour.  相似文献   

15.
Physical properties of resistant starch (RS) were examined in a range of barley genotypes to determine the contribution of starch and seed physical characteristics to the RS component. Thirty‐three barley genotypes were studied, which varied significantly in their RS, amylose, and starch contents and grain yield. From 33 genotypes, 13 exhibiting high RS were selected for detailed physicochemical analysis of starch. In high‐RS varieties, granule size and number were unimodal, compared with normal starches from a reference genotype, which showed a bimodal distribution. Principal component analysis (PCA) showed that a higher content of granules <15 µm was positively correlated with RS and amylose content, whereas the proportion of granules 15–45 µm was negatively correlated with the RS and amylose contents. Physical fractionation of starches by centrifugation into different population sizes demonstrated that size alone is not an accurate indicator of the population of A‐type and B‐type granules within a given genotype. PCA also showed that large 15–45 µm granules were positively correlated with seed thickness and that thousand grain weight was positively correlated with seed width. High‐RS and high‐amylose genotypes showed variation in overall yield and starch content, with some genotypes showing yield comparable to the reference genotype. Analysis of amylopectin chain length distribution showed that high amylose or RS content was not associated with a higher proportion of amylopectin long chains when compared with either waxy or reference (normal) barley genotypes. This study highlights useful markers for screening barley genotypes with favorable starch characteristics.  相似文献   

16.
In the previous study, we investigated effect of physical state of nonpolar lipids of gluten‐starch model dough. This experiment examined a real wheat flour dough system to assess the role of fat crystals in the breadmaking processes. These experiments were performed with a baking test and an investigation of wheat flour dough through rheological measurements (both large and small deformations), scanning electron microscopy, and ultracentrifugation. As a result, we found that the added oil was absorbed in the gluten structure, causing the aggregation of the gluten, which gave rise to more elastic behavior. In contrast, solid fat seemed to be distributed uniformly between the starch granules in the dough, reducing the friction between the starch granules and facilitating thin gluten gel layers. These properties lead to the lower G′ value and the increased viscous behavior, which yields an increase in loaf volume. In addition, the supposed mechanism behind the large loaf volume described in the previous study was that fat provides a uniform distribution of the dough components, and that the dough can thus expand easily, resulting in a larger loaf volume, which was supported in the wheat flour dough system. In conclusion, we found that thin, expandable gluten films and the uniform dispersion of gluten and starch granules in the dough are prerequisites for attaining better baking performance.  相似文献   

17.
The ability of rice starch to complex with ligands of various polarities was studied to examine the mechanism of complex formation in an aqueous solution. Differential scanning calorimetry (DSC) showed that TNuS19 rice starch (27.9% amylose) formed inclusion complexes with all 12-C complexing agents. The onset melting temperatures (To) of the complexes were ≈93–96°C. The saturation concentrations of added ligands with high polarity, lauric acid (LA), and lauryl alcohol (LOH), had a range of 2–4% (w/w) of the starch, and both of the corresponding melting enthalpies (ΔH) were ≈3.0 J/g. In contrast, the saturation concentrations of ligands with low polarity, methyl laurate (ML) and dodecane (DO), were ≈1–2% (w/w), and the ΔH were 1.87 and 1.80 J/g, respectively. This implied that solubility of ligands had a significant effect on the extent of complexation. The To and ΔH increased with an increase of annealing time at 85°C, and the optima for the partially reversible complex formation were 2 hr of annealing in all cases. When measured by a dynamic rheometer, the TNuS19 rice starch gel with added LA or LOH showed a higher storage modulus (G′) than that with no complexing agent added during heating. The G′ and tan δ of the complexed gel were further increased during 12 hr of storage. The increase of G′ indicated that the elastic structure of the concentrated rice starch gels could be improved by complex formation and annealing, whereas the increase of tan δ suggested incompatibility of starch components during storage.  相似文献   

18.
Rapid Visco Analyser (RVA) and dynamic rheological measurements were performed on a mixture of decolorized hsian‐tsao leaf gum (dHG) and starch as a function of starch‐to‐gum ratio (S/G 0:6, 1:5, 2:4, 3:3, 4:2, 5:1, and 6:0), starch type (wheat, corn, and tapioca), and total solid content (2, 3, and 4%). Under S/G of 5:1, 4:2 and 3:3, dHG interacted with starch synergistically, which resulted in a marked increase in viscosity during cooling. The storage modulus of the resulting mixed gel was higher than the loss modulus, and both moduli were almost frequency‐independent throughout the frequency range tested, indicating that the composite gels could be classified rheologically as elastic gels. Mixed systems with tapioca starch showed higher pseudo‐gel viscosity in the RVA test, but lower storage modulus in the dynamic test than those with wheat or corn starch. Such results implied that tapioca starch contributed a more viscous property but wheat and corn starch contributed a more elastic property to the mixed systems.  相似文献   

19.
Starch was extracted and cleaned from 99 accessions of 20 species of Aegilops and also from 200 accessions of hexaploid wheat. Amylose content was determined by iodine staining and absorbance at 535 and 620 nm. Particle‐size distribution was determined by laser scattering. The amylose content of the Aegilops accessions did not exceed the extremes found in domesticated wheat. Aegilops species, on the whole, had a lower content of small particles than the hexaploid wheats. There was no correlation between amylose content and particle‐size distribution. Some species of Aegilops may be useful sources of low‐starch B‐type granules for hexaploid wheat, if the trait can be transferred, but they are unlikely to contribute to further variation in amylose content.  相似文献   

20.
Ten parent corn lines, including four mutants (dull sugary2, amylose‐extender sugary2, amylose‐extender dull, and an amylose‐extender with introgressed Guatemalen germplasm [GUAT ae]) and six lines with introgressed exotic germplasm backgrounds, were crossed with each other to create 20 progeny crosses to increase resistant starch (RS) as a dietary fiber in corn starch and to provide materials for thermal evaluation. The resistant starch 2 (RS2) values from the 10 parent lines were 18.3–52.2% and the values from the 20 progeny crosses were 16.6–34.0%. The %RS2 of parents was not additive in the offspring but greater RS2 in parents was correlated to greater RS2 in the progeny crosses (r = 0.63). Differential scanning calorimetry (DSC) measured starch thermal characteristics, revealing positive correlations of peak gelatinization temperature and change in enthalpy with %RS2 (r = 0.65 and r = 0.67, P ≤ 0.05); however, % retrogradation (a measure of RS3) and retrogradation parameters did not correlate with %RS2. The %RS2 and onset temperature increased with the addition of the ae gene, likely because RS delays gelatinization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号