首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was conducted to develop a ready‐to‐eat extruded food using a single‐screw laboratory extruder. Blends of Indian barley and rice were used as the ingredients for extrusion. The effect of extrusion variables and barley‐to‐rice ratio on properties like expansion ratio, bulk density, water absorption index, hardness, β‐glucan, L*, a*, b* values, and pasting characteristics of extruded products were studied. A central composite rotatable design was used to evaluate the effects of operating variables: die temperature (150–200°C), initial feed moisture content (20–40%), screw speed (90–110 rpm), and barley flour (10–30%) on properties like expansion ratio, bulk density, water absorption index (WAI), hardness, β‐glucan, L*, a*, b* values, and sensory and pasting characteristics of extruded products. Die temperature >175°C and feed moisture <30% resulted in a steep increase in expansion ratio and a decrease in bulk density. Barley flour content of 10% and feed moisture content of <20% resulted in an increased hardness value. When barley flour content was 30–40% and feed moisture content was <20%, a steep increase in the WAI was noticed. Viscosity values of extruded products were far less than those of corresponding unprocessed counterparts as evaluated. Rapid visco analysis indicated that the extruded blend starches were partially pregelatinized as a result of the extrusion process. Sensory scores indicated that barley flour content at 20%, feed moisture content at 30%, and die temperature at 175°C resulted in an acceptable product. The prepared product was roasted in oil using a particular spice mix and its sensory and nutritional properties were studied.  相似文献   

2.
The effects of moisture, screw speed, and barrel temperature on pasting behavior of refabricated rice grains were investigated in a corotating twin‐screw extruder with response surface methodology. The rice flour obtained from broken rice (≤1/8 of actual kernel size) of PR‐116 variety was used in the study. The screw speed was set at five levels between 49 and 150 rpm, barrel temperature between 59 and 110°C, and feed moisture between 31 and 45%. All pasting properties of refabricated grains evaluated—peak viscosity, hold viscosity, breakdown viscosity, final viscosity, and setback viscosity—were significantly (P < 0.01) affected by the three process variables. Barrel temperature was the most significant variable, with quadratic effect on all viscosity parameters. Response surface regression models were established to correlate the viscosity profile of refabricated rice grains to the process variables. The optimum moisture content, screw speed, and barrel temperature estimated by a response surface of desirability function for the production of refabricated rice were 36%, 130 rpm, and 89.5°C, respectively. Scanning electron microscopy also revealed that intermediate moisture and temperature along with high screw speed during extrusion could create a more realistic appearance of refabricated rice with less rupture of starch granules.  相似文献   

3.
Wheat flour with 0.3% (w/w) thiamin was extruded on a twin‐screw laboratory‐scale extruder (19‐mm barrel) at lower temperatures and expanded using carbon dioxide (CO2) gas at 150 psi. Extrusion conditions were die temperature of 80°C and screw speed range of 300–400 rpm. Control samples were extruded at a die temperature of 150°C and screw speed range of 200–300 rpm. Dough moisture content was 22% in control samples and 22 and 25% in CO2 samples. Expansion ratio, bulk density, WAI, and %WSI were compared between control and treatment. CO2 injection did not significantly increase expansion ratio. Bulk densities in the CO2 extruded samples decreased when feed moisture decreased from 25 to 22%. The products using CO2 had lower WAI values than products puffed without CO2 at higher temperatures. The mean residence time was longer in CO2 screw configurations than in conventional screw configurations. Thiamin losses were 10–16% in the control samples. With CO2, thiamin losses were 3–11% at 22% feed moisture, compared with losses of 24–34% at 25% moisture. Unlike typical high‐temperature extrusion, thiamin loss in the low‐temperature samples decreased with increasing screw speed. Results indicate that thiamin loss at lower extrusion temperatures with CO2 injection is highly dependent on moisture content.  相似文献   

4.
《Cereal Chemistry》2017,94(5):811-819
This study systematically examined hydrothermal effects of antioxidant substances, such as total phenolic (TPC), flavonoid (TFC), and proanthocyanidin (TPAC) contents, cyanidin‐3‐O‐glucoside (C3G), peonidin‐3‐O‐glucoside (P3G), α‐, γ‐, and δ‐tocopherols, and α‐, γ‐, and δ‐tocotrienols, as well as antioxidant activities, color parameters, and soluble sugar compositions in red and black rice. It showed that color differences (ΔE ) of black rice were higher than those of red rice caused by boiling. The processed red and black rice exhibited significantly (P < 0.05) lower TPC, TFC, TPAC, C3G, P3G, and antioxidant activities compared with the raw rice except bound TPC and bound antioxidant activity. Interestingly, soluble free p‐coumaric and ferulic acids had higher contents in cooked red rice, and soluble free protocatechuic, vanillic, and sinapic acids had higher contents in cooked black rice. Boiling caused significant decreases of soluble conjugated phenolic acids and significant increases of insoluble bound phenolic acids in both red and black rice. Increases of total free tocol, glucose, and fructose contents were observed in most red and black rice. To increase the contents of some soluble free and insoluble bound phenolic acids, free vitamin E, and monosaccharides in red and black rice, boiled rice might be a good choice.  相似文献   

5.
Whole rice contains several fat‐soluble phytochemicals such as tocopherols, tocotrienols, and γ‐oryzanol which have been reported to possess beneficial health properties. This study was conducted to determine whether brown rice belonging to indica and japonica subspecies were distinguishable from each other regarding the concentration of these compounds by analyzing 32 genotypes. The fat‐soluble compounds were analyzed by normal‐phase HPLC in a single run. The variability of the compounds analyzed was high, but the mean content of γ‐oryzanol across all samples was significantly higher (P < 0.01) in japonica (246.3 mg/kg) than in indica rice (190.1 mg/kg). Similar differences were found for total vitamin E contents which were 24.2 mg/kg in japonica and 17.1 mg/kg in indica rice, respectively. In japonica rice, α‐tocopherol, α‐tocotrienol, and γ‐tocotrienol were the most abundant homologs, while in indica rice the most abundant were γ‐tocotrienol, α‐tocopherol, and α‐tocotrienol. A significant Pearson coefficient (0.80, P < 0.001) between α‐tocopherol and α‐tocotrienol levels was found, independent of the subspecies. Both compounds were positively correlated to total tocols and γ‐oryzanol contents. Although more studies are needed to evaluate the interference of growing rice in different environments and multiple years, the present study provided information on natural variations of the vitamin E isomers and the γ‐oryzanol contents in different rice genotypes.  相似文献   

6.
We have modeled a rice extrusion process focusing specifically on the starch gelatinization and water solubility index (WSI) as a function of extrusion system and process parameters. Using a twin‐screw extruder, we examined in detail the effect of screw speed (350–580 rpm), barrel temperature, different screw configurations, and moisture content of rice flour on both extrusion system parameters (product temperature, specific mechanical energy [SME], and residence time distribution [RTD]) and extrudate characteristics (expansion, density, WSI, and water absorption index [WAI]). Changes in WSI were monitored to reveal a relationship between the reaction kinetics during extrusion and WSI. Reaction kinetics models were developed to predict WSI during extrusion. WSI followed a pseudo first‐order reaction kinetics model. It became apparent that the rate constant is a function of both temperature and SME. We have developed an adaptation of the kinetic model based on the Arrhenius equation that shows better correlations with SME and distinguishes data from different screw configurations. This adaptation of the model improved predictability of WSI, thereby linking the extrusion conditions with the extruded product properties.  相似文献   

7.
Effects of particle size (50–1,622 μm), screw speed (200–400 rpm), and feed moisture content (19–22%) on twin-screw extrusion of corn meal were investigated using a full-factorial design. Torque, specific mechanical energy, and product temperature generally showed no change within the commonly used particle-size range (100–1,000 μm), but each value dropped significantly as the particle size increased >1,000 μm. Die pressure was influenced by the three-way interaction of particle size, screw speed, and feed moisture content. The highest moisture level (22%), largest particle size (1,622 μm), and two lowest screw speeds (200 and 300 rpm) were the only conditions where the starch was <97.5% of transformation (gelatinization). Consequently, these two conditions also showed the least expansion and hardest product.  相似文献   

8.
Mean residence time of rice flour in a twin‐screw extruder was determined using a blue tracer. Variables studied included moisture content, screw speed, barrel temperature, and screw configuration. Mean residence time increased with the increase of the barrel temperature and with the addition of reverse and kneading elements. Mean residence time was significantly related to screw speed, moisture content, die pressure, and screw configuration (P < 0.05). An empirical model was developed to predict mean residence time with the ability to reflect the changes of the barrel temperature and screw configuration. The effects of different extrusion operating conditions including screw speed, moisture content, barrel temperature, and screw geometry on the mean residence time were considered in the model. The validity of the developed model was extensively evaluated and verified using different screw geometries and other processing variables. The mean residence times predicted by the developed model are in good agreement with the experimental data.  相似文献   

9.
Waxy wheat flour was analyzed for its thermal and rheological properties and was extruded to evaluate its potential for extruded products. Normal soft white wheat flour was analyzed with the same methods and same extrusion conditions to directly compare differences between the two types of flour. Through DSC analysis, waxy wheat flour was found to have a higher gelatinization peak temperature of 66.4°C than normal wheat at 64.0°C, although the transition required 2.00 J/g less energy. Rapid visco‐analysis indicated that the waxy wheat flour pasted much more quickly and at lower temperatures than the normal wheat flour. Preliminary extrusion experiments were conducted to determine the optimal screw profile for waxy wheat with respect to maximum radial expansion. The optimum screw profile was used for extrusion trials with varying flour moisture (15–25% wb) and extruder screw speed (200–400 rpm) while monitoring process conditions including back pressure and specific mechanical energy. Physical properties of the extrudates were then studied. The radial expansion ratios of the waxy wheat extrudates exceeded those of the normal wheat extrudates by nearly twice as much, and it was observed that the waxy wheat flour took less energy in the form of fewer shear screw elements to expand. The waxy wheat extrudates also exhibited significantly higher water solubility and less water absorption than the normal wheat extrudates owing to solubilizing of the extrudates. The results of our study indicate that waxy wheat flour may be a viable ingredient for creating direct expanded products with less energy.  相似文献   

10.
Z. Pan  S. Zhang  J. Jane 《Cereal Chemistry》1998,75(4):541-546
The effects of extrusion variables (moisture, screw speed, and temperature) and chemicals (urea and sodium bicarbonate) on the properties of starch-based binders (water absorption, bulk density, binder yield, expansion ratio, solubility, pH) and processing conditions (die temperature and pressure, feed rate, and specific mechanical energy) were studied using a central composite design. All quadratic regression models, except the models for bulk density and pH, were significant at the P ≤ 0.06 level. These models can predict the binder properties and processing conditions when extrusion variables and the chemical concentrations are known. Optimum combinations of the chemical concentrations (g/100 g of starch) and extrusion variables to achieve high water absorption in the binders were 15–20 g of urea /100 g of starch, 0–4 g of sodium bicarbonate/100 g of starch, 35–40 g of moisture/100 g of starch, 100–120 rpm screw speed, and 185–215°C barrel temperature. The molecular degradation of the starch occurred during extrusion, especially when the moisture content of starch was <30 g/100 g of starch.  相似文献   

11.
Antibodies specific for wheat proteins were used to identify protein fractions modified during extrusion of Hard Red Spring wheat flour (14% protein) under four different combinations of extrusion conditions (18 and 24% feed moisture and 145 and 175°C die temperature). Antibody binding was assessed on immunoblots of proteins extracted from flour and extrudates separated by SDS‐PAGE. Antibodies to high molecular weight glutenin subunits (HMW‐GS) and to B‐group low molecular weight glutenin subunits (LMW‐GS) recognized intact subunits from both flour and extrudates. Antibodies to C‐group LMW‐GS had diminished binding to extruded proteins. Glutenin‐specific antibodies also recognized protein in the extrudates migrating as a smear at molecular weights higher than intact subunits, indicating cross‐linked proteins. Antibodies recognized albumins or globulins in flour but not in extrudates, evidence that these fractions undergo significant modification during extrusion. Acid‐PAGE and antibody reaction of gliadins extracted in 1M urea and in 70% ethanol revealed total loss of cysteine‐containing α, β, γ‐gliadins but no obvious effects on sulfur‐poor ω‐gliadins, suggesting gliadin modification involves replacing intramolecular disulfides with intermolecular disulfide cross‐links. Identifying protein fractions modified during different extrusion conditions may provide new options for tailoring extrusion to achieve specific textural characteristics.  相似文献   

12.
《Cereal Chemistry》2017,94(3):385-391
Extrusion expansion characteristics of commercially available whole flours from three green pea varieties (Ariel, Aragorn, and Daytona) and three yellow pea varieties (Carousel, Treasure, and Jetset) were investigated with a corotating twin‐screw extruder. Feed moisture content was kept constant at 15 ± 0.5% (wb). Two barrel temperature levels of 140 and 160°C and three screw speed levels of 150, 200, and 250 rpm were studied. A round die with an opening of 3 mm was used. The radial expansion ratio (ER) of whole pea extrudates was 2.75–3.34. It was shown that the varieties had a significant impact on the expansion properties. Daytona green pea had a significantly greater ER compared with all other varieties (P < 0.05) within the conditions studied. ER was also found to have a positive linear correlation with screw speed. The microstructure of extrudate cross‐sections showed that the samples with greater expansion had more uniform and relatively small pore structure. The results show the importance of using the specific varieties of peas for optimum expansion during extrusion.  相似文献   

13.
Three isocaloric (3.5 kcal/g) ingredient blends containing 20, 30, and 40% (wb) distillers dried grains with solubles (DDGS) along with soy flour, corn flour, fish meal, and mineral and vitamin mix, with net protein adjusted to 28% (wb) for all blends, were extruded in a single‐screw laboratory‐scale extruder at screw speeds of 100, 130, and 160 rpm, and 15, 20, and 25% (wb) moisture content. Increasing DDGS content from 20 to 40% resulted in a 37.1, 3.1, and 8.4% decrease in extrudate durability, specific gravity, and porosity, respectively, but a 7.5% increase in bulk density. Increasing screw speed from 100 to 160 rpm resulted in a 20.3 and 8.8% increase in durability and porosity, respectively, but a 12.9% decrease in bulk density. On the other hand, increasing the moisture content from 15 to 25% (wb) resulted in a 28.2% increase in durability, but an 8.3 and 8.5% decrease in specific gravity and porosity, respectively. Furthermore, increasing the screw speed and moisture content of the blends, respectively, resulted in an increase of 29.9 and 16.6% in extruder throughput. The extrudates containing 40% DDGS had 8.7% lower brightness, as well as 20.9 and 16.9% higher redness and yellowness, compared with the extrudates containing only 20% DDGS. Increasing the DDGS content from 20 to 40% resulted in a 52.9 and 51.4% increase in fiber and fat content, respectively, and a 7.2% decrease in nitrogen free extract. As demonstrated in this study, ingredient moisture content and screw speed are critical considerations when producing extrudates with ingredient blends containing DDGS, as they are with any other ingredients.  相似文献   

14.
The oil absorption characteristics of a multigrain extruded and fried snack product were studied as a function of extruder screw speed and cooking temperature using a central composite response surface methodology (RSM). The extruded product was produced using a corotating twin screw extruder, dehydrated to a uniform moisture content, and subsequently deep‐fat‐fried at 192 ± 1°C for 10–40 sec to complete expansion. Significant RSM models were developed for oil absorption and extrudate water absorption index (WAI). According to the lowest oil model, absorption (19.9%) was obtained with an extruder screw speed of 218.6 rpm and a cooking temperature of 117.8°C. WAI reached a maximum at a screw speed of 221.9 rpm and a cooking temperature of 109°C. Oil absorption characteristics and extrudate WAI were significantly correlated (r= ‐0.84, P = 0.0002). The data suggest that extrusion conditions can be optimized to influence the physicochemical structures in the extrudate matrix so that oil absorption can be minimized.  相似文献   

15.
Rice bran contains phytochemicals such as E vitamers (i.e., tocopherols and tocotrienols) and the γoryzanol fraction that reportedly may have positive effects on human health. Brown rice, rice bran, and rice bran extracts are therefore attractive candidates for use in the development of functional foods. The objectives of this project were to quantify the effects of genetics versus environment on the tocopherol, tocotrienol, and γ‐oryzanol contents of Southern U.S. rice and to determine associations between the levels of these phytochemicals. Seven rice cultivars grown in four states during two years were studied. Averaged across all samples, the content of α‐tocotrienol > γ‐tocotrienol > α‐tocopherol > gamma;‐tocopherol, and the tocopherols and tocotrienols were 27.5 and 72.5% of the total E vitamer content, respectively. Total E vitamer content ranged from 179 to 389 mg/kg and γ‐oryzanol from 2,510 to 6,864 mg/kg. A low correlation between total E vitamer and γ‐oryzanol contents suggests that to obtain rice bran with high levels of both of these fractions, new cultivars would need to be produced using hybridization and selection. In general, growing environment had a greater effect on E vitamer and γ‐oryzanol levels than did genotype. Therefore, rice breeders selecting genotypes with optimized levels of E vitamers and γ‐oryzanol will need to grow their breeding material in multiple years and locations.  相似文献   

16.
《Cereal Chemistry》2017,94(1):74-81
In Brazil, rice (Oryza sativa L.) and beans (Phaseolus vulgaris L.) are the basis of the population's diet, and their consumption together is a good strategy to improve protein biological value. The aim of this study was to produce extruded products with whole red bean (WRBF) and polished rice (PRF) flours and to evaluate the effects of extrusion temperature (T) and feed moisture content (FM) on technological properties and total phenolic compounds content. The extrudates were elaborated in a twin‐screw extruder following a 22 central composite rotatable design with FM (15–23%) and T (120–160°C) as independent variables. WRBF and PRF were used at a 1:3 ratio. Amino acid content and profile were evaluated in the optimum extrudate (produced at FM = 19% and T = 140°C). The total phenolic content identified in extruded products was provided by the red bean seed coat, and its quantification suggested the release of bound phenolics with the extrusion process (not temperature dependent). The extrusion of PRF and WRBF, in combination, produced extruded products of high protein quality, being complete in essential amino acids for the diets of people at least 48 months old. The results indicate that legume flours such as WRBF incorporated into rice flour can cause a positive impact on technological, nutritional, and functional quality of extrudates.  相似文献   

17.
Precooked pinto, navy, red, and black bean flours were extruded at different screw speeds (320, 380, and 440 rpm) with a twin‐screw extruder. Effect of speed on physical properties and in vitro starch hydrolysis was investigated. Increasing screw speeds reduced water activity, expansion index, and texture. Extrudates could not be obtained from pinto bean flour at 440 rpm because of the high shear effect. Water absorption index and water solubility index were not significantly affected by screw speed but were significantly higher than for unextruded precooked flour. A significant change in color was observed in navy beans, characterized by increasing b values on the Hunter color scale. Resistant starch ranged from 3.65 to 4.83% db and was not significantly affected by screw speed. Glycemic index of all extrudates was high, ranging from 81.3 to 86.9.  相似文献   

18.
Rice hulls were pretreated with an alkaline (pH 11.5) solution of hydrogen peroxide (1%) and then extruded. Pretreatment of rice hulls (4% db) at 50°C for 12 hr promoted 94.4% silica reduction, caused lignin solubilization and increased water absorption index (54%) and swollen volume (44%). The effects of temperature (125, 175, and 225°C), moisture content (25, 30, and 35%) and screw speed (120, 140, and 160 rpm) on water absorption and swollen volume of rice hulls fiber were evaluated after extrusion in a single-screw extruder. Operational conditions that produced the most modified product with regard to the functional properties were: 125°C, 35% moisture, and 120 rpm. Extruded fiber had a water absorption index 95% higher and swollen volume 138% higher than the unprocessed material. Microscopic examination showed a slight effect on the hulls epidermis after pretreatment, while extrusion promoted cellular structure disruption.  相似文献   

19.
The conventional Landry‐Moureaux method for selective extraction of maize proteins was modified by reducing the contact time of meal with extractants and by removing 55% 2‐propanol as extractant. The new procedure, coupled with a method for quantitating protein at microgram level, was used for assessing the nitrogen distribution of four soluble protein fractions present in 100‐mg samples of endosperm originating from six maize inbreds and opaque‐2 versions. Proteins extracted with 55% 2‐propanol plus reductant were made up of α‐, β‐, γ‐, and δ‐zeins. Proteins extracted subsequently with salt plus reductant were minor and poor in lysine (1 mol%).They were associated with zeins. Comparison of present data with those available in the literature showed a close similarity for a given genotype between the percentage of total α‐amino nitrogen extracted by 2‐propanol plus reductant than by salt plus reductant under conditions of the modified procedure and that of total Kjeldhal nitrogen extracted by 2‐propanol with and without reductant, and by salt plus reductant, using the conventional procedure. A simplified protocol was described and tested for isolating and quantitating α‐amino nitrogen as nonprotein, true protein, salt‐soluble proteins, zeins, and true glutelins in any sample of maize endosperm.  相似文献   

20.
挤压加工参数对重组米生产过程及产品膨胀度的影响   总被引:3,自引:1,他引:2  
为了考察重组米生产过程中挤压加工变量对几种系统参数与产品膨胀度的影响,试验以杂交籼米(9?718品种)为原料,利用响应面模型,以螺杆转速、进料速度、进料含水率以及末端机筒温度为输入变量,以挤压系统参数(物料温度、模头压强、扭矩、比机械能和产品含水率)和重组米膨胀度为响应变量,探索在重组米生产过程中加工变量与系统参数及产品膨胀度的关系。结果表明,压强、比机械能和产品膨胀度都受到4个挤压变量的显著影响,但是物料温度受进料速度影响不显著,马达扭矩受末端机筒温度影响不显著,产品含水率仅受进料含水率的显著影响。比机械能与螺杆转速正相关,与进料速度、进料含水率和末端机筒温度负相关。所得二次回归模型均拟合良好,建立的挤压数学模型可应用于重组米生产,为重组米工业化生产的过程预测和产品性质预测提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号