首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules.  相似文献   

2.
An automated single kernel near‐infrared (NIR) sorting system was used to separate single wheat (Triticum aestivum L.) kernels with amylose‐free (waxy) starch from reduced‐amylose (partial waxy) or wild‐type wheat kernels. Waxy kernels of hexaploid wheat are null for the granule‐bound starch synthase alleles at all three Wx gene loci; partial waxy kernels have at least one null and one functional allele. Wild‐type kernels have three functional alleles. Our results demonstrate that automated single kernel NIR technology can be used to select waxy kernels from segregating breeding lines or to purify advanced breeding lines for the low‐amylose kernel trait. Calibrations based on either amylose content or the waxy trait performed similarly. Also, a calibration developed using the amylose content of waxy, partial waxy, and wild‐type durum (T. turgidum L. var durum) wheat enabled adequate sorting for hard red winter and hard red spring wheat with no modifications. Regression coefficients indicated that absorption by starch in the NIR region contributed to the classification models. Single kernel NIR technology offers significant benefits to breeding programs that are developing wheat with amylose‐free starches.  相似文献   

3.
Starch suspensions (0.25%) were gelatinized to 70 and 100°C, and starch ghosts (defined as gelatinized starch granule envelopes after the majority of internal starch polymers have been released) and remnants were collected by centrifugation and washed with water. Protein was revealed in isolated gelatinized normal starch ghosts using confocal laser scanning microscopy and a protein‐specific dye that fluoresces only after reaction with primary amines in protein. This technique eliminates background interference from residual dye. Observation of fluorescent‐labeled protein in the starch ghosts at different optical depths of field revealed that protein was concentrated in the envelopes of swollen, gelatinized potato, maize, and wheat starch ghosts. Only traces of protein were found in gelatinized starch granule remnants of waxy maize and amylose‐free potato starches after they were heated to 100°C, indicating that the proteins observed in gelatinized normal maize starch were largely granule‐bound starch synthase (GBSS). Moreover, fragility of the gelatinized waxy and amylose‐free starch granule remnants might be caused in part by the lack of GBSS. Gel electrophoresis of proteins in starch ghosts confirmed that GBSS in potato and maize was tightly associated with the starch ghosts. The study provides a structural explanation for a role of granule‐associated proteins in maintaining the integrity of starch ghosts and remnant structures, and their consequent effect on paste rheology.  相似文献   

4.
Nine hull‐less barley (HB) containing waxy (0–7% amylose), normal (≈25% amylose), or high amylose (≈42% amylose) starch with normal or fractured granule make‐up and 4–9% (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) were pearled to remove 70% of the original grain weight in 10% intervals. The pearled fractions were analyzed for β‐glucan distribution within HB grain. Protein content of the pearled fractions indicated that the three outermost fractions contained pericarp and testa, aleurone, and subaleurone tissues, respectively. For all HB, β‐glucan and acid‐extract viscosity were very low in the outermost 20% of the kernel. For low β‐glucan HB, β‐glucan content was the greatest in the subaleurone region and declined slightly toward inner layers. For high β‐glucan HB, however, more than 80% of grain β‐glucan was distributed more evenly throughout the endosperm. Acid extract viscosity was significantly (P < 0.01) correlated with total (r = 0.75) and soluble (r = 0.87) β‐glucan content throughout the kernel of all HB. Growing conditions, location and year, had significant effects on the concentration of protein, starch and β‐glucan. However, protein, starch, and β‐glucan distribution patterns were not affected by growing conditions. The difference in β‐glucan distribution between low and high β‐glucan HB may explain the difference in milling performance of HB with low or high β‐glucan.  相似文献   

5.
Wheat has great potential to make inroads into starch markets with the advent of partial waxy and waxy starches of diverse composition and properties. The majority of isolated starch utilized in food applications is chemically modified to improve starch properties according to the intended use. Therefore, it is critical to understand factors that affect wheat starch reactivity. This work investigated the relative reactivities of normal, partial waxy, and waxy wheat starches and their respective A‐ and B‐type starch granule fractions. Native starch isolated from four closely related soft wheat lines (normal, partial waxy, and full waxy) was modified through 1) substitution (propylene oxide analog) and 2) cross‐linking (phosphorus oxychloride) reactions to generate both types of modified starch products for each wheat line. Characterization of the unmodified starch fractions confirmed compositional differences among the cultivars and their respective granule types. In cross‐linking reactions, B‐type granules were slightly more reacted than A‐type granules for all cultivars, while the waxy starch generally exhibited higher reactivity compared with normal and partial waxy starches. For the substituted starches, no differences in reactivity were observed among the cultivars or between the two granule types.  相似文献   

6.
Starches from normal, waxy, and sugary‐2 (su2) corn kernels were isolated, and their structures and properties determined. The total lipid contents of normal, waxy, and su2 corn starches were 0.84, 0.00, and 1.61%, respectively. Scanning electron micrographs showed that normal and waxy corn starch granules were spherical or angular in shape with smooth surfaces. The su2 starch granules consisted of lobes that resembled starch mutants deficient in soluble starch synthases. Normal and waxy corn starches displayed A‐type X‐ray patterns. The su2 starch showed a weak A‐type pattern. The chain‐length distributions of normal, waxy, and su2 debranched amylopectins showed the first peak chain length at DP (degree of polymerization) 13, 14, and 13, respectively; second peak chain length at DP 45, 49, and 49, respectively; and highest detectable DP of 80, 72, and 76, respectively. The su2 amylopectin showed a higher percentage of chains with DP 6–12 (22.2%) than normal (15.0%) and waxy (14.6%) amylopectins. The absolute amylose content of normal, waxy, and su2 starches was 18.8, 0.0, and 27.3%, respectively. Gel‐permeation profiles of su2 corn starch displayed a considerable amount of intermediate components. The su2 corn starch displayed lower gelatinization temperature, enthalpy change, and viscosity; a significantly higher enthalpy change for melting of amylose‐lipid complex; and lower melting temperature and enthalpy change for retrograded starch than did normal and waxy corn starches. The initial rate of hydrolysis (3 hr) of the corn starches followed the order su2 > waxy > normal corn. Waxy and su2 starches were hydrolyzed to the same extent, which was higher than normal starch after a 72‐hr hydrolysis period.  相似文献   

7.
High‐amylose (80%) corn starch was modified by hydroxypropylation with different molar substitution (MS). The unique microstructure of high‐amylose starch keeps its granules intact after hydroxypropylation. However, the microstructures and thermal properties strongly depend on the MS of hydroxypropylation. With increasing MS, the granule size was increased, which is partly due to disrupted granule structure, particularly in the amorphous region. Unlike normal starch, the modified high‐amylose corn starch showed a narrow gelatinization range measured by differential scanning calorimetry (DSC), which can be explained by destruction of amylose‐lipid complex. Internal microstructures and morphologies of hydroxypropylated starch were investigated using confocal laser scanning microscopy and to further explore the mechanism of chemical reaction and phase transitions.  相似文献   

8.
《Cereal Chemistry》2017,94(2):262-269
The molecular size distribution of maize starch nanoparticles (SNP) prepared by acid hydrolysis (3.16M H2SO4) and their amylase‐resistant counterparts, before and after debranching, was investigated. The weight average molecular weight (Mw) and linear chain length distribution were determined by high‐performance size‐exclusion chromatography (HPSEC) and high‐performance anion‐exchange chromatography (HPAEC), respectively. The objective was to understand the role of amylose involvement in the formation of SNP showing different crystalline structures (A‐ and B‐types). The HPSEC profiles of SNP before debranching from waxy, normal, and high‐amylose maize starches showed broad monomodal peaks. Debranched SNP from waxy maize eluted in a single narrow peak, whereas those from nonwaxy starches showed a multimodal distribution. Similar trends were also observed for the chain length distribution patterns, for which the longest detectable chains (degree of polymerization [DP] 31) in waxy maize were significantly lower than those of nonwaxy maize starches (DP 55–59). This indicated the potential amylose involvement in the SNP structure of normal and high‐amylose starches. Further evidence of amylose involvement was ascribed to the resistance of SNP toward amylolysis (Hylon VII > Hylon V > normal > waxy). The amylase‐resistant residues of SNP from high‐amylose maize starches were composed of both low Mw linear and branched chains.  相似文献   

9.
The Waxy (Wx) gene in hexaploid wheat (Triticum aestivum L.) encodes granule‐bound starch synthase (GBSS1), which is involved in the synthesis of amylose, a mostly linear glucan polymer that makes up ∼25% of wheat starch. A null mutation of the Wx gene in each of the three genomes is associated with starch almost entirely consisting of the branched glucan polymer amylopectin (waxy starch), with corresponding changes in functionality. However, the rheological behavior of partially waxy starch remains unclear. The objective of this study was to characterize flour and baking quality in 16 near‐isogenic lines, null at the Wx locus on zero, one, two, or all three genomes, grown in four different environments. Across allelic groups, significant variations in amylose concentrations, flour paste viscosity, loaf structure and texture, dough stability, and proximate variables were observed. Because waxy wheat starch has greater water absorbance and resistance to retrogradation than normal starch, its inclusion in flour blends has been suggested as a means of improving the texture and appearance of bakery products and noodles. The results indicate that wheat encoding <3 functional homeologs of GBSS1 produces starch that has potential in the production of certain food items, such as Asian noodles. However, further research is necessary to determine the optimal amylose‐to‐amylopectin ratio to improve baking quality.  相似文献   

10.
A unique wheat genotype carrying waxy‐type allelic composition at the Wx loci, Gunji‐1, was developed, and its starch properties were evaluated in comparison to parental waxy and wild‐type wheat varieties. Gunji‐1 was null in all three of the Wx genes but exhibited a lower level of Wx proteins than the wild‐type. Starch amylose content and cold water retention capacity were 10.1 and 70.5% for Gunji‐1, 4.2 and 76.6% for waxy, and 27.9 and 65.0% for wild‐type, respectively. No significant differences were observed in microstructure, granule size distribution, and X‐ray diffractograms of the starch granules isolated from Gunji‐1 compared with those of waxy and wild‐type wheat varieties. Starch pasting peak, breakdown, and setback viscosities and peak temperature of Gunji‐1 were intermediate between waxy and wild‐type wheat. In starch gel hardness, Gunji‐1 (1.1 N) was more similar to waxy wheat (0.5 N) than to the wild‐type variety (17.6 N). Swelling power, swelling volume, paste transmittance during storage, and gelatinization enthalpy of Gunji‐1 were lower than those of waxy wheat but greater than those of wild‐type wheat. Retrogradation of starch stored for one week at 4°C expressed with DSC endothermic enthalpy was absent in the waxy wheat variety, whereas Gunji‐1 exhibited both retrogradation of amylopectin and amylose‐lipid complex melting similar to the wild‐type parent, even though enthalpies of Gunji‐1 were much smaller than the wild‐type parent.  相似文献   

11.
Aqueous dispersions (2 mg/mL) of debranched corn starches of different amylose contents (waxy, normal, and high‐amylose) were subjected to extensive autoclaving and boiling‐stirring, and then the changes in starch chain profile were examined using medium‐pressure, aqueous, size‐exclusion column chromatography. As autoclaving time increased from 15 to 60 min, weight‐average chain length (CLw) of waxy, normal, and high‐amylose corn starches determined using pullulan standards decreased from 46 to 41.2, from 122.1 to 96.3, and from 207.3 to 151.8, respectively. Number‐average chain length (CLn) measured by the Nelson‐Somogyi method also decreased from 23.0 to 18.4, from 26.4 to 21.8, and from 66.5 to 41.5, respectively, indicating that thermal degradation of starch chains occurred. The CLw/CLn ratio for normal corn starch was higher than that for waxy corn starch, indicating an increase in polydispersity of the amylose fraction. Thermal degradation was also observed when the debranched starch was subjected to the boiling‐stirring treatment (0–96 hr). During 96 hr, the CLw and relative proportion of B≥2 chains of amylopectin released by debranching waxy corn starch increased, whereas those of B1 chains decreased. This change may indicate physical aggregation of B1 chains. But branches from normal and high‐amylose corn starches showed increases in CLw and the proportion of both B1 and B≥2 chains, along with substantial decreases in those of amylose chains. Therefore, thermal degradation of amylose was greater than that of amylopectin.  相似文献   

12.
Double‐null partial waxy wheat (Triticum aestivum L.) flours were used for isolation of starch and preparation of white salted noodles and pan bread. Starch characteristics, textural properties of cooked noodles, and staling properties of bread during storage were determined and compared with those of wheat flours with regular amylose content. Starches isolated from double‐null partial waxy wheat flours contained 15.4–18.9% amylose and exhibited higher peak viscosity than starches of single‐null partial waxy and regular wheat flours, which contained 22.7–25.8% amylose. Despite higher protein content, double‐null partial waxy wheat flours, produced softer, more cohesive and less adhesive noodles than soft white wheat flours. With incorporation of partial waxy prime starches, noodles produced from reconstituted soft white wheat flours became softer, less adhesive, and more cohesive, indicating that partial waxy starches of low amylose content are responsible for the improvement of cooked white salted noodle texture. Partial waxy wheat flours with >15.1% protein produced bread of larger loaf volume and softer bread crumb even after storage than did the hard red spring wheat flour of 15.3% protein. Regardless of whether malt was used, bread baked from double‐null partial waxy wheat flours exhibited a slower firming rate during storage than bread baked from HRS wheat flour.  相似文献   

13.
Starch was isolated from three different barleys with normal, highamylose, or high‐amylopectin (waxy) starch. The laboratory‐scale starch isolation procedure included crushing of grains, steeping, wet milling, and sequential filtration and washing with water and alkali, respectively. Yield and content of starch, protein, and dietary fiber, including β‐glucan, were analyzed in isolated starch and in the by‐products obtained. Starch yield was 25–34%, and this fraction contained 96% starch, 0.2–0.3% protein, and 0.1% ash. Most of the remaining starch was found in the coarse material removed by filtration after wet milling, especially for the high‐amylose barley, and in the starch tailings. Microscopy studies showed that isolated starch contained mostly A‐granules and the starch tailings contained mostly B‐granules. Protein concentration was highest in the alkali‐soluble fraction (54%), whereas dietary fiber concentration was highest in the material removed by filtration after alkali treatment for the normal and waxy barleys (55%). The β‐glucan content was especially high for the waxy barley in this fraction (26%). The study thus showed that it was possible to enrich chemical constituents in the by‐products but that there were large differences between barleys. This result indicates a need for modifications in the isolation procedures for different barleys to obtain high yields of starch and different by‐products. Valuable by‐products enriched in β‐glucan or protein, for example, may render starch production more profitable.  相似文献   

14.
Flours of two soft wheat cultivars were fractionated into native, prime, tailing, A‐, and B‐type starch fractions. Starch fractions of each cultivar were characterized with respect to A/B‐type granule ratio, amylose content, phosphorus level (lysophospholipid), and pasting properties to investigate factors related to wheat starch pasting behavior. While both cultivars exhibited similar starch characteristics, a range of A‐type (5.7– 97.9%, db) and B‐type granule (2.1–94.3%, db) contents were observed across the five starch fractions. Though starch fractions displayed only subtle mean differences (<1%) in total amylose, they exhibited a range of mean phosphorus (446–540 μg/g), apparent amylose (18.7–23%), and lipid‐complexed amylose (2.8–7.5%) values, which were significantly correlated with their respective A‐ and B‐type granule contents. A‐type (compared with B‐type) granules exhibited lower levels of phosphorus, lipid‐complexed amylose, and apparent amylose, though variability for the latter was primarily attributed to starch lipid content. While starch phosphorus and lipid‐complexed amylose contents exhibited negative correlation with fraction pasting attributes, they did not adequately account for starch fraction pasting behavior, which was best explained by the A/B‐type granule ratio. Fraction A‐type granule content was positively correlated with starch pasting attributes, which might suggest that granule size itself could contribute to wheat starch pasting behavior.  相似文献   

15.
The waxy character is achieved in durum wheat (Triticum turgidum L. var. durum) when the granule‐bound starch synthase activity is eliminated. The result is a crop that produces kernels with no amylose in the starch. The presence of two Waxy loci in tetraploid wheat permits the production of two partial waxy wheat genotypes. Advanced full and partial waxy durum wheat genotypes were used to study the effect of waxy null alleles on pasta quality. Semolina from full and partial waxy durum wheats was processed into spaghetti with a semicommercial‐scale extruder, and pasta quality was evaluated. Cooked waxy pasta was softer and exhibited more cooking loss than pasta made from traditional durum cultivars. These features were attributed to lower setback of waxy starch as measured with the Rapid Visco Analyser. High cooking loss may be due to the lack of amylose‐protein interaction, preventing the formation of a strong protein network and permitting exudates to escape. Waxy pasta cooked faster but was less resistant to overcooking than normal pasta. Partial waxy pasta properties were similar to results obtained from wild‐type pasta. This indicates that the presence of a single pair of functional waxy genes in durum wheat was sufficient to generate durum grain with normal properties for pasta production. Waxy durum wheat is not suitable for pasta production because of its softening effect. However, this property may offer an advantage in other applications.  相似文献   

16.
Fresh and dried white salted noodles (WSN) were prepared by incorporating up to 40% flour from hull‐less barley (HB) genotypes with normal amylose, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch into a 60% extraction Canada Prairie Spring White (cv. AC Vista) wheat flour. The HB flours, depending on genotype, contained four to six times the concentration of β‐glucan of the wheat flour, offering potential health benefits. The HB‐enriched noodles were made with conventional equipment without difficulty. Noodles containing 40% HB flour required less work input during sheeting, probably due to higher optimum water absorption and weakening of the dough due to dilution of wheat gluten. The addition of HB flour had a negative impact on WSN color and appearance, as evident from decreased brightness, increased redness, and more visible specking. The impact of HB flour on cooked WSN texture varied by starch type. Enrichment with HA or normal starch HB flour produced WSN with bite and chewiness values equivalent to or superior to the wheat flour control. Addition of waxy and ZAW HB flour resulted in WSN with lower values for bite and chewiness. The diversity of HB starch types allows tailoring of WSN texture to satisfy specific markets. HB flour also has potential as an ingredient in novel noodle products targeting health‐conscious consumers who associate darker colored cereal‐based foods with superior nutritional composition.  相似文献   

17.
Plant breeding programs are active worldwide in the development of waxy hexaploid (Triticum aestivum L.) and tetraploid (T. turgidum L. var. durum) wheats. Conventional breeding practices will produce waxy cultivars adapted to their intended geographical region that confer unique end use characteristics. Essential to waxy wheat development, a means to rapidly and, ideally, nondestructively identify the waxy condition is needed for point‐of‐sale use. The study described herein evaluated the effectiveness of near‐infrared (NIR) reflectance single‐kernel spectroscopy for classification of durum wheat into its four possible waxy alleles: wild type, waxy, and the two intermediate states in which a null allele occurs at either of the two homologous genes (Wx‐1A and Wx‐1B) that encodes for the production of the enzyme granule bound starch synthase (GBSS) that controls amylose synthesis. Two years of breeders' samples (2003 and 2004), corresponding to 47 unique lines subdivided about equally into the four GBSS genotypes, were scanned in reflectance (1,000–1,700 nm) on an individual kernel basis. Linear discriminant analysis models were developed using the best set of four wavelengths, best four wavelength differences, and best four principal components. Each model consistently demonstrated the high ability (typically >95% of the time) to classify the fully waxy genotype. However, correct classification among the three other genotypes (wild type, wx‐A1 null, and wx‐B1 null) was generally not possible.  相似文献   

18.
Three hull‐less barley genotypes containing starches with variable amylose content (23.8% normal, 4.3% waxy, 41.8% high‐amylose barley) were pearled to 10% and then roller‐milled to produce pearling by‐products (PBP), flour, and fiber‐rich fractions (FRF). PBP were enriched in arabinoxylans, protein, and ash and contained small amounts of starch and β‐glucans. FRF were considerably enriched in β‐glucans and arabinoxylans. The solubility of β‐glucans was higher in PBP than in FRF. The solubility of arabinoxylans was higher in FRF than in PBP. Small amounts of arabinogalactans detected in barley were concentrated in the outer portion of the barley kernel. The content and solubility of nonstarch polysaccharides (NSP) in various milling fractions was also dependent on the type of barley. To obtain more detailed information about the content and molecular structure of NSP, each milling fraction was sequentially extracted with water, alkaline [Ba(OH)2], again with water, and finally with NaOH. These extractions resulted in four sub‐fractions: WE, Ba(OH)2, Ba(OH)2/H2O, and NaOH. β‐Glucans and arabinoxylans exhibited structural heterogeneity derived from differences in their location within the kernel as well as from the genetic origin of barley. The WE arabinoxylans from FRF and flour had a substantially lower degree of branching than those from PBP. The WE arabinoxylans from FRF of high‐amylose and normal barley contained more unsubstituted Xylp residues but fewer doubly‐substituted and singly‐substituted Xylp at O‐2 than their counterparts from PBP. The WE arabinoxylans from FRF of waxy barley had a relatively high content of doubly‐substituted, but very few singly‐substituted Xylp residues. In all three barley genotypes, the ratio of tri‐ to tetrasaccharides in β‐glucans from PBP was higher than from flour and FRF. Substantial differences in the molecular weight of NSP in different milling fractions were also observed.  相似文献   

19.
Native and processed high‐amylose maize starch (HAMS) is an important source of resistant starch (RS). The objectives of this work were to use an in vitro procedure to estimate the RS content of native granules from a series of ae‐containing HAMS genotypes, and to examine the nature of the α‐amylase resistant starch (ARS). By the method of Englyst et al (1992), RS for ae V, ae VII, ae su2, and ae du were estimated to be 66.0, 69.5, 69.5, and 40.6%, respectively. By transmission electron microscopy, most of the residual granules from ae V, ae VII, and ae su2 showed little evidence of digestion. Partially digested granules had a radial digestion pattern in the interior and an enzyme‐resistant layer near the surface. Size and chain‐length profile of constituents of ARS were similar to those of the native HAMS (unlike type 3 RS), consistent with complete hydrolysis in susceptible granule regions. Between crossed polarizers, many iodine‐stained native and residual HAMS granules had blue centers and pink exteriors, which may be due to a difference in orientation of the amylose‐iodine complexes in the exterior. Four granule color types were observed for ae du, differing in enzyme resistance. The high‐enzyme resistance of native HAMS granules may result from altered granule organization, which appears to vary among and within granules from ae‐containing genotypes.  相似文献   

20.
The effect of growing environments of soft wheat on amylose content and its relationship with baking quality and solvent retention capacities (SRC) was investigated. Near‐isogenic soft wheat lines of Norin 61 differing in granule‐bound starch synthase (Wx protein) activity and grown in three different regions of Japan: Hokkaido (spring‐sown) for 2006 and 2007, Kanto (autumn‐sown), and Kyushu (autumn‐sown) for 2007 were evaluated. Spring‐sown samples produced grains of greater protein content (10.9–12.4%) than autumn‐sown samples (7.3–9.1%). In contrast, spring‐sown samples of 2007 with higher maturing temperature had lower amylose content (25.5% for Norin 61) compare to the autumn‐sown and spring‐sown samples of 2006 (27.6–28.4% for Norin 61). Amylose content was strongly correlated to sugar snap cookie (SSCD) diameter (r = 0.957–0.961; n = 10, all samples; P ≤ 0.001, r = 0.701–0.976; n = 7 partial waxy and nonwaxy samples; and Japanese sponge cake (JSCV) volume r = 0.971–0.993; n = 10; P≤ 0.001, r = 0.764–0.922; n = 7 partial waxy and nonwaxy samples), regardless of seeding season and growing conditions. The strength of the JSVC‐amylose relationship (slope) was similar among the three regions, whereas the strength of the SSCD‐amylose relationship was slightly weaker for spring‐sown samples and slightly stronger for partial waxy and nonwaxy autumn‐sown samples. Among of the four solvents (water, solutions of sodium carbonate, sucrose, or lactic acid), water‐SRC showed the greatest correlation to amylose content (r = –0.969 to –0.996; n = 10; P ≤ 0.001, r = –0.629 to –0.983; n = 7 partial waxy and nonwaxy samples), indicated that amylose content can be accurately estimated from the water‐SRC within the samples from the same grown environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号