首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ice structuring proteins (ISP, 0.5%, starch weight basis) on the freeze‐thaw stability of corn and wheat starch gels (CS and WS, respectively) was studied. Syneresis measurement, hardness, thermal properties using differential scanning calorimetry (DSC), X‐ray diffractions, and scanning electron microscopy (SEM) were determined with starch gels (SG) subjected up to nine freeze‐thaw cycles (FTC). The gelatinized SG were stored at –20°C for 22 hr and thawed at 30°C for 2 hr. As the number of FTC increased, syneresis was increased; however, ISP significantly (P < 0.05) reduced the syneresis for all FTC except at FTC 1. Hardness was increased up to FTC 4, then decreased for both SG. ISP significantly lowered the hardness of both SG. The ice melting enthalpy (ΔHice sample) of SG increased as FTC increased but SG with ISP had significantly lower enthalpy. The retrogradation ratio (RR) from DSC was significantly increased as the number of FTC increased. ISP reduced RR but most of RR was not significantly different for the corresponding FTC. The X‐ray diffraction patterns showed less recrystallization of WS with addition of ISP. The microstructures from SEM showed that the addition of ISP reduced the size of ice cell cavities.  相似文献   

2.
3.
Most research concerning grain proteins has concentrated on the gluten storage proteins. The albumins and globulins are the water‐ and salt‐soluble proteins that contain biologically active enzymes and enzyme inhibitors. A free‐zone capillary electrophoresis method was developed to separate these proteins. Optimization included sample extraction method, capillary temperature, buffer composition, and additives. The optimal conditions for separation of these proteins was 50 μm i.d. × 27 cm (20 cm to detector) capillary at 10 kV (with a 0.17 min ramp‐up time) and 25°C. The optimum buffer was 50 mM sodium phosphate, pH 2.5 + 20% acetonitrile (v/v) (ACN) + 0.05% (w/v) hydroxypropylmethyl‐cellulose (HPMC) + 50 mM hexane sulfonic acid (HSA). Sample stability was an issue that was addressed by lyophilizing fresh extracts and redissolving in aqueous 50% ethylene glycol and 10% separation buffer. This method was successfully used in both wheat flour and whole meal samples. Comparisons were made of several wheats of different classes as well as several cereal grains. This methodology could be useful in screening cereal grains for important enzymes and their impact on end‐use quality such as food functionality, food coloration, and malting quality.  相似文献   

4.
Development of high‐protein digestibility (HPD)/high‐lysine (hl) sorghum mutant germplasm with good grain quality (i.e., hard endosperm texture) has been a major research objective at Purdue University. Progress toward achieving this objective, however, has been slow due to challenges posed by a combination of genetic and environmental factors. In this article, we report on the identification of a sorghum grain phenotype with a unique modified endosperm texture that has near‐normal hardness and possesses superior nutritional quality traits of high digestibility and enhanced lysine content. These modified endosperm lines were identified among F6 families developed from crosses between hard endosperm, normal nutritional quality sorghum lines, and improved HPD/hl sorghum mutant P721Q‐derived lines. A novel vitreous endosperm formation originated in the central portion of the kernel endosperm with opaque portions appearing both centrally and peripherally surrounding the vitreous portion. Kernels exhibiting modification showed a range of vitreous content from a slight interior section to one that filled out to the kernel periphery. Microstructure of the vitreous endosperm fraction was dramatically different from that of vitreous normal kernels in sorghum and in other cereals, in that polygonal starch granules were densely packed but without the typically associated continuous protein matrix. We speculate that, due to the lack of protein matrix, such vitreous endosperm may have more available starch for animal nutrition, and possibly have improved wet‐milling and dry‐grind ethanol processing properties. The new modified endosperm selections produce a range that approaches the density of the vitreous parent, and have lysine content and protein digestibility comparable to the HPD/hl opaque mutant parent.  相似文献   

5.
The objective of this research was to investigate the fermentation performance of waxy grain sorghum for ethanol production. Twenty‐five waxy grain sorghum varieties were evaluated with a laboratory dry‐grind procedure. Total starch and amylose contents were measured following colorimetric procedures. Total starch and amylose contents ranged from 65.4 to 76.3% and from 5.5 to 7.3%, respectively. Fermentation efficiencies were in the range of 86.0–92.2%, corresponding to ethanol yields of 2.61–3.03 gallons/bushel. The advantages of using waxy sorghums for ethanol production include easier gelatinization and low viscosity during liquefaction, higher starch and protein digestibility, higher free amino nitrogen (FAN) content, and shorter fermentation times. The results showed a strong linear relationship between FAN content and fermentation rate. Fermentation rate increased as FAN content increased, especially during the first 30 hr of fermentation (R2 = 0.90). Total starch content in distillers dried grains with solubles (DDGS) was less than 1% for all waxy varieties.  相似文献   

6.
Ozone has been reported as being able to degrade macromolecules such as cellulose, starch, lignins, and tannins in the textile, pulping, and water‐treatment industries. Thus, we hypothesized that ozone treatment may also inactivate tannin activity and increase fermentation efficiency of tannin sorghum lines. The objective of this research was to study the physicochemical properties of ozone‐treated whole tannin grain sorghum flour and its fermentation performance in ethanol production. Results showed that the ethanol yields from ozone‐treated tannin grain sorghums were significantly higher than yields from the untreated flour. The fermentation efficiency of ozone‐treated tannin grain sorghum was approximately 90%, which was 8–14% higher than that of untreated samples at the 36th hr of fermentation. At the end of 72 hr of fermentation, the efficiencies of ozone‐treated sorghum flour were 2–5% higher than those of untreated samples. Measured tannin levels of ozone‐treated samples decreased significantly from 3.8 to 2.7%. Gel‐permeation chromatographic results indicated that both degradation and polymerization processes might have happened to starch molecules during ozone treatment. Rapid Visco Analyzer data showed that the setback of viscosity of ozone‐treated flour was lower than that of untreated flours. Distillers dried grains with solubles made from ozone‐treated sorghum were low in residual starch (<1%) and high in crude protein (≈35%). Therefore, ozonation could be a novel and useful method to improve ethanol yield and fermentation efficiency of tannin grain sorghum.  相似文献   

7.
To evaluate the ethanol production performance of waxy sorghum hybrids and the effects of location and harvest year on ethanol yield, samples of four waxy sorghum hybrids collected from two Nebraska locations (Mead and Lincoln) in both 2009 and 2010 were tested for ethanol production in a dry‐grind process. No significant difference (P = 0.216) in starch contents was observed among the four hybrids, but starch contents of the hybrids were significantly affected by growth location (P = 0.0001) and harvest year (P = 0.0258). Location, hybrid, and harvest year all had significant effects on ethanol fermentation efficiency in the dry‐grind process. Lincoln sorghum samples showed higher (P = 0.022) ethanol fermentation efficiency (90.4%) than did Mead sorghum samples (90.0%). Sorghums harvested in 2010 had higher (P < 0.001) ethanol fermentation efficiency (91.1%) than those harvested in 2009 (89.3%). The 2009 sorghum flours had more amylose‐lipid complexes than the 2010 samples did, and amylose‐lipid complexes as previously reported had adverse effects on ethanol fermentation. Residual starch contents in distillers dried grains with solubles (DDGS) were significantly affected by hybrid and harvest year (P < 0.0001), but we observed no difference in protein content in DDGS from the four hybrids.  相似文献   

8.
Trial I, with 33 spring cultivars, and trial II, with 21 winter cultivars, sown in four environments in the northwestern China spring wheat region and northern winter wheat region, respectively, were used to study the effect of genotype and environment on the size distribution of polymeric proteins. Association between quantity and size distribution of polymeric protein and dough properties (both trials) and northern‐style Chinese steamed‐bread (CSB) (trial I) and pan bread (trial II) qualities were also investigated. In trial I, all protein attributes, such as flour protein content, SDS‐extractable polymeric protein in the flour (EPP), SDS‐unextractable polymeric protein in the flour (UPP), and percent UPP in total polymeric protein (%UPP), were largely determined by environment, whereas variation in dough strength resulted from variation in UPP and %UPP across environments. In trial II, EPP was largely determined by environment, and UPP and %UPP were largely determined by genotype. These differences might result from different levels of protein content and dough strength in the two trials. The EPP was positively correlated with dough extensibility and was generally negatively correlated with dough stability and maximum resistance in both trials. However, %UPP was significantly positively correlated with dough stability and maximum resistance and end‐use quality in both trials. In trial I, correlation coefficients between %UPP and maximum resistance and CSB score were r = 0.90 and 0.71, respectively, whereas in trial II, the correlation coefficients between %UPP and maximum resistance and pan bread score were 0.96 and 0.87, respectively. Therefore, selection for high %UPP together with high‐quality glutenin subunits should lead to improved dough strength and end‐use quality in Chinese wheats.  相似文献   

9.
Five different soybean protein sources were added to wheat flour to increase the protein content by 15–25%, and the resulting composite flours were optimally processed into hot‐press tortillas in a pilot plant. The rheological properties of composite flours were evaluated with the farinograph, alveograph, and other wheat quality tests. Tortilla‐making qualities of the control and soybean‐fortified flours were evaluated during dough handling, hot pressing, and baking. The resulting tortillas were tested in terms of yield, physical and chemical parameters, sensory properties, color, and objective and subjective texture. The soybean‐fortified tortillas had increased yields because of the higher dough water absorption and enhanced essential amino acid scores. Among the five different soybean proteins, the defatted soybean flour (SBM1) with the lowest fat absorption index and protein dispersibility index (PDI) and the soybean concentrate produced the best fortified tortillas. The protein meals with high PDI and relatively lower water absorption index (SBM3 and SBM4) produced sticky doughs, lower alveograph P/L values, and defective tortillas. All soybean proteins produced higher yields of tortillas with an enhanced protein quality and amount of dietary fiber.  相似文献   

10.
Kisra is a naturally lactic acid bacteria‐ and yeast‐fermented sorghum thin pancake‐like flatbread produced in Sudan. Kisra has considerable potential as the basis for development of a gluten‐free sandwich wrap. To help direct cultivar selection for commercial production of these products, two white, tan plant non‐tannin Type I, one white Type II tannin, and one red Type III tannin sorghum cultivars were evaluated with respect to kisra protein quality and physical characteristics. Kisra from the non‐tannin sorghums were flexible and had an open‐textured structure with many regular gas cells, whereas those from the tannin sorghums were more brittle, denser in structure, and contained far fewer and smaller gas cells. Kisra from the tannin sorghums had the lowest reactive lysine content, in vitro protein digestibility, and Protein Digestibility Corrected Amino Score (PDCAAS), with values being lowest for the Type III sorghum. PDCAAS of kisra from the Type III sorghum was only 0.12, less than half of that from the Type I sorghums. As the tannins in tannin sorghums adversely affect kisra protein quality and physical characteristics, white tan plant, non‐tannin sorghum cultivars are most suitable for kisra production and for development of wrap‐type sorghum‐based baked goods.  相似文献   

11.
A high‐tannin sorghum cultivar with 3.96% tannin content was used to study the effects of germination on its ethanol fermentation performance in a laboratory dry‐grind process. High‐tannin sorghum sample was germinated for 3 and 4 days. Original and germinated samples were analyzed for tannin, starch, protein, free amino nitrogen (FAN), and glucose content. Endosperm structures and flour pasting properties of germinated and nongerminated sorghum samples were examined using a scanning electron microscope (SEM) and rapid visco analyzer (RVA). Germination reduced tannin content from 3.96% to negligible levels. The free fermentable sugars (glucose, maltose, and maltotriose) in the germinated samples were significantly higher than those in the nongerminated control. Judged by the starch (starch plus dextrin) and free amino nitrogen contents in the mashed samples, germination improved degree of hydrolysis for starch by 13–20% and for protein by 5‐ to 10‐fold during mashing. Germination significantly shortened the required fermentation time for ethanol production by 24–36 hr, increased ethanol fermentation efficiency by 2.6–4.0%, and reduced the residual starch content in the distillers dried grain with solubles (DDGS) compared to the nongerminated control. Ethanol yield for the 3‐day germinated samples was 2.75 gallons/bushel, which was 3.1% higher than the 2.67 gallons for the nongerminated control. Ethanol yield for the 4‐day germinated sorghum was 2.63 gallons/bushel due to excessive loss of starch during germination.  相似文献   

12.
13.
The profile and quantities of condensed tannins (CT) in foods are affected by processing due to their highly reactive nature, which may affect their antioxidant activity and the nutritional value of the foods. The objective was to compare the quantity and profile of condensed tannins in traditional wet‐cooked and modern ready‐to‐eat extrusion‐cooked sorghum porridges. CT were analyzed using normal‐phase HPLC with fluorescence detection and their content was compared to CT and total phenols determined with standard colorimetric assays. Both the traditionally prepared and instant porridges had significantly reduced CT polymers (DP > 8), with retentions of 38 and 9%, respectively, of the CT present in the whole grain. Oligomer (DP 2–8) and monomer (DP 1) contents in traditional porridges were not significantly different from those of grain. In extruded porridges, the oligomers were reduced and the monomer content was increased. The extractable CT oligomers and monomers in the extrusion‐cooked sorghum porridges may be more biologically available because extrusion appears to increase their availability.  相似文献   

14.
《Cereal Chemistry》2017,94(5):897-902
A satisfactory chemically leavened gluten‐free sorghum bread method was developed by using a blend of 90% commercially milled sorghum flour and 10% rice, tapioca, or potato starch as the “flour.” The most effective starch/hydrocolloid combinations in the formula were potato starch with 4% xanthan, tapioca starch with 3% hydroxypropyl methylcellulose, and rice starch with 3% xanthan. Overall, there was not a significant difference in the quality of loaves made with each starch/hydrocolloid combination. Rapid visco analysis showed that batter viscosity did not have a significant impact on loaf volume index but did affect crumb grain properties. Batters with lower viscosity produced loaves with better crumb grain.  相似文献   

15.
The Rapid Visco‐Analyzer (RVA) was used to characterize the pasting properties of 68 sorghum grains with a standard 23‐min temperature profile. The results showed a strong linear relationship between ethanol yield and final viscosity as well as setback. Ethanol yield increased as final viscosity decreased. A modified RVA procedure (10 min) with an application of α‐amylase was developed to simulate the liquefaction step in dry‐grind ethanol production. There was a remarkable difference in mashing properties among the sorghum samples with the normal dosage of α‐amylase. The sorghum samples which were difficult to liquefy in the mashing step had much higher peak viscosities than the samples that were easily liquefied. The results also showed that the relationship between conversion efficiency and mashing property was significant. Tannins cause high mash viscosities. There was a strong linear relationship between tannin content and final viscosity as well as peak viscosity. The modified RVA procedure is applicable not only for characterization of mashing properties but also for optimization of α‐amylase doses for starch liquefaction.  相似文献   

16.
Gluten‐free breadmaking quality of 10 sorghum flours was compared using (relative basis) decorticated sorghum flour (70), corn starch (30), water (105), salt (1.75), sugar (1), and dried yeast (2). Batter consistency was standardized by varying water levels to achieve the same force during extrusion. Crumb properties were evaluated by digital image analysis and texture profile analysis (TPA). Significant differences (P < 0.001) in crumb grain were found among the hybrids with mean cell area ranging from 1.3 to 3.3 mm2 and total number of cells ranging from 13.5 to 27.8/cm2. TPA hardness values of the crumb also varied significantly (P < 0.001). Based on significant correlations (P < 0.01), starch damage, influenced by kernel hardness, was identified as a key element for these differences. Breads differed little in volume, height, bake loss, and water activity. Investigation of added ingredients on bread quality was conducted using response surface methodology (RSM) with two sorghum hybrids of opposite quality. Addition of xanthan gum (0.3–1.2% flour weight basis [fwb]) and skim milk powder (1.2–4.8% fwb) and varying water levels (100–115% fwb) were tested using a central composite design. Increasing water levels increased loaf specific volume, while increasing xanthan gum levels decreased the volume. As skim milk powder levels increased, loaf height decreased. Quality differences between the hybrids were maintained throughout the RSM.  相似文献   

17.
18.
Starch granules isolated from waxy, normal, and high‐amylose hullless barley grains were examined by transmission electron microscopy with cytochemical techniques. The micrographs showed two distinct regions of different sizes: 1) densely packed granule growth rings (which varied in size and number depending on the genotype), and 2) a loose filamentous network located in the central region of the granule. The granule ring width decreased with increasing amylose content. In all three genotypes, the growth rings closer to the granule surface were narrower in width than those within the granule interior. The waxy starch had wider intercrystalline amorphous growth rings, semicrystalline growth rings, and more open crystalline lamellae than normal and high‐amylose starches. Granule bound proteins (mainly integral proteins) were located in the central and peripheral (growth ring) regions of the granule.  相似文献   

19.
38个粒用高粱品种芽期耐盐性的综合鉴定及评价   总被引:3,自引:0,他引:3  
为筛选适合盐碱地种植的粒用高粱品种,在150 mmol·L-1NaCl浓度下对38个粒用高粱品种进行芽期耐盐性的筛选和评价。结果表明,盐胁迫下,38个高粱品种除根冠比外,发芽势、发芽率、根长和叶长均受到不同程度的抑制;各性状的相对值以相对根冠比(CV=62.84%)和相对根长(CV=44.55%)的变异较大;各性状的盐害率则以发芽率的盐害率(CV=39.86%)变异最大。盐胁迫下,相对发芽势与相对发芽率呈显著正相关(R=0.341),而二者与相对根长(R=0.214;R=-0.041)和相对叶长(R=0.041;R=0.205)之间无显著相关性。通过主成分分析确定了2类主成分,分别反映根部生长状况和萌发状况;同时根据各因子的载荷矩阵确定相对根冠比、相对发芽势和相对发芽率可以作为高粱耐盐性的鉴定指标。主成分得分值和模糊隶属函数值间呈显著正相关,表明可以通过二者的综合得分进行高粱耐盐性评价和分类。同时,本研究筛选出了耐盐性品种通杂141、晋粱白2号、吉杂137、龙米粱1号和吉杂148。本研究结果为芽期高粱耐盐性品种的筛选提供了理论基础和鉴定方法。  相似文献   

20.
Two different extraction methods for extracting sorghum (Sorghum bicolor L. Moench.) storage proteins for free zone capillary electrophoresis (FZCE) analysis were compared. A traditional solvent based on 60% t‐butanol was compared with a pH 10 borate buffer containing the anionic detergent SDS followed by precipitation of nonkafirins using 60% t‐butanol. FZCE analysis of both types of extracts showed identical patterns, despite the fact that the SDS should have given all proteins equal charge‐to‐mass ratios. This methodology was also successfully applied to maize proteins. The use of t‐butanol to precipitate nonkafirins, combined with electrophoresis at low pH, is thought to have removed the SDS from the storage proteins. The SDS extraction procedure produced more stable extracts for FZCE analysis. These extracts could also be used directly for SDS capillary electrophoresis (SDS‐CE) separations. Kafirins from 15 genotypes were extracted with this procedure and analyzed by FZCE and SDS‐CE. Resolution of the kafirins by FZCE was much higher than the SDS‐CE, demonstrating that the kafirin proteins possessed a high level of charge density variability within a relatively small molecular size distribution. Two distinct groups of α‐kafirins could be seen in the FZCE electropherograms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号