首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Physiological acclimation and genotypic adaptation to prevailing temperatures may influence forest responses to future climatic warming. We examined photosynthetic and respiratory responses of sugar maple (Acer saccharum Marsh.) from two portions of the species' range for evidence of both phenomena in a laboratory study with seedlings. A field study was also conducted to assess the impacts of temperature acclimation on saplings subjected to an imposed temperature manipulation (4 degrees C above ambient temperature). The two seedling populations exhibited more evidence of physiological acclimation to warming than of ecotypic adaptation, although respiration was less sensitive to short-term warming in the southern population than in the northern population. In both seedling populations, thermal compensation increased photosynthesis by 14% and decreased respiration by 10% in the warm-acclimated groups. Saplings growing in open-top field chambers at ambient temperature and 4 degrees C above ambient temperature showed evidence of temperature acclimation, but photosynthesis did not increase in response to the 4 degrees C warming. On the contrary, photosynthetic rates measured at the prevailing chamber temperature throughout three growing seasons were similar, or lower (12% lower on average) in saplings maintained at 4 degrees C above ambient temperature compared with saplings maintained at ambient temperature. However, the long-term photosynthetic temperature optimum for saplings in the field experiment was higher than it was for seedlings in either the 27 or the 31 degrees C growth chamber. Respiratory acclimation was also evident in the saplings in the field chambers. Saplings had similar rates of respiration in both temperature treatments, and respiration showed little dependence on prevailing temperature during the growing season. We conclude that photosynthesis and respiration in sugar maple have the potential for physiological acclimation to temperature, but exhibit a low degree of genetic adaptation. Some of the potential for acclimation to a 4 degrees C increase above a background of naturally fluctuating temperatures may be offset by differences in water relations, and, in the long term, may be obscured by the inherent variability in rates under field conditions. Nevertheless, physiologically based models should incorporate seasonal acclimation to temperature and permit ecotypic differences to influence model outcomes for those species with high genetic differentiation between regions.  相似文献   

2.
Bostad PV  Reich P  Lee T 《Tree physiology》2003,23(14):969-976
We conducted controlled (chamber) and natural (field) environment experiments on the acclimation of respiration in Quercus alba L. and Quercus rubra L. Three-year-old Louisiana, Indiana and Wisconsin populations of Q. alba were placed in growth chambers and exposed to alternating 5-week periods of cool (20 degrees C mean) and warm (26 degrees C mean) temperatures. We measured respiration rates on fully expanded leaves immediately before and approximately every 2 days after a switch in mean temperature. In a second chamber experiment, 3-year-old potted Q. alba seedlings were exposed to alternating warm (26 degrees C mean) and cool (16 degrees C mean) temperatures at 4-day intervals. Leaf dark respiration rates were measured on days 2, 3 and 4 after each change in temperature. In a third, field-based study, we measured leaf respiration rates in the same three sources of Q. alba and in Arkansas, Indiana and Minnesota sources of Q. rubra before and after a natural 16 degrees C change in mean daily ambient temperature. We observed rapid, significant and similar acclimation of leaf respiration rates in all populations of Q. alba and Q. rubra. Cold-origin populations were no more plastic in their acclimation responses than populations from warmer sites. All geographic sources showed lower respiration rates when measured at 24 degrees C after exposure to higher mean temperatures. Respiration rates decreased 13% with a 6 degrees C increase in mean temperature in the first chamber study, and almost 40% with a 10 degrees C increase in temperature in the second chamber study. Acclimation was rapid in all three studies, occurring after 2 days of exposure to changed temperature regimes. Acclimation was reversible when changes in ambient temperature occurred at 4-day intervals. Respiration response functions, ln(R) = ln(beta0) + beta1T, were statistically different among treatments (cool versus warm, first chamber study) and among sources in a pooled comparison. Pair-wise comparisons indicated statistically significant (P<0.05) differences in cool- versus warm-measured temperature/respiration response functions for Indiana and Wisconsin sources of Q. alba. Log-transformed base respiration rates were significantly lower during periods of higher mean temperatures. Indiana Q. alba showed a significantly higher beta1 when plants were grown at 16 degrees C than when grown at 26 degrees C. Acclimation in Q. alba was unaccompanied by changes in leaf nitrogen concentration, but was associated with a change in leaf total nonstructural carbohydrate concentration. Total nonstructural carbohydrate concentration was slightly, but statistically, lower (13.6 versus 12%, P<0.05) after a 10 degrees C increase in temperature.  相似文献   

3.
We examined fine-root (< 2.0 mm diameter) respiration throughout one growing season in four northern hardwood stands dominated by sugar maple (Acer saccharum Marsh.), located along soil temperature and nitrogen (N) availability gradients. In each stand, we fertilized three 50 x 50 m plots with 30 kg NO(3) (-)-N ha(-1) year(-1) and an additional three plots received no N and served as controls. We predicted that root respiration rates would increase with increasing soil temperature and N availability. We reasoned that respiration would be greater for trees using NO(3) (-) as an N source than for trees using NH(4) (+) as an N source because of the greater carbon (C) costs associated with NO(3) (-) versus NH(4) (+) uptake and assimilation. Within stands, seasonal patterns of fine-root respiration rates followed temporal changes in soil temperature, ranging from a low of 2.1 micro mol O(2) kg(-1) s(-1) at 6 degrees C to a high of 7.0 micro mol O(2) kg(-1) s(-1) at 18 degrees C. Differences in respiration rates among stands at a given soil temperature were related to variability in total net N mineralized (48-90 micro g N g(-1)) throughout the growing season and associated changes in mean root tissue N concentration (1.18-1.36 mol N kg(-1)). The hypothesized increases in respiration in response to NO(3) (-) fertilization were not observed. The best-fit model describing patterns within and among stands had root respiration rates increasing exponentially with soil temperature and increasing linearly with increasing tissue N concentration: R = 1.347Ne(0.072T) (r(2) = 0.63, P < 0.01), where R is root respiration rate ( micro mol O(2) kg(-1) s(-1)), N is root tissue N concentration (mol N kg(-1)), and T is soil temperature ( degrees C). We conclude that, in northern hardwood forests dominated by sugar maple, root respiration is responsive to changes in both soil temperature and N availability, and that both factors should be considered in models of forest C dynamics.  相似文献   

4.
A perfusive method combined with an open-system carbon dioxide measurement system was used to assess rhizosphere respiration of Acer saccharum Marsh. (sugar maple) and Betula alleghaniensis Britton (yellow birch) seedlings grown in 8-l pots filled with coarse sand. We compared in vivo and in situ rhizosphere respiration between species, among light regimes (40, 17 and 6% of full daylight) and at different times during the day. To compute specific rhizosphere respiration, temperature corrections were made with either species-specific coefficients (Q10) based on the observed change in respiration rate between 15 and 21 degrees C or an arbitrarily assigned Q10 of 2. Estimated, species-specific Q10 values were 3.0 and 3.4 for A. saccharum and B. alleghaniensis, respectively, and did not vary with light regime. Using either method of temperature correction, specific rhizosphere respiration did not differ either between A. saccharum and B. alleghaniensis, or among light regimes except in A. saccharum at 6% of full daylight. At this irradiance, seedlings were smaller than in the other light treatments, with a larger fine root fraction of total root dry mass, resulting in higher respiration rates. Specific rhizosphere respiration was significantly higher during the afternoon than at other times of day when temperature-corrected on the basis of an arbitrary Q10 of 2, suggesting the possibility of diurnal variation in a temperature-independent component of rhizosphere respiration.  相似文献   

5.
Zha T  Wang KY  Ryyppö A  Kellomäki S 《Tree physiology》2002,22(17):1241-1248
Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed in environment-controlled chambers that for 4 years maintained: (1) ambient conditions (CON); (2) elevated atmospheric carbon dioxide concentration [CO2] (ambient + 350 micromol mol-1; EC); (3) elevated temperature (ambient + 2-3 degrees C; ET); or (4) elevated [CO2] and temperature (EC+ET). Dark respiration rate, specific leaf area (SLA) and the concentrations of starch and soluble sugars in needles were measured in the fourth year. Respiration rates, on both an area and a mass basis, and SLA decreased in EC relative to CON, but increased in ET and EC+ET, regardless of needle age class. Starch and soluble sugar concentrations for a given needle age class increased in EC, but decreased slightly in ET and EC+ET. Respiration rates and SLA were highest in current-year needles in all treatments, whereas starch and soluble sugar concentrations were highest in 1-year-old needles. Relative to that of older needles, respiration of current-year needles was inhibited less by EC, but increased in response to ET and EC+ET. All treatments enhanced the difference in respiration between current-year and older needles relative to that in CON. Age had a greater effect on needle respiration than any of the treatments. There were no differences in carbohydrate concentration or SLA between needle age classes in response to any treatment. Relative to CON, the temperature coefficient (Q10) of respiration increased slightly in EC, regardless of age, but declined significantly in ET and EC+ET, indicating acclimation of respiration to temperature.  相似文献   

6.
We studied effects of soil temperature on shoot and root extension growth and biomass and carbohydrate allocation in Scots pine (Pinus sylvestris L.) seedlings at the beginning of the growing season. One-year-old Scots pine seedlings were grown for 9 weeks at soil temperatures of 5, 9, 13 and 17 degrees C and an air temperature of 17 degrees C. Date of bud burst, and the elongation of shoots and roots were monitored. Biomass of current and previous season roots, stem and needles was determined at 3-week intervals. Starch, sucrose, glucose, fructose, sorbitol and inositol concentrations were determined in all plant parts except new roots. The timing of both bud burst and the onset of root elongation were unaffected by soil temperature. At Week 9, height growth was reduced and root extension growth was much less at a soil temperature of 5 degrees C than at higher soil temperatures. Total seedling biomass was lowest in the 5 degrees C soil temperature treatment and highest in the 13 degrees C treatment, but there was no statistically significant difference in total biomass between seedlings grown at 13 and 17 degrees C. In response to increasing soil temperature, below-ground biomass increased markedly, resulting in a slightly higher allocation of biomass to below-ground parts. Among treatments, root length was greatest at a soil temperature of 17 degrees C. The sugar content of old roots was unaffected by soil temperature, but the sugar content of new needles increased with increasing soil temperature. The starch content of all seedling parts was lowest in seedlings grown at 17 degrees C. Otherwise, soil temperature had no effect on seedling starch content.  相似文献   

7.
Teskey RO  Will RE 《Tree physiology》1999,19(8):519-525
To determine the extent to which loblolly pine seedlings (Pinus taeda L.) acclimate to high temperatures, seedlings from three provenances-southeastern Texas (mean annual temperature 20.3 degrees C), southwestern Arkansas (mean annual temperature 16.2 degrees C) and Chesapeake, Maryland (mean annual temperature 12.8 degrees C)-were grown at constant temperatures of 25, 30, 35 or 40 degrees C in growth chambers. After two months, only 14% of the seedlings in the 40 degrees C treatment survived, so the treatment was dropped from the experiment. Provenance and family differences were not significant for most measured variables. Total biomass was similar in the 25 and 30 degrees C treatments, and less in the 35 degrees C treatment. Foliage biomass was higher, and root biomass lower, in the 30 degrees C treatment compared with the 25 degrees C treatment. Net photosynthesis and dark respiration of all seedlings were measured at 25, 30 and 35 degrees C. Both net photosynthesis and dark respiration exhibited acclimation to the temperature at which the seedlings were grown. For each temperature treatment, the highest rate of net photosynthesis was measured at the growth temperature. Dark respiration rates increased with increasing measurement temperature, but the basal rate of respiration, measured at 25 degrees C, decreased from 0.617 &mgr;mol m(-2) s(-1) in the 25 degrees C treatment to 0.348 &mgr;mol m(-2) s(-1) in the 35 degrees C treatment, resulting in less carbon loss in the higher temperature treatments than if the seedlings had not acclimated to the growth conditions. Temperature acclimation, particularly of dark respiration, may explain why total biomass of seedlings grown at 30 degrees C was similar to that of seedlings grown at 25 degrees C.  相似文献   

8.
Stem respiration was measured throughout 1993 on 56 mature trees of three species (Quercus alba L., Quercus prinus L., and Acer rubrum L.) in Walker Branch Watershed, Oak Ridge, Tennessee. A subset of the trees was remeasured during 1994. Diameter increments, stem temperatures and soil water were also monitored. Respiration rates in the spring and summer of 1993 tracked growth rate increments, except during a drought when growth dropped to zero and respiration increased to its highest rate. During the dormant season, rates of total stem respiration (R(t)) tended to be greater in large trees with thick sapwood but no such trend was observed during the growing season. Before and after the growing season, respiration rates correlated well with stem temperatures. Estimated values of Q(10) were 2.4 for the two oak species and 1.7 for red maple. The Q(10) values were used along with baseline respiration measurements and stem temperatures to predict seasonal changes in maintenance respiration (R(m)). In red maple, annual total R(m) accounted for 56 and 60% of R(t) in 1993 and 1994, respectively. In chestnut oak, R(m) accounted for 65 and 58% of R(t) in 1993 and 1994, respectively. In white oak, R(m) accounted for 47 and 53% of R(t) in 1993 and 1994, respectively. Extrapolating these data to the stand level showed that woody tissue respiration accounted for 149 and 204 g C m(-2) soil surface year(-1) in 1993 and 1994, respectively.  相似文献   

9.
Our first objective was to link the seasonality of fine root dynamics with soil respiration in a ponderosa pine (Pinus ponderosa P. & C. Lawson) plantation located in the Sierra Nevada of California. The second objective was to examine how canopy photosynthesis influences fine root initiation, growth and mortality in this ecosystem. We compared CO2 flux measurements with aboveground and belowground root dynamics. Initiation of fine root growth coincided with tree stem thickening and shoot elongation, preceding new needle growth. In the spring, root, shoot and stem growth occurred simultaneously with the increase in canopy photosynthesis. Compared with the other tree components, initial growth rate of fine roots was the highest and their growing period was the shortest. Both above and belowground components completed 90% of their growth by the end of July and the growing season lasted approximately 80 days. The period for optimal growth is short at the study site because of low soil temperatures during winter and low soil water content during summer. High photosynthetic rates were observed following unusual late-summer rains, but tree growth did not resume. The autotrophic contribution to soil respiration was 49% over the whole season, with daily contributions ranging between 18 and 87%. Increases in soil and ecosystem respiration were observed during spring growth; however, the largest variation in soil respiration occurred during summer rain events when no growth was observed. Both the magnitude and persistence of the soil respiration pulses were positively correlated with the amount of rain. These pulses accounted for 16.5% of soil respiration between Days 130 and 329.  相似文献   

10.
Accurate estimates of root respiration are crucial to predicting belowground C cycling in forest ecosystems. Inhibition of respiration has been reported as a short-term response of plant tissue to elevated measurement [CO(2)]. We sought to determine if measurement [CO(2)] affected root respiration in samples from mature sugar maple (Acer saccharum Marsh.) forests and to assess possible errors associated with root respiration measurements made at [CO(2)]s lower than that typical of the soil atmosphere. Root respiration was measured as both CO(2) production and O(2) consumption on excised fine roots ( 20,000 micro l l(-1). Root respiration was significantly affected by the [CO(2)] at which measurements were made for both CO(2) production and O(2) consumption. Root respiration was most sensitive to [CO(2)] near and below normal soil concentrations (< 1500 micro l l(-1)). Respiration rates changed little at [CO(2)]s above 3000 micro l l(-1) and were essentially constant above 6000 micro l l(-1) CO(2). These findings call into question estimates of root respiration made at or near atmospheric [CO(2)], suggesting that they overestimate actual rates in the soil. Our results indicate that sugar maple root respiration at atmospheric [CO(2)] (350 micro l l(-1)) is about 139% of that at soil [CO(2)]. Although the causal mechanism remains unknown, the increase in root respiration at low measurement [CO(2)] is significant and should be accounted for when estimating or modeling root respiration. Until the direct effect of [CO(2)] on root respiration is fully understood, we recommend making measurements at a [CO(2)] representative of, or higher than, soil [CO(2)]. In all cases, the [CO(2)] at which measurements are made and the [CO(2)] typical of the soil atmosphere should be reported.  相似文献   

11.
12.
We hypothesized that photoinhibition of shade-developed leaves of deciduous hardwood saplings would limit their ability to acclimate photosynthetically to increased irradiance, and we predicted that shade-tolerant sugar maple (Acer saccharum Marsh.) would be more susceptible to photoinhibition than intermediately shade-tolerant red oak (Quercus rubra L.). After four weeks in a canopy gap, photosynthetic rates of shade-developed leaves of both species had increased in response to the increase in irradiance, although final acclimation was more complete in red oak. However, photoinhibition occurred in both species, as indicated by short-term reductions in maximum rates of net photosynthesis and the quantum yield of oxygen evolution, and longer-term reductions in the efficiency of excitation energy capture by open photosystem II (PSII) reaction centers (dark-adapted F(v)/F(m)) and the quantum yield of PSII in the light (phi(PSII)). The magnitude and duration of this decrease were greater in sugar maple than in red oak, suggesting greater susceptibility to photoinhibition in sugar maple. Photoinhibition may have resulted from photodamage, but it may also have involved sustained rates of photoprotective energy dissipation (especially in red oak). Photosynthetic acclimation also appeared to be linked to an ability to increase leaf nitrogen content. Limited photosynthetic acclimation in shade-developed sugar maple leaves may reflect a trade-off between shade-tolerance and rapid acclimation to a canopy gap.  相似文献   

13.
Root respiration may account for as much as 60% of total soil respiration. Therefore, factors that regulate the metabolic activity of roots and associated microbes are an important component of terrestrial carbon budgets. Root systems are often sampled by diameter and depth classes to enable researchers to process samples in a systematic and timely fashion. We recently discovered that small, lateral roots at the distal end of the root system have much greater tissue N concentrations than larger roots, and this led to the hypothesis that the smallest roots have significantly higher rates of respiration than larger roots. This study was designed to determine if root respiration is related to root diameter or the location of roots in the soil profile. We examined relationships among root respiration rates and N concentration in four diameter classes from three soil depths in two sugar maple (Acer saccharum Marsh.) forests in Michigan. Root respiration declined as root diameter increased and was lower at deeper soil depths than at the soil surface. Surface roots (0-10 cm depth) respired at rates up to 40% greater than deeper roots, and respiration rates for roots < 0.5 mm in diameter were 2.4 to 3.4 times higher than those for roots in larger diameter classes. Root N concentration explained 70% of the observed variation in respiration across sites and size and depth classes. Differences in respiration among root diameter classes and soil depths appeared to be consistent with hypothesized effects of variation in root function on metabolic activity. Among roots, very fine roots in zones of high nutrient availability had the highest respiration rates. Large roots and roots from depths of low nutrient availability had low respiration rates consistent with structural and transport functions rather than with active nutrient uptake and assimilation. These results suggest that broadly defined root classes, e.g., fine roots are equivalent to all roots < 2.0 mm in diameter, do not accurately reflect the functional categories typically associated with fine roots. Tissue N concentration or N content (mass x concentration N) may be a better indicator of root function than root diameter.  相似文献   

14.
Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.  相似文献   

15.
Stem respiration in 20-year-old Scots pine (Pinus sylvestris L.) trees was examined following 5 years of exposure to ambient conditions (CON), elevated atmospheric carbon dioxide concentration ([CO2]) (ambient + 350 micromol mol(-1), (EC)), elevated temperature (ambient + 2-6 degrees C, (ET)) or a combination of elevated [CO2] and elevated temperature (ECT). Stem respiration varied seasonally regardless of the treatment and displayed a similar trend to temperature, with maximum rates occurring around Day 190 in summer and minimum rates in winter. Respiration normalized to 15 degrees C (R15) was higher in the growing season than in the non-growing season, whereas the temperature coefficient (Q10) was lower in the growing season. Annually averaged R15 was 0.36, 0.43, 0.40 and 0.44 micromol m(-2) s(-1) under CON, EC, ET and ECT conditions, respectively, whereas the corresponding values for total stem respiration were 6.55, 7.69, 7.50 and 7.90 mol m(-2) year(-1). The EC, ET and ECT treatments increased R15 by 18, 11 and 22%, respectively, relative to CON, and increased the modeled annual total stem respiration by 18, 15 and 21%. The increase in modeled annual stem respiration under EC and ECT conditions was caused mainly by higher maintenance respiration (22 and 25%, respectively, whereas the increase in growth respiration was 9 and 12%). Growth respiration was unaltered by ET. The treatments did not significantly affect the respiratory response to stem temperature; the mean Q10 value was 2.04, 2.10, 1.99 and 2.12 in the CON, EC, ET and ECT treatments, respectively. It is suggested that the increase in stem respiration was partly a result of the increased growth rate. We conclude that elevated [CO2] increased the maintenance component of respiration more than the growth component.  相似文献   

16.
We investigated the effects of altered precipitation on leaf osmotic potential at full turgor (Psi(pio)) of several species in an upland oak forest during the 1994 growing season as part of a Throughfall Displacement Experiment at the Walker Branch Watershed near Oak Ridge, Tennessee. The main species sampled included overstory chestnut oak (Quercus prinus L.), white oak (Q. alba L.), red maple (Acer rubrum L.); intermediates sugar maple (A. saccharum L.) and blackgum (Nyssa sylvatica Marsh.); and understory dogwood (Cornus florida L.) and red maple. The precipitation treatments were: ambient precipitation; ambient minus 33% of throughfall (dry); and ambient plus 33% of throughfall (wet). Except in late September, midday leaf water potentials (Psi(l)) were generally high in all species in all treatments, ranging from -0.31 to -1.34 MPa for C. florida, -0.58 to -1.51 MPa for A. rubrum, and -0.78 to -1.86 MPa for Q. prinus. Both treatment and species differences in Psi(pio) were evident, with oak species generally exhibiting lower Psi(pio) than A. saccharum, A. rubrum, C. florida, and N. sylvatica. The Psi(pio) of C. florida saplings declined in the dry treatment, and Q. prinus, Q. alba, and A. saccharum all exhibited a declining trend of Psi(pio) in the dry treatment, although Psi(pio) of Q. prinus leaves increased in late August, corresponding to a recovery in soil water potential. Cornus florida exhibited osmotic adjustment with the largest adjustment coinciding with the period of lowest soil water potential in June. The only other species to exhibit osmotic adjustment was Q. prinus, which also maintained a lower baseline Psi(pio) than the other species. We conclude that a 33% reduction of throughfall is sufficient both to alter the water relations of some species in the upland oak forest and to enable the identification of those species capable of osmotic adjustment to a short-term drought during a wet year.  相似文献   

17.
Larch (Larix decidua Mill.) seedlings of a low altitude (600 m) Austrian provenance were raised outdoors and acclimated in chambers for 14 to 24 days during August and September at either 8 degrees C and an atmospheric saturation vapor pressure deficit (DeltaW) of 2.5 Pa kPa(-1), or 24 degrees C and a DeltaW of 6.2 Pa kPa(-1). Subsequently, their rates of photosynthesis, dark respiration and transpiration were measured at temperatures between 5 and 30 degrees C with DeltaW either maintained below 10 Pa kPa(-1) or allowed to increase with temperature up to 38 Pa kPa(-1). Below 15 degrees C the photosynthetic rate of cold-acclimated plants was higher, but above 15 degrees C it was lower, than that of warm-acclimated plants. Temperature acclimation caused a greater shift in the temperature optimum for photosynthesis when DeltaW was kept small than when it was allowed to increase with temperature. When DeltaW was kept small, leaf conductance of cold-acclimated plants, unlike that of warm-acclimated plants, did not increase with temperature above 15 degrees C. When DeltaW increased with temperature, leaf conductance of cold-acclimated plants decreased more rapidly with temperature than that of warm-acclimated plants. Low temperature acclimation increased the rate of photosynthesis below 15 degrees C without affecting leaf conductance, which indicates that there was an adaptation in leaf internal processes. Further evidence of a metabolic adaptation to acclimation temperature is that dark respiration of cold-acclimated plants was twice that of warm-acclimated plants at all temperatures.  相似文献   

18.
If an increase in temperature will limit the growth of a species, it will be in the warmest portion of the species distribution. Therefore, in this study we examined the effects of elevated temperature on net carbon assimilation and biomass production of northern red oak (Quercus rubra L.) seedlings grown near the southern limit of the species distribution. Seedlings were grown in chambers in elevated CO(2) (700 μmol mol(-1)) at three temperature conditions, ambient (tracking diurnal and seasonal variation in outdoor temperature), ambient +3 °C and ambient +6 °C, which produced mean growing season temperatures of 23, 26 and 29 °C, respectively. A group of seedlings was also grown in ambient [CO(2)] and ambient temperature as a check of the growth response to elevated [CO(2)]. Net photosynthesis and leaf respiration, photosynthetic capacity (V(cmax), J(max) and triose phosphate utilization (TPU)) and chlorophyll fluorescence, as well as seedling height, diameter and biomass, were measured during one growing season. Higher growth temperatures reduced net photosynthesis, increased respiration and reduced height, diameter and biomass production. Maximum net photosynthesis at saturating [CO(2)] and maximum rate of electron transport (J(max)) were lowest throughout the growing season in seedlings grown in the highest temperature regime. These parameters were also lower in June, but not in July or September, in seedlings grown at +3 °C above ambient, compared with those grown in ambient temperature, indicating no impairment of photosynthetic capacity with a moderate increase in air temperature. An unusual and potentially important observation was that foliar respiration did not acclimate to growth temperature, resulting in substantially higher leaf respiration at the higher growth temperatures. Lower net carbon assimilation was correlated with lower growth at higher temperatures. Total biomass at the end of the growing season decreased in direct proportion to the increase in growth temperature, declining by 6% per 1 °C increase in mean growing season temperature. Our observations suggest that increases in air temperature above current ambient conditions will be detrimental to Q. rubra seedlings growing near the southern limit of the species range.  相似文献   

19.
Coarse and fine root respiration rates of aspen (Populus tremuloides Michx.) were measured at 5, 15 and 25 degrees C. Coarse roots ranged from 0.65 to 4.45 cm in diameter, whereas fine roots were less than 5 mm in diameter. To discriminate between maintenance and growth respiration, root respiration rates were measured during aboveground growing periods and dormant periods. An additional measurement of coarse root respiration was made during spring leaf flush, to evaluate the effect of mobilization of resources for leaf expansion on root respiration. Fine roots respired at much higher rates than coarse roots, with a mean rate at 15 degrees C of 1290 micromol CO2 m-3 s-1 during the growing period, and 660 micromol CO2 m-3 s-1 during the dormant period. The temperature response of fine root respiration rate was nonlinear: mean Q10 was 3.90 for measurements made at 5-15 degrees C and 2.19 for measurements made at 15-25 degrees C. Coarse root respiration rates measured at 15 degrees C in late fall (dormant season) were higher (370 micromol CO2 m-3 s-1) than rates from roots collected at leaf flush and early summer (200 micromol CO2 m-3 s-1). The higher respiration rates in late fall, which were accompanied by decreased total nonstructural carbohydrate (TNC) concentrations, suggest that respiration rates in late fall included growth expenditures, reflecting recent radial growth. Neither bud flush nor shoot growth of the trees caused an increase in coarse root respiration or a decrease in TNC concentrations, suggesting a limited role of coarse roots as reserve storage organs for spring shoot growth, and a lack of synchronization between above- and belowground growth. Pooling the data from the coarse and fine roots showed a positive correlation between nitrogen concentration and respiration rate.  相似文献   

20.
Soil temperature is proposed to affect the photosynthetic rate and carbon allocation in boreal trees through sink limitation. The aim of this study was to investigate the effect of temperature on CO(2) exchange, biomass partitioning and ectomycorrhizal (ECM) fungi of boreal tree species. We measured carbon allocation, above- and below-ground CO(2) exchange and the species composition of associated ECM fungi in the rhizosphere of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies K.) and silver birch (Betula pendula Roth) seedlings grown in soil maintained at 7-12, 12-15 and 16-22 °C. We found increased root biomass and photosynthetic rate at higher soil temperatures, but simultaneously with photosynthesis rate, higher temperature generally increased soil respiration as well as shoot, and root and rhizosphere respiration. The net CO(2) exchange and seedling biomass did not increase significantly with increasing temperature due to a concomitant increase in carbon assimilation and respiration rates. The 2-month-long growth period in different soil temperatures did not alter the ECM fungi species composition and the below-ground carbon sink strength did not seem to be directly related to ECM biomass and species composition in any of the tree species. Ectomycorrhizal species composition and number of mycorrhiza did not explain the CO(2) exchange results at different temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号