首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A common method to determine the vitality of fine root tissue is the measurement of respiratory activity with triphenyltetrazolium chloride (TTC). The colorless TTC is reduced to the red-colored triphenyl formazan (TF) as a result of the dehydrogenase activity of the mitochondrial respiratory chain. However, measurements with woody fine roots of adult Norway spruce and European beech trees showed that dead control roots had a high potential to react with TTC. High reactivity was found in boiled fine roots and the bark of coarse roots, but not in the boiled wood of coarse roots. By sequential extraction of dried and ground adult Norway spruce fine roots, reactivity with TTC was reduced by about 75% (water extraction), 93% (water/methanol extraction) and 94% (water/acetone extraction). The water extract reacted with TTC in the same way as polyphenols such as lignin, catechin and epicatechin. Boiling did not affect the extent to which fine roots of adult trees reduced TTC, whereas it greatly reduced TTC reduction by seedling roots. Application of the TTC test to roots of spruce seedlings subjected to increasing drought showed a progressive decrease in TTC reduction. The decrease in TTC reduction was paralleled by a reduction in O(2) consumption, thus supporting the conclusion that for roots with a low polyphenol content the TTC test provides a valid assessment of tissue vitality. Our results suggest, however, that the TTC test should not be applied to the fine roots of adult trees because of their high content of polyphenolic compounds whose reaction with TTC masks changes in TTC reduction due to changes in the respiratory capacity of the tissue.  相似文献   

2.
Root is an important plant organ and has high heterogeneity. Global warming could change root and affect belowground ecological processes. There is little information on how fine roots branch orders responds to global change. This study examined the growth, morphological and physiological responses of fine roots of a subalpine coniferous species to warming. We investigated biomass, average diameter, specific root length (SRL), triphenyltetrazolium chloride (TTC) reducing capacity, carbon (C), total non-structural carbon (TNC) and fractions of the primal five branch order roots of Abies faxoniana in April, August, October and December. The decrease in total fine roots biomass after a growing season was significantly greater under warming treatment compared to control, suggesting that warming could accelerate the carbon input from root to soil, but the increment depended on tree species. Warming did not affect average diameter and SRL. Responses of biomass, TTC reducing capacity, C, TNC and fractions to warming significantly differed with root order and month. Significant warming effects were only observed in C and starch concentration of the first order and also TNC and soluble sugar concentration of the first three orders. The results indicated that the lower order roots (the first three orders) were more sensitive to warming, probably because they had more frequent, intense interactions with soil and low defense capability. Thus, global warming may dramatically alter root functions such as nutrients and water uptake as well as the cycle of C and nutrients at the whole subalpine coniferous forest ecosystem.  相似文献   

3.
4.
This review covers the heterogeneity in functions within the fine root architecture in order to clarify the multiple functions of fine roots. Many fine root characteristics, such as anatomy, physiology, morphology, and their consequences for the ecosystem, differ among root ages and ontogenetic branching hierarchies. Individual root age can be characterized by tissue development, with the main tissues developing from primary to secondary tissues. The physiological characteristics of individual roots, such as absorptivity and respiration rates, decrease with increasing branching order, mainly because of aging and tissue development. The C/N ratio and lignin and suberin contents also increase with branching order because of root aging. Morphological characteristics, such as diameter and specific root length, differ among root orders because of both aging and ontogenetic differences. The mortality of individual roots differs among branching orders and root diameters. The life cycles of roots in the fine root architecture, that is, ephemeral and perennial, indicate ontogenetic differences in functions and demographic traits, similar to those for leaves and branches in shoots. In addition, differences in individual root life cycles may affect the root chemical composition, in turn, affecting the decomposition rate. Future studies should seek to identify heterorhizic units in mortality related to anatomical, physiological, and morphological differences for various species. The decomposition processes of each mortality unit within the fine root architecture are also important in understanding the link between physiological and ecosystem functions.  相似文献   

5.
Juniper species are noted for long-lived foliage, low and persistent gas exchange activity and drought tolerance. Because leaves and roots of the same species are thought to be similar in structure and life history, we hypothesized that Juniperus osteosperma (Torr.) Little (Utah juniper) fine roots would reflect the persistent aboveground foliage characteristic of this species. We monitored fine roots, less than 1 mm in diameter, by minirhizotron imaging to a depth of 150 cm over two growing seasons from April 2002 to December 2003. We measured fine root numbers, lengths and diameters, and noted the time of birth and death of root segments. We correlated our root data with soil water potential measured by thermocouple psychrometry and ecosystem evapotranspiration measured by ecosystem eddy flux. Median fine root lifespan, determined by the Kaplan-Meier product-limit method, was about one year, much less than foliage lifespan estimates of more than five years. Yet, roots of juniper live much longer than those of other Great Basin species. The median survivorship of shallow and deep roots was 144 and 448 days, respectively. Production of new roots was observed during periods of favorable soil water potential and there was a seasonal progression of increased new roots and root length during the warm season toward lower soil depths with root loss in the upper soil layers. This was also reflected in water extraction which progressed to greater soil depths later in the warm season. Aboveground, rates of ecosystem evapotranspiration decreased with decreasing soil water potentials in a similar manner in both 2002 and 2003, reflecting the relocation of roots to available water at depth. Juniper exhibited a flexible root depth distribution throughout the 20 months of this study, indicating the potential to respond to shifting soil water resources despite long fine root lifespans.  相似文献   

6.
Leuschner C  Coners H  Icke R 《Tree physiology》2004,24(12):1359-1367
The spatial heterogeneity of water uptake by fine roots under field conditions was analyzed in situ with miniature sap flow gauges in a mature beech-oak-spruce mixed stand. Sap flow rate (J), sap flow density (Jd), and root surface-area-specific flow rate (uptake rate, Js) were measured for eight to 10 small-diameter roots (3-4 mm) per species in the organic layer (superficial roots) and in the mineral soil (30-80 cm, deep roots) during four months in summer 1999. We calculated Js by relating J to the surface area of the section of the fine root system distal to the position of the gauge on the root. When measured synchronously, roots of the three species did not differ significantly in mean Js, although oak roots tended to have lower rates. However, Jd decreased in the sequence spruce > beech > oak in most measurement periods. Microscopic investigation revealed differences in fine root anatomy that may partly explain the species differences in Jd and Js. Oak fine roots had a thicker periderm than beech and spruce roots of similar diameter and spruce roots had fewer fine branch rootlets than the other species. Synchronously recorded Jd and Js of nearby roots of the same tree species showed large differences in flow with coefficients of variation from 25 to 150% that could not be explained by patchy distribution of soil water. We hypothesize that the main cause of the large spatial heterogeneity in root water uptake is associated with differences between individual roots in morphology and ultrastructure of the root cortex that affect root radial and root-soil interface conductivities. The high intraspecific variation in Js may mask species differences in root water uptake. Superficial roots of all species typically had about five times higher Jd than deep roots of the same species. However, Js values were similar for superficial and deep roots in beech and spruce because small diameter roots of both species were more branched in the organic layer than in mineral soil. In oak, deep roots had lower Js (maximum of 100 g m(-2) day(-1)) than superficial roots (about 1000 g m(-2) day(-1)). We conclude that temperate tree species in mixed stands have different water uptake capacities. Water flow in the rhizosphere of forests appears to be a highly heterogeneous process that is influenced by both tree species and differences in uptake rates of individual roots within a species.  相似文献   

7.
Fine roots play an important role in above- and belowground carbon (C) allocation in forest ecosystems. However, few studies have focused on the seasonal dynamics of fine roots with different branching orders. The objective of this study is to provide insight to the seasonal heterogeneity in roots of different orders within root hierarchies of poplar trees under different soil conditions. Three plots were established in high (plantation A) and low (plantation B) soil nutrient conditions. Fine roots were sampled in each of four seasons throughout one year. All sampled roots were classified into one to five groups depending on their branching order, and the dry biomass of living roots and the concentrations of C, nitrogen (N) and total non-structural carbohydrate (TNC) were examined. Low order (first- to second-order) roots demonstrated more significant seasonal dynamics than high order roots, and the biomass of first-order fine roots was positively influenced by soil temperature and moisture while the biomass of second-order fine roots was negatively affected by soil nutrient conditions. The different responses of fine roots to environmental fluctuations implied a high division of root function, even within low order roots. The C and N chemistry of poplar fine roots also differed significantly with branching order; element concentrations were lower in low order roots. Principal component analysis indicated that root order explained 98.2% of the variation in fine root chemistry. Moreover, the first-order roots in plantation A had greater C but less TNC concentrations than those in plantation B, suggesting that C allocation in low order roots may be more responsive to soil nutrient conditions. The allocation of C and N also exhibited significant seasonal dynamics (p < 0.05); the TNC concentration was highest in winter, whereas C:N ratios were significantly lower in the summer and fall in each order of fine roots (p < 0.05). All these results suggest that branching order may be related to root growth and photoassimilate allocation, which should receive greater attention in future studies on C and N fluxes in forest ecosystems.  相似文献   

8.
Two-year seedlings of Quercus robur (pedunculateoak) were root-pruned before transplanting in order toevaluate the importance of coarse versus fine roots onregrowth. Root systems were pruned by leaving c. 19,13 or 7 cm root from the root collar. Alternatively,coarse roots (>2 mm in diameter) were removed, leaving only the taproot and the fine roots (<2 mm)attached, or fine roots were removed from coarse rootsand taproot. Growth of shoots and roots after onegrowing season was compared to an unpruned controlunder standard nursery conditions. Seedlings rootpruned to 19, 13 or 7 cm were further tested undercompetition achieved by transplanting into a mixtureof clover and grass. Pruning of the root systemsignificantly reduced regrowth in terms of total plantDW in accordance with the severity of pruning, shootDW being more affected than root DW. Removal of coarseroots depressed final root DW whereas removal of fineroots reduced shoot DW and hence root:shoot ratioincreased. The study suggests that fine and coarseroots have different roles in root:shoot allocation.The competition test increased root:shoot ratioindicating that competition induced seedlings toallocate more of their resources into growth of theroot system.  相似文献   

9.
We estimated fine root biomass in a Japanese cedar (Cryptomeria japonica) plantation using a min-irhizotron technique. Since data obtained from minirhizo-trons are limited to the length and diameter of fine roots observed on minirhizotron tubes, data conversion is necessary to determine the fine root biomass per unit soil volume or unit stand area. We first examined the regression between diameter squared and weight per unit length of fine roots in soil core samples, and calculated the fine root biomass on minirhizotron tubes from their length and diameter. Then we determined conversion factors based on the ratio of the fine root biomass in soil core samples to that on minirhizotron tubes. We examined calculation methods, using a single conversion factor for total fine root biomass in the soil for depths of 0–40cm (Cal1), or using four conversion factors for fine roots in the soil at 10-cm intervals (Cal2). Cal1 overestimated fine root biomass in the lower soil or underestimated that in the upper soil, while fine root biomass calculated using Cal2 better matched that in soil core samples. These results suggest that minirhizotron data should be converted separately for different soil depths to better estimate fine root biomass.  相似文献   

10.
Xinzhu Du  Xing Wei 《林业研究》2018,29(5):1321-1327
Fine roots are important in root absorption of nutrient and water, and in root turnover. Accurate definition of fine roots is a prerequisite to improved estimation of the physiological and ecological functions of forest ecosystems. Root development and physiological functions are reflections of root anatomical structure. In this study, the anatomical structures of different root orders were analyzed by examining paraffin sections of one-year old Fraxinus mandshurica seedlings. One-year-old F. mandshurica seedlings had over five root orders. The root anatomical structures of all orders showed more differences. First and second order roots consisted of four sections: the epidermis, cortex, pericycle, and vascular bundles. Fourth and fifth order roots were mainly composed of the skin and peripheral vascular bundles (including the xylem and phloem). Third order roots had root epidermal and cortical structures, but the quantity and integrity of the cortical cells were inferior to those of the first and second order roots, and superior to those of the fourth and fifth order roots. All the first and second order roots and some third order roots with discontinuous cork layer (< 0.4 mm in diameter), but not the fourth and fifth order roots, were the fine roots of one-year old F. mandshurica seedlings. Although they had similar diameters, different portions of root systems had different anatomical structures and therefore, vary in capacity to absorb water and nutrients. Fine roots were accurately defined by root diameter, branch orders, and anatomical structural features of one-year old F. mandshurica seedlings.  相似文献   

11.
The root systems of forest trees are composed of different diameters and heterogeneous physiological traits. However, the pattern of root respiration rates from finer and coarser roots across various tropical species remains unknown. To clarify how respiration is related to the morphological traits of roots, we evaluated specific root respiration and its relationships to mean root diameter (D) of various diameter and root tissue density (RTD; root mass per unit root volume; gcm(-3)) and specific root length (SRL; root length per unit root mass; mg(-1)) of the fine roots among and within 14 trees of 13 species from a primary tropical rainforest in the Pasoh Forest Reserve in Peninsular Malaysia. Coarse root (2-269mm) respiration rates increased with decreasing D, resulting in significant relationships between root respiration and diameter across species. A model based on a radial gradient of respiration rates of coarse roots simulated the exponential decrease in respiration with diameter. The respiration rate of fine roots (<2mm) was much higher and more variable than those of larger diameter roots. For fine roots, the mean respiration rates for each species increased with decreasing D. The respiration rates of fine roots declined markedly with increasing RTD and increased with increasing SRL, which explained a significant portion of the variation in the respiration among the 14 trees from 13 species examined. Our results indicate that coarse root respiration in tree species follows a basic relationship with D across species and that most of the variation in fine root respiration among species is explained by D, RTD and SRL. We found that the relationship between root respiration and morphological traits provides a quantitative basis for separating fine roots from coarse roots and that the pattern holds across different species.  相似文献   

12.
Attributes of fine roots (<2.0 mm diameter) were quantified in five southern Appalachian plant communities along an elevational gradient. These attributes include the seasonal dynamics of fine root mass and length, the depth distribution of fine roots, fine root width and, most importantly, the annual appearance and disappearance of fine roots. The principal objectives of this study were two-fold: (1) to compare these attributes of fine roots between plant communities and (2) to compare the results of the two methods used to quantify the attributes: (1) harvesting roots from forest soil with soil cores and (2) photographing roots growing against the windows of minirhizotron boxes. The plant communities that were sampled are characteristic of the region and are designated as follows from lowest elevation (782 m) to highest elevation (1347 m): (1) xeric ridge, (2) cove hardwoods, (3) low elevation mixed oak, (4) high elevation mixed oak, and (5) northern hardwoods. Fine root mass varies seasonally in this temperate region with lowest and highest mass in the spring and autumn, respectively. Fine root mass and fine root mass appearance were lowest in the cove hardwood community and highest in the low elevation mixed oak community. The total length of fine roots was highest in the xeric ridge community and lowest in the low elevation mixed oak community. The high total root length in the xeric ridge community was due to the presence of an exceptionally dense mat of very fine roots found there. The width of these roots was significantly less than that of roots on all other plots. Subsequent regression illustrates two strong patterns in the data. First, fine root mass, fine root mass appearance and leaf production were positively correlated. Second, fine root length and soil moisture were negatively correlated. The accumulation of root mass in these communities was linked to overall site productivity and the development of root length in response to moisture stress. Only the timing of root growth initiation was related to elevation and the associated parameter of soil temperature. The best estimates of fine root appearance and disappearance were generated by harvesting roots rather than photographing them. Some methodological problems with root photography implemented in this study are addressed.  相似文献   

13.
We used minirhizotrons to determine the vertical distribution of fine roots in a holm oak (Quercus ilex L.) forest in a typical Mediterranean area over a 3-year period (June 1994-March 1997). We measured fine root density (number of roots per unit area), fine root length density (length of roots per unit area), fine root area index (area of roots per unit area) and fine root mean diameter. Variables were pooled for each 10-cm depth interval to a depth of 60 cm. Fine roots tended to decrease with increasing depth except between 0 and 10 cm, where the values of all fine root variables were less than in the 10-cm stratum below. Fine root vertical distribution was compared with soil water content and soil temperature at different depths in the soil profile.  相似文献   

14.
内部沸腾强化肉桂皮中肉桂醛的提取工艺及机理   总被引:4,自引:0,他引:4  
用少量乙醇溶液润湿肉桂皮,然后加入热水,使渗透到肉桂皮微孔内的乙醇溶液沸腾,强化提取过程。实验结果表明,肉桂醛提取得率为2.43%,高于传统水提法。提取一次所需时间仅为1~5 m in,达到或者超过微波等非常规手段强化的效果。通过对热水温度的影响分析,发现内部沸腾时,提取速率发生突变,这种突变是由于孔内沸腾时产生对流引起的。  相似文献   

15.
环境因子对树木细根生物量、生产与周转的影响   总被引:40,自引:4,他引:40       下载免费PDF全文
细根在森林生态系统C平衡和养分循环中的重要作用已为大量研究所证实,树木有赖于细根吸收水分和养分,而细根对环境胁迫比较敏感,因此细根动态可指示环境变化,还可反映树木的健康状态,影响树木细根生产和周转的因子很多,本文在收集大量研究文献基础上,讨论了文献基础上,讨论了土壤养分,水分、pH值,温度等环境因子以及大气CO2增长对树木细根分布,生物量,生产和周转的影响,以期为我国开展细根生态学研究提供参考。  相似文献   

16.
Flooding is assumed to cause an energy crisis in plants because-due to a lack of O(2)-mitochondrial respiration is replaced by alcoholic fermentation which yields considerably less energy equivalents. In the present study, the effect of flooding on the carbon metabolism of flooding-tolerant pedunculate oak (Quercus robur L.) and flooding-sensitive European beech (Fagus sylvatica L.) seedlings was characterized. Whereas soluble carbohydrate concentrations dropped in roots of F. sylvatica, they were constant in Q. robur during flooding. At the same time, root alcohol dehydrogenase activities were decreased in beech but not in oak, suggesting substrate limitation of alcoholic fermentation in beech roots. Surprisingly, leaf and phloem sap sugar concentrations increased in both species but to a much higher degree in beech. This finding suggests that the phloem unloading process in flooding-sensitive beech was strongly impaired. It is assumed that root-derived ethanol is transported to the leaves via the transpiration stream. This mechanism is considered an adaptation to flooding because it helps avoid the accumulation of toxic ethanol in the roots and supports the whole plant's carbon metabolism by channelling ethanol into the oxidative metabolism of the leaves. A labelling experiment demonstrated that in the leaves of flooded trees, ethanol metabolism does not differ between flooded beech and oak, indicating that processes in the roots are crucial for the trees' flooding tolerance.  相似文献   

17.
We studied the responses of citrus (Citrus volkameriana Tan. & Pasq.) roots to 15 weeks of soil drying. A comparison was made between the fine roots of 1-year-old seedling root systems (seedling) and the fine roots of woody laterals of 6-year-old grafted trees (adult). Each seedling and woody lateral root system was established in a pair of vertically separated and independently irrigated soil compartments located in field root chambers excavated adjacent to the trees to which the woody laterals were attached. Root + soil respiration and fine root survival of seedlings and adults were similar for the first 5 weeks. However, eight weeks after termination of irrigation to the upper soil compartments, mortality of fine roots was high in adults but not seedlings. Fine roots of adults exposed to dry soil for 5, 8 and 15 weeks exhibited 2, 26 and 33% mortality, respectively, whereas the corresponding values for fine roots of seedlings were 2, 6 and 8%. Although root + soil respiration rates of adults and seedlings were similar before the soil drying treatment, rates for adults were only 25% of those for seedlings after 15 weeks of soil drying. We conclude that, although fine roots of adults and seedlings are similar in form, they respond differently to soil drying.  相似文献   

18.
Root respiration is closely related to root morphology, yet it is unclear precisely how to distinguish respiration-related root physiological functions within the branching fine root system. Root respiration and tissue N concentration were examined for different N fertilization treatments, sampling dates, branch orders and temperatures of larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) using the excised roots method. The results showed that N fertilization enhanced both root respiration and tissue N concentration for all five branch orders. The greatest increases in average root respiration for N fertilization treatment were 13.30% in larch and 18.25% in ash at 6°C. However, N fertilization did not change the seasonal dynamics of root respiration. Both root respiration and root tissue N concentration decreased with increase in root branch order. First-order (finest) roots exhibited the highest respiration rates and tissue N concentrations out of the five root branch orders examined. There was a highly significant linear relationship between fine root N concentration and root respiration rate. Root N concentration explained >60% of the variation in respiration rate at any given combination of root order and temperature. Root respiration showed a classical exponential relationship with temperature, with the Q(10) for root respiration in roots of different branching orders ranging from 1.62 to 2.20. The variation in root respiration by order illustrates that first-order roots are more metabolically active, suggesting that roots at different branch order positions have different physiological functions. The highly significant relationship between root respiration at different branch orders and root tissue N concentration suggests that root tissue N concentration may be used as a surrogate for root respiration, simplifying future research into the C dynamics of rooting systems.  相似文献   

19.
长白山阔叶红松林群落的细根现存量及养分内循环   总被引:3,自引:0,他引:3  
细根(直径≤2mm)是植物吸收水分和养分的重要器官,细根通过呼吸作用和周转过程向土壤输送有机质(Jackson et al.,1997;王政权等,2008)。细根生物量虽然仅占植物体总生物量的5%左右,但由于细根生长和周转迅速,其生长量可占森林初级生产力的50%~75%(Nadelhoffer et al.,1992),每  相似文献   

20.
Spatial statistical analyses were performed to describe root distribution and changes in soil strength in a mature clonal plantation of Eucalyptus spp. in the Congo. The objective was to analyze spatial variability in root distribution. Relationships between root distribution, soil strength and the water and nutrient uptake by the stand were also investigated. We studied three, 2.35-m-wide, vertical soil profiles perpendicular to the planting row and at various distances from a representative tree. The soil profiles were divided into 25-cm2 grid cells and the number of roots in each of three diameter classes counted in each grid cell. Two profiles were 2-m deep and the third profile was 5-m deep. There was both vertical and horizontal anisotropy in the distribution of fine roots in the three profiles, with root density decreasing sharply with depth and increasing with distance from the stump. Roots were present in areas with high soil strength values (> 6,000 kPa). There was a close relationship between soil water content and soil strength in this sandy soil. Soil strength increased during the dry season mainly because of water uptake by fine roots. There were large areas with low root density, even in the topsoil. Below a depth of 3 m, fine roots were spatially concentrated and most of the soil volume was not explored by roots. This suggests the presence of drainage channels, resulting from the severe hydrophobicity of the upper soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号