首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We studied the effects of ectomycorrhizal colonization by Laccaria bicolor (Maire) Orton S238 and Paxillus involutus (Batsch) Fr. 533 on cadmium (Cd) toxicity in Norway spruce seedlings (Picea abies (L.) Karst.). Both mycorrhizal and nonmycorrhizal seedlings were exposed to 0 (control), 0.5 or 5 &mgr;M CdSO(4) for 9 weeks in a sand culture system with frequent addition of nutrient solutions. In pure culture, P. involutus and L. bicolor showed similar Cd tolerance. However, in symbiosis, the Cd treatments decreased colonization by L. bicolor but not by P. involutus. Paxillus involutus ameliorated the negative effects of 0.5 &mgr;M Cd on shoot and root growth and chlorophyll content of old needles, whereas L. bicolor did not. Mycorrhizal colonization did not affect Cd concentrations of old needles and roots of seedlings. Despite differences between the ectomycorrhizal fungi in colonization and ability to alleviate Cd toxicity of seedlings, both species reduced Cd concentrations of young needles to a similar degree compared with nonmycorrhizal seedlings. However, in the 0.5 &mgr;M Cd treatment, the Cd content of needles of seedlings colonized by P. involutus was increased, whereas the Cd content of needles of seedlings colonized by L. bicolor was similar to that of needles of nonmycorrhizal seedings. When the amount of Cd translocated to needles was expressed on a root length basis to account for differences in the size of the root systems, the amount of Cd translocated to the needles was similar in seedlings mycorrhizal with P. involutus and in nonmycorrhizal seedlings. All mycorrhizal seedlings were similarly affected by 5 &mgr;M Cd, indicating that the amelioration efficiency of ectomycorrhizal fungi is dependent on the metal concentration to which the roots are exposed. Concentrations of P, K, Ca, Mg and Mn were decreased by 5 &mgr;M Cd to a similar extent in both nonmycorrhizal and mycorrhizal seedlings. In contrast to L. bicolor, P. involutus increased P uptake and altered patterns of root branching. We conclude that mycorrhizas alleviate Cd-induced reductions in growth of Picea abies seedlings. Although the two mycorrhizal fungi examined differed in their ability to alleviate Cd toxicity, these differences were not related to differences in Cd uptake or translocation to the shoot of the mycorrhizal seedlings. We suggest that amelioration of Cd toxicity by P. involutus may be a result of improved P nutrition or changes in root morphology, or both.  相似文献   

2.
Non-mycorrhizal Norway spruce seedlings (Picea abies Karst.) and Norway spruce seedlings colonized with Paxillus involutus Fr. were grown in an axenic silica sand culture system. After successful mycorrhizal colonization, the seedlings were exposed to 200 or 800 micro M AlCl(3) for 10 weeks. In both non-mycorrhizal and mycorrhizal seedlings, exposure to Al significantly reduced root growth and the uptake of Mg and Ca. After 5 weeks of exposure to 800 micro M Al, the mycorrhizal seedlings had significantly higher chlorophyll concentrations than the non-mycorrhizal seedlings, although no difference in Mg nutrition was apparent. After 10 weeks of exposure to Al, both non-mycorrhizal and mycorrhizal seedlings exhibited needle chlorosis and reduced photosynthetic activity. However, the aluminum-induced reduction in shoot growth was largely ameliorated by colonization with P. involutus. We conclude that mycorrhizal colonization modifies the phytotoxic effects of Al in Norway spruce seedlings. However, differences in physiological responses to Al between mycorrhizal and non-mycorrhizal seedlings may be largely reduced in the long term as a result of impaired mineral nutrient uptake.  相似文献   

3.
Sarjala T 《Tree physiology》1993,12(1):93-100
The influence of ammonium on glutamine synthetase activity (GS, EC 6.3.1.2) was studied in three species of ectomycorrhizal fungi, Paxillus involutus (Batsch:Fr) Fr, Piloderma croceum Erikss. and Hjortst. and Suillus variegatus (Fr) O Kuntze growing in pure culture, as well as in the roots and needles of nursery-grown, non-mycorrhizal and mycorrhizal Scots pine (Pinus sylvestris L.) seedlings inoculated with Paxillus involutus or Piloderma croceum as the symbiont. In response to increasing concentrations of ammonium in the nutrient solution, GS activity (expressed on a dry weight basis) increased slightly in Suillus variegatus but not in the other fungi. Glutamine synthetase activity increased in the roots and decreased in the needles of non-mycorrhizal seedlings as the ammonium concentration in the nutrient solution was increased from 0 to 1 mM, but no response was noted with further increases from 1 to 12 mM. Interspecies differences in GS activity were noted among the fungi growing in pure culture, but no significant interspecies differences were observed among the same fungi in the mycorrhizal state.  相似文献   

4.
Klugh KR  Cumming JR 《Tree physiology》2007,27(8):1103-1112
Aluminum (Al) in acidic soils is toxic to plants, affecting growth, water uptake and nutrient assimilation. Aluminum resistance in some plant species and genotypes has been ascribed to organic acid exudation from roots and arbuscular mycorrhizal (AM) fungal symbiosis. We investigated variation among several AM species in altering Al resistance of Liriodendron tulipifera L. and evaluated AM influence on organic acid production as a potential Al resistance mechanism. Growth, nutritional responses and rhizosphere organic acid profiles were assessed for seedlings in association with Acaulospora morrowiae Spain & Schenck, Glomus claroideum Schenck & Smith, G. clarum Nicol. & Schenck or Paraglomus brasilianum (Spain & Miranda) Morton & Redecker and non-mycorrhizal seedlings exposed to 0, 50 or 200 microM Al. Plants colonized by G. clarum had the greatest biomass, least Al and most phosphorus (P) in leaf tissues and exuded malate and citrate into the rhizosphere at rates that complexed 99% of delivered Al in all treatments. Other AM fungi did not confer significant Al resistance on L. tulipifera and did not maintain citrate and malate exudation in response to Al exposure. This study illustrates functional diversity among AM fungal species in conferred Al resistance to plants and highlights the potential importance of fungal diversity in ecosystem responses to environmental stresses.  相似文献   

5.
We compared the effects of two auxin transport inhibitors (2,3,5-triiodobenzoic acid (TIBA) and 1-N-naphthylphthalamic acid (NPA)) on rhizogenesis and mycorrhizal establishment of Picea abies L. (Karst.) seedlings inoculated with Laccaria bicolor S238N (Maire) Orton. Inoculation of seedlings with L. bicolor under in vitro conditions strongly increased host root and shoot growth. Although TIBA had no effect on taproot growth, NPA decreased taproot growth and deformed the root apex into a globular shape in both non-inoculated seedlings and seedlings inoculated with L. bicolor. Inoculation with L. bicolor strongly increased lateral rhizogenesis of the seedlings, and application of 100 microM indole-3-acetic acid (IAA) partially reproduced this effect. Although TIBA completely inhibited the stimulatory effect of L. bicolor on lateral root formation, NPA inhibited it only partially. Both TIBA and NPA counteracted the effect of exogenous IAA on lateral rhizogenesis. Inoculation with L. bicolor significantly increased shoot growth and seedling dry biomass, whereas application of exogenous IAA had no effect on either parameter. There was no effect of NPA on shoot growth and biomass production. The presence of TIBA completely prevented the development of ectomycorrhizal structures (mantle and Hartig net). In the presence of NPA, the number of seedlings colonized by the fungus was reduced and the degree of development of ectomycorrhizal structures was variable, but not completely prevented. In medium lacking tryptophan, neither TIBA nor NPA inhibited the release of IAA produced by L. bicolor in pure culture. When 100 microM tryptophan was added to the medium, TIBA significantly increased the amount of IAA released by the fungus, whereas NPA had no significant effect. We conclude that fungal IAA plays an important role in plant rhizogenesis and in the establishment of ectomycorrhizal symbiosis.  相似文献   

6.
We studied carbon and nitrogen allocation in mycorrhizal and non-mycorrhizal Scots pine (Pinus sylvestris L.) seedlings grown in a semi-hydroponic system with nitrogen as the growth limiting factor. Three ectomycorrhizal fungi were compared: one pioneer species (Thelephora terrestris Ehrh.: Fr.) and two late-stage fungi (Suillus bovinus (L.: Fr.) O. Kuntze, and Scleroderma citrinum Pers.). By giving all plants in each treatment the same amount of readily available nitrogen, we ensured that the external mycelium could not increase the total nitrogen content of the plants, thereby guaranteeing that any change in carbon or nitrogen partitioning was a direct effect of the mycorrhizal infection itself. Carbon and nitrogen partitioning were measured at an early and a late stage of mycorrhizal development, and at a low and a high N addition rate. Although mycorrhizal seedlings had a higher net assimilation rate and a higher shoot/root ratio than non-mycorrhizal seedlings, they had a lower rate of shoot growth. The high carbon demand of the mycobionts was consistent with the large biomass of external mycelia and the increased belowground respiration of the mycorrhizal plants. The carbon cost to the host was similar for pioneer and late-stage fungi. Above- and belowground partitioning of nitrogen was also affected by mycorrhizal infection. The external mycelia of Scleroderma citrinum retained 32% of the nitrogen supplied to the plants, thus significantly reducing nitrogen assimilation by the host plants and consequently reducing their growth rate. By contrast, the external mycelia of T. terrestris and Suillus bovinus retained less nitrogen than the mycelia of Scleroderma citrinum, hence we attributed the decreased growth rates of their host plants to a carbon drain rather than a nitrogen deficiency.  相似文献   

7.
We used a novel digital autoradiographic technique that enabled, for the first time, simultaneous visualization and quantification of spatial and temporal changes in carbon allocation patterns in ectomycorrhizal mycelia. Mycorrhizal plants of Pinus sylvestris L. were grown in microcosms containing non-sterile peat. The time course and spatial distribution of carbon allocation by P. sylvestris to mycelia of its mycorrhizal partners, Paxillus involutus (Batsch) Fr. and Suillus bovinus (L.): Kuntze, were quantified following 14C pulse labeling of the plants. Litter patches were used to investigate the effects of nutrient resource quality on carbon allocation. The wood-decomposer fungus Phanerochaete velutina (D.C.: Pers.) Parmasto was introduced to evaluate competitive and territorial interactions between its mycelial cords and the mycelial system of S. bovinus. Growth of ectomycorrhizal mycelium was stimulated in the litter patches. Nearly 60% of the C transferred from host plant to external mycorrhizal mycelium (> 2 mm from root surfaces) was allocated to mycelium in the patches, which comprised only 12% of the soil area available for mycelial colonization. Mycelia in the litter patch most recently colonized by mycorrhizal mycelium received the largest investment of carbon, amounting to 27 to 50% of the total 14C in external mycorrhizal mycelium. The amount of C transfer to external mycelium of S. bovinus following pulse labeling was reduced from a maximum of 167 nmol in systems with no saprotroph to a maximum of 61 nmol in systems interacting with P. velutina. The 14C content of S. bovinus mycelium reached a maximum 24-36 h after labeling in control microcosms, but allocation did not reach a peak until 56 h after labeling, when S. bovinus interacted with mycelium of P. velutina. The mycelium of S. bovinus contained 9% of the total 14C in the plants (including mycorrhizae) at the end of the experiment, but this was reduced to 4% in the presence of P. velutina. The results demonstrate the dynamic manner in which mycorrhizal mycelia deploy C when foraging for nutrients. The inhibitory effect of the wood-decomposer fungus P. velutina on C allocation to external mycorrhizal mycelium has important implications for nutrient cycling in forest ecosystems.  相似文献   

8.
We developed a nondestructive method for detecting early toxic effects of inflethal copper (Cu) concentrations on ectomycorrhizal and non-mycorrhizal (NM) Scots pine (Pinus sylvestris L.) seedlings. The fungal symbionts examined were Paxillus involutus (Fr.) Fr., Suillus luteus (Fr.) S.F. Gray and Thelephora terrestris (Ehrh.) Fr. The accumulation of Cu in needles and fungal development (ergosterol) in roots and infstrate were assessed. Inorganic phosphate (P(i)) and ammonium (NH(4) (+)) uptake capacities were determined in a semi-hydroponic cultivation system on intact P-limited plants that were exposed for 3 weeks to 0.32 (control), 8 or 16 &mgr;moles Cu(2+). Short-term effects of a 1-hour exposure to 32 &mgr;moles Cu(2+) on nutrient uptake rates were also determined. None of the Cu(2+) treatments affected plant growth or root ergosterol concentrations. The active fungal biomass in infstrate invaded by S. luteus was reduced by 50% in the 16 &mgr;M Cu(2+) treatment compared with the control treatment; however, colonization by S. luteus prevented an increased accumulation of Cu in the needles. In contrast, the 16 &mgr;M Cu(2+) treatment caused a 2.2-fold increase in needle Cu concentration in NM plants. Ergosterol concentrations in the infstrate colonized by P. involutus and T. terrestris were not affected by 16 &mgr;molar Cu(2+). Although P. involutus and T. terrestris were less sensitive to Cu(2+) than S. luteus, T. terrestris did not prevent the accumulation of Cu in needles of its host plant in the 16 &mgr;molar Cu(2+) treatment. Mycorrhizal plants consistently had higher P(i) and NH(4) (+) uptake capacities than NM plants. In the control treatment, specific P(i) uptake rates were almost 10, 4 and 3 times higher in plants associated with P. involutus, S. luteus and T. terrestris, respectively, than in NM plants, and specific NH(4) (+) uptake rates were about 2, 2 and 5 times higher, respectively, than those of NM seedlings. Compared with the corresponding control plants, a 3-week exposure to 8 &mgr;M Cu(2+) had no effect on the nutrient uptake potential of plants. In contrast, the 16 &mgr;M Cu(2+) treatment significantly reduced P(i) uptake capacity of all plants and decreased NH(4) (+) uptake capacity of seedlings colonized by S. luteus or T. terrestris. The 32 &mgr;M Cu(2+) 1-h shock treatment reduced specific NH(4) (+) and P(i) uptake rates of roots colonized by S. luteus to 39 and 77%, respectively, of the original rates. The Cu(2+) 1-h shock treatment reduced the NH(4) (+) uptake rate of NM plants by 51%.  相似文献   

9.
An understanding of root system capacity to acquire nitrogen (N) is critical in assessing the long-term growth impact of rising atmospheric CO2 concentration ([CO2]) on trees and forest ecosystems. We examined the effects of mycorrhizal inoculation and elevated [CO2] on root ammonium (NH4+) and nitrate (NO3-) uptake capacity in sweetgum (Liquidambar styraciflua L.) and loblolly pine (Pinus taeda L.). Mycorrhizal treatments included inoculation of seedlings with the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith in sweetgum and the ectomycorrhizal (EM) fungus Laccaria bicolor (Maire) Orton in loblolly pine. These plants were then equally divided between ambient and elevated [CO2] treatments. After 6 months of treatment, root systems of both species exhibited a greater uptake capacity for NH4+ than for NO3-. In both species, mycorrhizal inoculation significantly increased uptake capacity for NO3-, but not for NH4+. In sweetgum, the mycorrhizal effect on NO3- and NH4+ uptake capacity depended on growth [C02]. Similarly, in loblolly pine, the mycorrhizal effect on NO3- uptake capacity depended on growth [CO2], but the effect on NH4+ uptake capacity did not. Mycorrhizal inoculation significantly enhanced root nitrate reductase activity (NRA) in both species, but elevated [CO2] increased root NRA only in sweetgum. Leaf NRA in sweetgum did not change significantly with mycorrhizal inoculation, but increased in response to [CO2]. Leaf NRA in loblolly pine was unaffected by either treatment. The results indicate that the mycorrhizal effect on specific root N uptake in these species depends on both the form of inorganic N and the mycorrhizal type. However, our data show that in addressing N status of plants under high [CO2], reliable prediction is possible only when information about other root system adjustments (e.g., biomass allocation to fine roots) is simultaneously considered.  相似文献   

10.
We demonstrated that the inorganic phosphate (P(i)) requirement for growth of Japanese red pine (Pinus densiflora Sieb. & Zucc.) seedlings is increased by elevated CO(2) concentration ([CO(2)]) and that responses of the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker & Couch to P(i) supply are also altered. To investigate the growth response of non-mycorrhizal seedlings to P(i) supply in elevated [CO(2)], non-mycorrhizal seedlings were grown for 73 days in ambient or elevated [CO(2)] (350 or 700 micromol mol(-1)) with nutrient solutions containing one of seven phosphate concentrations (0, 0.02, 0.04, 0.06, 0.08, 0.10 and 0.20 mM). In ambient [CO(2)], the growth response to P(i) was saturated at about 0.1 mM P(i), whereas in elevated [CO(2)], the growth response to P(i) supply did not saturate, even at the highest P(i) supply (0.2 mM), indicating that the P(i) requirement is higher in elevated [CO(2)] than in ambient [CO(2)]. The increased requirement was due mainly to an altered shoot growth response to P(i) supply. The enhanced P(i) requirement in elevated [CO(2)] was not associated with a change in photosynthetic response to P(i) or a change in leaf phosphorus (P) status. We investigated the effect of P(i) supply (0.04, 0.08 and 0.20 mM) on the ectomycorrhizal fungus P. tinctorius in mycorrhizal seedlings grown in ambient or elevated [CO(2)]. Root ergosterol concentration (an indicator of fungal biomass) decreased with increasing P(i) supply in ambient [CO(2)], but the decrease was far less in elevated [CO(2)]. In ambient [CO(2)] the ratio of extramatrical mycelium to root biomass decreased with increasing P(i) supply but did not change in elevated [CO(2)]. We conclude that, because elevated [CO(2)] increased the P(i) requirement for shoot growth, the significance of the ectomycorrhizal association was also increased in elevated [CO(2)].  相似文献   

11.
Abstract

Individual and interactive effects of simulated acidic rainfall and mycorrhizal inoculation on growth and nutrient and water relations of loblolly pine (Pinus taedaL.) and white oak (Quercus albaL.) grown in a loam soil were examined. Seedlings of each species inoculated with basidiospores of the ectomycorrhizal fungus Pisolithus tinctorius(Pers.) Coker and Couch, a known my-cobiont of both loblolly pine and white oak, and uninoculated control seedlings received two simulated rains per week of either pH 3.6, 4.2, or 4.8 for 26 weeks. Higher acidity rainfall reduced the growth but increased mycorrhizal colonization of loblolly pine, while both loblolly pine and white oak exposed to these rains exhibited greater foliar injury. Inoculation with P. tinctoriusincreased growth and reduced foliar injury of both species. Foliar concentrations of P, S, and Cu in loblolly pine and white oak, Ca in loblolly pine, and Fe and Zn in white oak decreased with increasing rain acidity while the Al concentration of both species increased. Higher rainfall acidity also reduced soil pH and Ca and Mg concentrations while increasing soil AI. Foliage of inoculated seedlings of both species had higher N and P concentrations and lower Al concentrations than control seedlings. Following the final rain applications, a drought cycle was simulated by withholding irrigation for two weeks during which seedling xylem pressure potential and soil water potential were measured. One day after cessation of irrigation, xylem pressure potential of loblolly pine that had received pH 3.6 rains was lower than that of other treatments. Thereafter, xylem pressure potential and soil water potential of the inoculated treatment decreased below those of the control treatment in both species. These results suggest that acid deposition is detrimental to juvenile loblolly pine and white oak, but the magnitude of this effect is less than the positive response to ectomycorrhizal inoculation.  相似文献   

12.
Aluminium (Al) toxicity is considered an important factor in forest deterioration caused by soil acidification. A ratio of base cations (BC) to Al in the soil solution lower than 1 is widely used as an indicator for potentially adverse effects on tree health. In our view, the validity of the assumptions underlying the use of the BC:Al ratio as an indicator for Al toxicity in trees has never been evaluated properly.Here, we evaluate the importance of the base cations Ca and Mg in counteracting Al toxicity. Pinus sylvestris and Picea abies seedlings were grown on nutrient solution with a range of Al (0–0.25–0.5–1–2 mM) and base cation (0.25–0.5–2 mM) concentrations, giving BC:Al ratios of 1 at different levels of Al. Increasing concentrations of Al in solution caused growth reductions, which could not be counteracted by increasing concentrations of BC in solution with P. sylvestris and only partly counteracted with P. abies. Increased concentrations of Al in solution decreased the concentrations in shoot and root of both Ca and Mg, while increased concentrations of BC in solution increased tissue concentrations of BC. Growth reductions were, however, not a result of BC deficiencies, as growth reduction already occurred in tree seedlings that maintained adequate concentrations of Ca and Mg.All growth and uptake variables measured showed a higher or equal correlation with the absolute concentrations of Al or Al+BC in solution than with the BC:Al ratio. We conclude that Al toxicity is determined solely by the concentration of Al in solution. Shoot growth decreased significantly as dissolved Al increased at a constant BC:Al ratio of 1. In P. abies, but not in P. sylvestris, dissolved BC can positively affect uptake of BC and growth, which might partly alleviate the toxic effects of Al. Our results show that the mechanistic explanation for the effect of the BC:Al ratio is insufficient to describe Al toxicity. Care should be taken when using models based on the BC:Al ratio to predict the effect of Al on tree growth.  相似文献   

13.
Chen LS  Qi YP  Smith BR  Liu XH 《Tree physiology》2005,25(3):317-324
'Cleopatra' tangerine (Citrus reshni Hort. ex Tanaka) seedlings were irrigated daily for 8 weeks with 1/4 strength Hoagland's nutrient solution containing 0 (control) or 2 mM aluminum (Al). Leaves from Al-treated plants had decreased CO2 assimilation and stomatal conductance, but increased intercellular CO2 concentrations compared with control leaves. On a leaf area basis, 2 mM Al increased activities of key enzymes in the Calvin cycle, including ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoribulokinase (PRK), stromal fructose-1,6-bisphosphatase (FBPase), and a key enzyme in starch synthesis, ADP-glucose pyrophosphorylase (AGPase), compared with control leaves. Aluminum had no effect on cytosolic FBPase activity, but it decreased sucrose phosphate synthase (SPS) activity. Aluminum had no effect on area-based concentrations of carbohydrates, glucose-6-phosphate (G6P) and fructose 6-phosphate (F6P) or the G6P:F6P ratio, but it decreased the area-based concentration of 3-phosphoglycerate (PGA). Photochemical quenching coefficient (qP) and electron transport rate through PSII were greatly reduced by Al. Non-photochemical quenching coefficient (NPQ) was less affected by Al than qP and electron transport rate through PSII. We conclude that the reduced rate of CO2 assimilation in Al-treated leaves was probably caused by a combination of factors such as reduced electron transport rate through PSII, increased closure of PSII reaction centers and increased photorespiration.  相似文献   

14.
We studied the effects of excess nitrogen added as nitrate (NO(3) (-)) or ammonium (NH(4) (+)), or both, on mineral nutrition and growth of beech (Fagus sylvatica L.) plants grown at pH 4.2 in Al-free nutrient solution or in solutions containing 0.1 or 1.0 mM AlCl(3). A high external concentration of NH(4) (+) increased the concentration of nitrogen in roots, stems and leaves. The root/shoot dry weight ratio was less in plants grown in the presence of NH(4) (+) than in plants grown in the presence of NO(3) (-). The concentration of phosphorus in the roots was increased and the concentration of potassium in all parts of the plant was decreased by NH(4) (+). A high external concentration of NO(3) (-) caused a decrease in phosphorus concentrations of the root, stem and leaf. Uptake of (45)Ca(2+) by roots was reduced in the presence of high concentrations of NH(4) (+) or NO(3) (-), and a combination of high concentrations of nitrogen and aluminum further reduced the uptake of (45)Ca(2+). Uptake of phosphate ((32)P) and concentrations of phosphorus in root and shoot were increased when plants were grown in the presence of 0.1 mM Al. Exposure to 1.0 mM Al, however, reduced the concentration of phosphorus in roots and shoots and the reduction was greater when plants were grown in the presence of a high external NO(3) (-) concentration. Aluminum binds to roots, and plants grown in the presence of 1.0 mM Al had a slightly higher concentration of aluminum in roots than plants grown in the presence of 0.1 mM Al, whereas the concentration of Al in the shoot was increased 2 to 3 times in plants exposed to 1.0 mm Al. Furthermore, the effects of 1.0 mM Al on uptake of other macronutrients were quite different from the effects of 0.1 mM Al. We conclude that 0.1 mM Al facilitates uptake and transport of phosphorus in beech and that between 0.1 and 1.0 mM Al there is a dramatic change in the effects of Al on uptake and transport of divalent cations and phosphorus.  相似文献   

15.
Abstract

Pisolithus tinctorius(Pers.) Coker & Couch was evaluated as an ectomycorrhizal associate of sweet birch (Betula lentaL.). Sand culture and mine soil growth media were employed, and three fertilization treatments were imposed by application of differing Hoagland's nutrient solution #2 concentrations. The high fertilization treatment suppressed mycorrhizal formation by P. tinctoriusin both growth media, while the medium rather than the low treatment induced the most extensive colonization by this mycobiont. Seedlings with induced P. tinctoriusmycorrhization exhibited enhanced above— and below-ground growth according to shoot dimensions and dry weight and root weight and length. However, these responses were frequently absent with high fertilization, especially in the mine soil. Inoculated seedlings had higher foliar N, P, and K concentrations overall but lower Ca, Mg, and S concentrations than uninoculated seedlings. Those with P. tinctoriusalso had lower concentrations of several potentially phytotoxic trace elements, specifically Zn, B, Mo, and Al. Furthermore, xylem pressure and soil water potentials measured during a simulated drought episode indicated that water uptake was enhanced by these mycorrhizae. Again, however, the above physiological responses were often compromised by high fertilization. Collectively, these results indicate that P. tinctoriusis a viable mycobiont for the inoculation of sweet birch, and when substrate fertility is not excessive, can avail this host of physiological benefits that result in substantial growth enhancement.  相似文献   

16.
Cumming JR 《Tree physiology》1993,13(2):173-187
The association of ectomycorrhizal fungi with tree roots enhances the acquisition of phosphorus (P) from the soil. In addition to increasing the uptake of H(2)PO(4) (-) (P(i)), mycorrhizal fungi may increase the spectrum of P sources utilized by tree roots by mediating the dissolution of insoluble metallophosphate salts or the hydrolysis of organic P compounds. To investigate the role of ectomycorrhizal fungi in enhancing P acquisition by tree roots, pitch pine (Pinus rigida Mill.) seedlings were grown in sand culture with or without the ectomycorrhizal symbiont Pisolithus tinctorius Coker and Couch under various conditions of P limitation. Compared with nonmycorrhizal seedlings, seedlings inoculated with P. tinctorius exhibited a greater capacity to function under P limitation as evidenced by superior growth and the maintenance of normal foliar ion composition at low P(i) concentrations. Nonmycorrhizal seedlings subjected to P-limiting conditions exhibited depressed K and P and elevated Na concentrations in foliage. The association of P. tinctorius with pitch pine seedling roots maintained foliar K concentrations and prevented the accumulation of Na under P limitation. Nonmycorrhizal seedlings were unable to obtain P from either solid AlPO(4) or inositol hexaphosphate (IHP), whereas seedlings inoculated with P. tinctorius utilized AlPO(4), but not IHP as a P source. Root surface acid phosphatase (APase) activity was depressed in roots infected with the mycorrhizal symbiont and was negatively correlated with seedling growth on all P sources. Root APase activity was negatively correlated with foliar P concentrations in seedlings grown on P(i), but was not correlated with foliar P concentrations in seedlings cultured with AlPO(4) or IHP.  相似文献   

17.
毛白杨VA菌根与外生菌根关系的研究   总被引:11,自引:0,他引:11  
赵忠  马刊欣 《林业科学》1994,30(2):111-116
定期从毛白杨扦插育苗地挖取根样,并从中原地区的毛白杨人工林地采集细根(直径小于2mm)根样,观察统计VA菌根、外生菌根、混合菌根以及未受菌根菌侵染的1cm长根段的百分比。结果表明,在苗木的菌根侵染初期,VA菌根菌的侵染势较强,但优势很快被外生菌根菌取代,两种菌根菌间的负交互作用随苗龄的增加而不断增强。造林地种类和土壤的pH值对毛白杨两种菌根间的负交互作用关系有制约作用。在强碱性砂土地上,VA菌根的  相似文献   

18.
It has been postulated that osmotic effects on plant tissue are mediated by abscisic acid (ABA). Hybrid larch (Larix kaempferi (Lambert) Carr. x L. decidua Mill.) plantlets, transformed with the ABA-inducible wheat Em promoter associated with the Gus reporter gene, were axenically inoculated with two ectomycorrhizal fungi: Cenococcum geophilum Fr., considered tolerant to water stress, and Laccaria bicolor (Marie) Orton, considered less tolerant to drought. The mycorrhizal and non-mycorrhizal transgenic plantlets were subjected to osmotic stress by adding polyethylene glycol (PEG) to the culture medium. In the presence of PEG, L. bicolor and C. geophilum reduced shoot water potential and turgor potential, but increased host osmotic potential. Treatment of plantlets with PEG induced a significant increase in endogenous ABA concentrations. Laccaria bicolor and C. geophilum behaved similarly and significantly decreased the ABA response of plantlets to PEG treatment. Moreover, inoculation with either fungus regulated the ABA response of the plantlets even when the fungus was separated from the host by a cellophane sheet that prevented mycorrhiza formation. Although the wheat Em promoter was inducible in larch plantlets, it was not regulated by endogenous ABA. Induction of the wheat Em promoter in larch plantlets depended on organ type, with maximum induction in the root apex. Induction of the Em promoter was significantly decreased by mycorrhizal inoculation.  相似文献   

19.
孟加拉东南部土壤中的砷含量很高,不仅威胁人的健康,而且对土壤也有破坏作用。云南石梓(Gmelina arborea)在孟加拉是个快速生长的树种,也是含砷土壤中的潜力树种。研究评价了含砷试验土中丛枝菌根真菌对云南石梓(Gmelina arborea)生长的影响。播种前,四种不同浓度的砷(10mg·kg-1、25mg·kg-1、50mg·kg-1和100mg·kg-1)被加入到试验土中。记录生长参数,如,植物的根、苗鲜重、干重、冠幅径、根长和苗高、根瘤菌和孢子菌群落。菌根植株较非菌根植株生长好。与其它含砷量高的土壤中植株的生长情况相比,在含砷量为10-mg·kg-1的土壤中,菌根植株和菌根生长效果最佳,菌根植株生物量最高。随着砷浓度的增加,种苗生长,根瘤菌和孢子菌群落均明显降低p0.05)。与非菌根植株比较,菌根植株高生长增加了40%,生物量增加了2.4倍。研究表明,根瘤菌接种可以减少有害土壤中的云南石梓(Gmelina arborea)的初生长的影响。  相似文献   

20.
Studies of effects of fertilizer treatment on ectomycorrhizal fungal community structure have predominantly been based on large, single additions of nitrogen. Studies involving chronic additions of nutrients in combination with irrigation are much less common. We used morphotyping to study effects of balanced additions of a nutrient solution on ectomycorrhizal fungal community structure in a 36-year-old stand of Picea abies (L.) Karst. Despite high variability among individual samples, principal components analysis revealed a clear shift in community structure in response to fertilization. Irrigated plots receiving only water did not differ significantly from untreated control plots. Mycorrhizal root tips colonized by Cenococcum geophilum Fr. were significantly more common in fertilized plots than in control plots. Possible responses by other ectomycorrhizal species were masked by high variability. Over sixty morphotypes were distinguished, but there was no measurable effect of either fertilizer or irrigation treatment on morphotype richness or total number of root tips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号