首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
土壤磷素循环及其对土壤磷流失的影响   总被引:42,自引:0,他引:42  
杨珏  阮晓红 《土壤与环境》2001,10(3):256-258
农业非点源磷的输出是造成地表水营营养化的主要因素之一,弄清土壤磷的流失机理可为进一步控制农田径流磷的流失提供理论依据,文章总结了国内外在土壤磷素循环研究成果,并对其加以评述,在此基础上分析了土壤磷素循环对研究土壤磷的径流流失的重要作用。  相似文献   

2.
福州市郊菜地土壤磷素特征及流失潜能分析   总被引:9,自引:0,他引:9  
对福州市郊11片蔬菜基地土样的磷素含量、等温吸附特征及流失潜能进行分析.结果表明:与林坡地自然土壤相比.菜地土壤全磷(2.043 g/kg)、速效磷(Oslen-P.182.893 mg/kg)和CaCl2-P(1.018 mg/kg)平均含量都呈现出明显的累积特征;菜地土壤可用Langmuir等温方程很好拟合(R2=0.991**~0.998**),其等温吸附特征值,如易解吸磷(RDP)、磷吸持饱和度(DPS)和磷零吸持平衡浓度(EPC0)均出现大幅度提高.而最大缓冲能力(MBC)和吸附常数K则明显降低;据Langmuir方程求得菜地土壤指导施磷量范围为11.62~67.37(P)kg/hm2,平均为27.18(P)kg/hm2;菜地土壤的速效磷和全磷含量均显著高于由回归方程求得的土壤发生磷素淋失的速效磷临界值(56.96 mg/kg)和全磷的临界值(1.146 g/kg);菜地土壤的DPS平均为23.12%,已经接近容易流失的阈值(25%),其中4片菜地土样的DPS已经超过容易流失的阈值.因此,福州市郊菜地土壤磷素具有很高的流失潜能,应作为农业面源磷污染控制的关键源区.  相似文献   

3.
侵蚀旱作土壤氮素吸收利用与淋溶流失   总被引:13,自引:1,他引:13  
采用田间微区,径流小区与^5N示踪技术研究了黄土高原丘陵地区侵蚀旱作土壤氮素吸收利用与淋溶流失,结果表明,谷子和大豆对施入氮肥的吸收利用量占施入氮量的19.27%和31.25%,由肥料吸收的氮用于形成籽实占吸入肥料总氮量的57.35%和79.57%,作物收后在土壤中残留氮量占施入氮量的2.37%-3.02%,谷子地氮素淋溶只达80-100cm,不会成氮素淋失,大豆地与叶氮素下渗至120cm以下,可能发生淋失,谷子地流失氮量17.37kg/hm^2,大豆地为12.72kg/mh^2,较裸露地减少氮素流失量86.03%和89.47%,沉积物中土壤氮素富集率(ER)均大于1,要重视侵蚀旱作土壤氮素化肥施用,进行合理轮作间作套种,以充分利用残留氮素减少土壤氮素淋失,大力增强农作物保持水土养分流失的作用。  相似文献   

4.
山西省菜园土壤磷素积累特征及流失风险分析   总被引:4,自引:0,他引:4  
为了解山西省不同区域菜园土壤磷素积累以及流失情况, 本文分析了菜园土壤磷饱和度(DPS)、Mehlich3-P、Olsen-P与水溶性磷(Pw)的积累特征.结果表明: 山西各地菜园土壤4种磷素(土壤全磷、水溶性磷、Olsen-P和 Mehlich3-P)积累明显, 已经远远超过作物需求量; 土壤表层水溶性磷含量随着土壤磷饱和度(DPS)、Olsen-P、Mehlich3-P含量的增加而增加; 且Mehlich3-P与Olsen-P、水溶性磷与Olsen-P、水溶性磷与Mehlich3-P之间具有极显著相关性, 相关系数分别为0.976 6、0.923 2、0.962 0 (P<0.01); 当磷饱和度大于46.64%、Olsen-P大于81.88 mg·kg-1、Mehlich3-P大于164.59 mg·kg-1时, 水溶性磷含量上升幅度迅速增大, 由此将土壤磷饱和度为46.64%、Olsen-P 为81.88 mg·kg-1、Mehlich3-P为164.59 mg·kg-1和水溶性磷为8.05 mg·kg-1初步确定为山西省菜园土壤磷素流失的临界值.该结果将为探讨山西农田土壤磷素的养分管理和环境风险评估提供重要的理论依据.  相似文献   

5.
土壤磷素淋溶预测指标研究   总被引:1,自引:0,他引:1  
对西北农林科技大学农作一站长期肥料试验地0—20 cm耕层土壤研究表明:(1)易释放的各形态磷与全磷呈正相关关系;(2)土壤磷素的释放能力随pH值的增大而减小,不同处理的缓冲能力不同。释放能力的大小也与全磷的多少有关;(3)土壤全磷与PSD(土壤磷饱和度)有很好的正相关性。因此,基于以土壤饱和度为25%作为预测指标,把土壤全磷环境敏感指标(TP)为1.92 g/kg作为关中磷淋溶的环境敏感指标。  相似文献   

6.
滇池流域农田径流磷素流失的土壤影响因子   总被引:6,自引:0,他引:6  
试验采用田间原位模拟降雨并结合多元线性回归(逐步)的统计分析方法,分别在滇池流域的6个点位研究旱季和雨季农田土壤的理化性质与径流中磷素流失的关系。结果表明:在旱季和雨季进行的田间原位模拟降雨的平均产流起始时间、产流历时、产流量和平均出水速度均无显著的差异。旱季径流的产流强度曲线比雨季波动大;2次试验中,质地为砂质粘壤土的大渔乡元宝村(C-2)点的初始产流强度和平均产流强度均最大。土壤孔隙度与降雨平均入渗率呈显著正相关关系(R=0.332^*,n=12);0-5 cm的土壤速效磷(Olsen-P)含量与地表径流中总磷(TP)、水溶性的总磷(DTP)和水溶性正磷酸盐(DRP)及颗粒态磷(PP)的流失量呈极显著的正相关,是影响磷素流失的最重要因子,且0-5 cm土壤有机质含量与径流中TP、DTP和DRP的流失量呈负相关;0-5 cm,5-20 cm的土壤含水量皆与TP、DTP、DRP和PP流失量呈负相关;土壤pH与DTP流失量呈正相关,与颗粒态磷(PP)流失量呈负相关。  相似文献   

7.
8.
模拟降雨条件下工程边坡土壤磷素流失特征   总被引:1,自引:0,他引:1  
[目的]探究西南高山—亚高山地区工程边坡土壤磷素流失机理,为同类型工程边坡生态环境恢复研究提供理论依据。[方法]采用室内人工模拟降雨试验及原状土搬迁等方法,研究在2种坡度(30°,50°)和4种雨强(25,45,65,85 mm/h)条件下工程边坡全磷(TP),泥沙全磷(STP),溶解态磷(DP)迁移变化特征及其与土壤侵蚀状况的关系。[结果]①工程边坡径流平均DP浓度整体较低且受雨强影响较小,STP浓度在降雨初期较高,随之降低或趋于稳定。②不同雨强下工程边坡DP流失率、STP流失率变化曲线具有明显差异性,当雨强为25 mm/h和45 mm/h时,工程边坡STP流失率、DP流失率较低且较为稳定;当雨强为65 mm/h和85 mm/h时,工程边坡STP流失率、DP流失率迅速上升后趋于稳定;当雨强由45 mm/h增至65 mm/h时,工程边坡STP流失率、DP流失率迅速增大。③土壤侵蚀率与DP流失率、DP平均浓度、STP流失率和浓度、TP流失率有极显著正相关关系;径流率与DP流失率、STP流失率、TP流失率、DP平均浓度有极显著正相关关系,与STP浓度无显著相关关系。工程边坡TP流失率随径流率、土壤侵蚀率皆以幂函数形式逐渐增加。[结论]雨强和坡度对工程边坡磷素流失动态变化特征具有显著的影响且整体呈现出先增后减的趋势。  相似文献   

9.
广州城郊菜地土壤磷素特征及流失风险分析   总被引:15,自引:0,他引:15  
通过化学分析和土壤淋洗试验对广州城郊菜地土壤磷素特征和流失风险进行了研究和分析。结果表明,广州城郊菜地土壤全磷含量极高;与自然土壤相比较,菜园土壤无机磷比例增大,有机磷比例降低;无机磷中的Al-P、Fe-P比例增加,O-P比例降低,Ca-P比例基本一致;土壤Olsen P、Bray-1 P、Mehlich-1 P、0.01mol/L CaCl2和H2O提取的磷含量相当高;土壤淋洗液中溶解态磷和总磷持续保持很高的浓度,土壤磷供应强度大。菜园土壤中磷进入水体引起水体磷浓度增加,导致水体富营养化风险大;土壤磷的测定值可作为土壤磷流失风险和对水环境影响程度的评估依据。菜地作为农业非点源污染的优先控制区,应通过严格控制磷肥的投入和合理施肥等控制磷的流失。  相似文献   

10.
磷在稻田土壤中的淋溶和迁移模拟研究   总被引:2,自引:1,他引:2  
周全来  赵牧秋  鲁彩艳  史奕  陈欣 《土壤》2006,38(6):734-739
稻田土壤磷(P)的淋溶和迁移受到人们的普遍关注。对水稻土施P后立即进行高强度淋洗的研究表明,施P对各处理淋出液的P浓度没有明显影响,各种形态的P淋溶到60cm土层以下的浓度不超过0.1mg/kg,折合每公顷损失P量分别为可溶活性P约1.2~1.4kg,非活性P为1.2~1.6kg,全P为2.5~2.8kg,对地下水影响小。施P量低于400kg/hm2时,施入的P没有移出上层土壤;当施P量高于800kg/hm2时,P从上层向下移动现象明显;施P量超过1600kg/hm2后,移动距离可达10cm。并预测出上层土壤可能发生P的移动和淋溶的土壤Olsen-P阈值为74.1mg/kg,超过该值发生P移动和淋溶的可能性增加。  相似文献   

11.
模拟酸雨对施肥条件下赤红壤氮磷淋失特征的影响   总被引:3,自引:0,他引:3  
通过土柱模拟淋洗试验,研究了施用等量有机复合肥条件下,不同酸度模拟酸雨对赤红壤氮磷淋失特征的影响。结果表明,铵态氮、硝态氮、无机氮和总氮淋失量均随酸雨pH值增大而下降;pH 2.0模拟酸雨和对照(pH 6.5)的无机氮和总氮淋失量差异不显著,但均显著高于pH 3.0、pH 4.0和pH 5.0酸雨;pH 5.0模拟酸雨无机氮和总氮淋失量均最低,表明强酸性酸雨和中性淋洗液均促进氮淋失,而酸度与土壤接近的酸雨减少氮淋失。与对照相比,模拟酸雨对DP淋失无显著影响,但显著降低PP和TP淋失;不同模拟酸雨各形态磷淋失量均无显著差异,表明酸雨对赤红壤磷淋失影响有限。酸雨对淋滤液氮磷浓度动态变化和氮磷累计淋失量动态变化等均无显著影响。  相似文献   

12.
通过土柱模拟淋洗试验,研究了施用等量有机复合肥条件下,不同酸度模拟酸雨对赤红壤氮磷淋失特征的影响。结果表明,铵态氮、硝态氮、无机氮和总氮淋失量均随酸雨pH值增大而下降;pH 2.0模拟酸雨和对照(pH 6.5)的无机氮和总氮淋失量差异不显著,但均显著高于pH 3.0、pH 4.0和pH 5.0酸雨;pH 5.0模拟酸雨无机氮和总氮淋失量均最低,表明强酸性酸雨和中性淋洗液均促进氮淋失,而酸度与土壤接近的酸雨减少氮淋失。与对照相比,模拟酸雨对DP淋失无显著影响,但显著降低PP和TP淋失;不同模拟酸雨各形态磷淋失量均无显著差异,表明酸雨对赤红壤磷淋失影响有限。酸雨对淋滤液氮磷浓度动态变化和氮磷累计淋失量动态变化等均无显著影响。  相似文献   

13.
酸雨对黄土磷的淋溶效应   总被引:1,自引:0,他引:1  
采用室内土柱模拟淋溶试验,分析了陕西省杨凌区3种土壤在5个酸雨梯度的侵蚀作用下,土壤磷的释放和迁移规律.结果表明,酸雨会使土壤受到一定程度的酸化,而土壤的酸化程度与酸雨的pH值、土壤的类型、土壤的pH值、阳离子交换量、有机质含量有关.土壤对酸雨的缓冲能力由大到小的顺序为:腐殖质层>母质层>黏化层.随着酸雨累积淋溶量的增加,土壤磷的释放总量呈增加趋势,但淋失率会下降.酸雨的pH值为5时土壤磷的累积淋失量最大,土壤磷的累积淋失量和淋失率顺序为:腐殖质层>黏化层>母质层.酸雨对腐殖质层的磷具有最强侵蚀效应.母质层和黏化层的酸化主要发生在土壤表层,而腐殖质层酸化主要发生在土壤底层,酸雨侵蚀后腐殖质层酸化最严重.长期的酸雨侵蚀会导致土壤磷流失,造成土壤养分贫瘠化.  相似文献   

14.
抚仙湖流域有机-常规种植菜地土壤磷素淋溶模拟研究   总被引:2,自引:0,他引:2  
利用3种不同高度的土柱,对有机-常规种植菜地土壤进行了磷素淋溶模拟研究,结果表明:有机种植菜地土壤磷素淋溶量远高于常规种植菜地土壤,不同高度土柱在模拟780 mm降雨量条件下,前者磷素淋溶平均水平是后者的26倍左右。灌溉不仅降低了不同土壤有效磷含量,而且使土壤磷素吸附解吸特征发生明显改变。此外,田间监测结果显示,有机种植对地下水磷素水平的提高明显大于常规种植。可见,有机种植中土壤磷素由淋溶进入地下水体相对于常规种植风险更大,有机种植业的发展必须采取必要措施,减缓土壤磷素淋溶流失。  相似文献   

15.
采用土柱培养的模拟试验方法研究了在不同磷水平土壤上大量施用磷肥和有机肥对土壤测试磷、土壤磷渗漏的影响及影响机理。结果表明,不同磷水平土壤施用磷肥或有机肥土壤CaCl2-P、Olsen—P和土壤渗漏液中可溶性磷均显著增加;单位量磷肥或有机肥所增加土壤各形态磷量随土壤磷水平的增加而增大;随着磷肥或有机肥用量的增加,单位量磷肥或有机肥所增加各形态磷量也逐渐增大,差异均达到显著和极显著水平。在施用磷肥的基础上增施有机肥可以提高土壤CaCl2-P、Olsen—P含量和土壤渗漏液中可溶性磷的增长幅度。土壤磷的渗漏量与土壤测试磷呈显著正相关;单位量磷肥或有机肥所增加的土壤渗漏磷量随着磷肥或有机肥用量以及土壤磷水平的增加而增加。Olsen—P含量与土壤磷吸持指数(PSI)呈显著负相关关系,与土壤磷的吸附饱和度(DPS)呈显著正相关关系。  相似文献   

16.
温室土壤磷素迁移变化特征研究   总被引:1,自引:0,他引:1  
采用野外调查采样和室内分析相结合的方法,研究了典型温室栽培地区山东寿光土壤磷素状况及其迁移变化特征。结果表明:(1)除Ca10-P外,温室土壤耕层(0~20 cm)全磷及无机磷组分含量均显著高于露地土壤,其平均含量分别为露地土壤的2.9、3.7、5.6、4.1、3.4倍和6.1倍,且以耕层累积为主,表现出明显的表聚特征,并有向下迁移的趋势;(2)在温室栽培的前期,磷素累积较快,连续种植了4~8 a时,全磷含量达到一个较高范围,为露地土壤的2~4倍,随着种植年限的继续增加,其再累积磷素的能力较差,甚至略有下降;(3)Ca8-P、Al-P和O-P是温室土壤磷素累积的主要形态,与露地土壤相比,其在0~20 cm耕层的平均增加量分别为296.5、288.5、306.0 mg.kg-1;(4)温室土壤耕层水溶性磷和速效磷的平均含量为10.9 mg.kg-1和248.4 mg.kg-1,分别为露地土壤的8.7倍和5.4倍,磷淋失并造成环境污染的可能性很大。  相似文献   

17.
以青岛市大沽河流域砂壤、河潮土、砂姜土 3种农田土壤为研究对象,开展室内土柱试验,研究土壤pH、温度、含水率等理化性质与生物炭和氮肥配施对土壤有效磷(Olsen—P)和全磷(TP)淋失的影响,以期为提高农田土壤磷素有效性、减少全磷淋失提供参考依据.结果表明:3种土壤的pH在偏中性或弱碱性时磷素有效性最高,pH偏酸性时,...  相似文献   

18.
酸雨对紫色土氮磷淋失的影响   总被引:4,自引:1,他引:4  
利用土柱淋洗模拟试验,研究了酸雨影响下,不同施肥处理紫色土氮、磷淋失的动态变化特征。结果表明,在酸雨作用下,紫色土中硝态氮的淋失量远远大于磷元素;不同施肥处理下二者淋失量的大小不同,淋失量大小排序均为有机无机混合施用〉化肥〉有机肥〉对照处理;淋失量受施肥量和降雨量的影响明显,土壤中硝态氮、磷元素淋失量随施肥量的增加而增加,淋失过程主要集中在雨季。同一施肥处理下,土壤硝态氮淋失量随降雨pH值的升高而增加;pH值5.5是土壤磷元素淋失量的临界点,此时土壤有效磷含量最高,淋失量达到峰值。  相似文献   

19.
城市污泥改良沙地土壤过程中氮磷的淋溶特征与风险分析   总被引:5,自引:0,他引:5  
针对城市污泥组成成分的特点,以科尔沁沙地土壤为研究对象,分析其应用于沙地土壤改良的可行性及对地下水的潜在风险.室内土柱淋溶模拟试验研究结果表明,不同的污泥施入量可明显增加沙化土壤表层中氮磷养分含量,提高沙化土壤质量,同时污泥施用量对淋出液中氮磷养分含量存在显著影响,且氮素的淋溶风险大于磷素.当污泥施用量为30 t/hm2时,淋出液中总氮(TN)、总磷(TP)含量与不施用污泥的对照处理间未存在显著差异,且随淋洗次数的增加,TN含量呈现先下降后趋于稳定的变化趋势,TP含量呈现逐渐下降,而硝态氮(NO3--N)含量较不施用污泥的对照处理增加11%~33%,但与其差异不显著(P>0.05).当污泥施用量为60,90 t/hm2时,淋洗液中TN和TP含量显著增加(P<0.01),随淋洗次数的增加,TN和NO3--N含量呈现先上升后趋于稳定的变化趋势,而NO3--N含量在第3次淋洗后均超出地表水环境质量标准中Ⅲ类水质标准限值(20 mg/L),对地下水体污染风险增加.合理控制污泥施用量不仅可以实现城市污泥的资源化利用,同时也可控制其对地下水的影响.  相似文献   

20.
To investigate a proper way to use animal manure as a fertilizer, simulated leaching experiments with soil columns (40 cm) and field experiments were both conducted. Concretely, biological organic fertilizer (BOF), ordinary organic fertilizer (OF), and swine manure (SM) were utilized, with chemical fertilizer (CF) and no phosphorus (NOP) as controls. The mobility of phosphorus and the amount of organic matter (OM) retention in soil were compared. Total phosphorus in the leachate was SM>BOF>OF (simulated) and SM>OF>BOF (field), and the content of Olsen-P in 0 to 20-cm depth of the soil was CF>SM>OF>BOF>NOP (simulated) and CF>BOF>OF>SM = NOP (field), which was caused by the absorption of vegetables in the latter. Moreover, OM retention of BOF treatment was significantly higher than other treatments in 0 to 20-cm depth of soil with vegetable planting. Consequently, it’s not advised to directly apply SM into the soil, while BOF and OF are the better way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号