首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用CFD方法模拟日光温室温度环境初探   总被引:23,自引:12,他引:23  
日光温室温度环境为一动态变化过程,该文建立了求解晴天室内温度环境的计算模型。将室外的水平面太阳辐照度、天空辐射温度、室外空气相对湿度、空气温度、风速及室内1.0m深土壤温度作为边界条件,采用计算流体动力学技术(CFD)中的非稳态方法求解控制方程,模拟了晴天室内温度随外界气候条件的变化,结果显示模拟得到的室内空气温度及土壤温度变化规律与实测值变化规律相同,盖帘后室内空气温度及土壤0.2 m深土层的温度模拟值与实测值相差约在1℃以内;探讨了边界条件中冷风渗透、土壤表面太阳能转换显热份额及1.0 m深土壤温度的取值变化对室内温度的影响。日光温室内温度动态变化模拟模型的建立对优化温室设计参数和预测不同天气情况下室内的温度环境变化具有参考意义。  相似文献   

2.
坡面薄层水流对土壤温度影响的数值分析   总被引:1,自引:1,他引:0  
为深入研究坡面薄层水流对土壤内热量运移的影响机理,该文基于坡面薄层水流运动理论及热力学方程,定量研究坡面薄层水流影响下的土壤温度场分布,分析降雨强度、表面换热系数对土壤温度分布的影响机理,以及不同深度土壤温度的变化规律。分析结果表明,降雨过程中坡面水流对土壤温度变化影响明显,且随时间推移而发生变化;坡面薄层水流与土壤表面之间温度梯度直接影响到坡面薄层水流换热系数的大小,从而改变土壤温度的变化规律;深部土壤温度变化具有滞后效应,降雨前期土壤温度变化主要集中在土壤表面,随降雨时间的推移,进而影响到深层土壤的温度分布。该研究为土壤中水热交换机制和运动模型的进一步的研究提供参考,对水文学、土壤侵蚀和水土保持、土壤学、农业灌溉等相关问题的研究有着一定参考价值  相似文献   

3.
大气边界层内的水热通量在气候系统中起着十分重要的作用。基于大孔径闪烁仪(LAS)科尔沁沙地梯级生态带水热通量2017年3—12月数据,探讨了水热通量与主要环境因子间的关系。结果表明:(1)水热通量日变化特征明显。晴天时显热通量曲线呈单峰状,潜热通量曲线在生长季呈双峰状,非生长季呈单峰状;阴天时显热通量和潜热通量无显著变化规律;土壤热通量曲线在整个研究时段较净辐射曲线表现为稳定的滞后性。(2)水热通量季节性变化显著。通量各月变化曲线峰值出现时间先后移再前移,符合季节变化规律;显热通量在非生长季占净辐射比例较大,生长季时占比降低;潜热通量在整个研究时段占净辐射比例最大,是近地面能量消耗主要形式。(3)太阳净辐射、空气温度、空气相对湿度等气象因子与水热通量的相关性显著;表层10 cm土层土壤与水热通量相关性最好,土壤温度、土壤含水率与水热通量相关性显著,土壤电导率与水热通量相关性不明显。  相似文献   

4.
安吉毛竹林生长季土壤热通量的变化特征   总被引:1,自引:0,他引:1  
2011年4月~2011年9月运用常规气象观测仪器和土壤热通量板对浙江安吉毛竹林土壤热通量和气象因子进行观测,探讨了生长季土壤热通量的变化特征以及土壤温度、净辐射与土壤热通量的关系。结果表明:土壤热通量日变化均呈"S"型曲线,毛竹林生长季土壤热通量为58.914 WJ m-2,土壤为明显的热汇;越接近地表,土壤温度月变化越剧烈;不同时间尺度上,土壤5 cm温度与土壤热通量的回归分析,相关性均达显著水平,说明土壤温度变化是以热通量为基础的;在0.5 h尺度上,土壤热通量与净辐射的相关性达极显著水平(P0.001),且延滞1 h后的相关系数最高,说明安吉毛竹林生长季土壤热通量对净辐射的反馈要延滞1 h。  相似文献   

5.
春玉米覆膜垄作沟灌条件下土壤水热效应及对产量的影响   总被引:2,自引:0,他引:2  
为探究河套灌区玉米覆膜垄作沟灌种植模式下土壤温度与含水率的变化规律、两者响应关系及对玉米产量的影响,以灌区玉米常规覆膜宽度(70cm)及当地常见农用宽膜(110cm)进行对比研究。结果表明:土壤温度变化主要受外界因素和含水率的影响,两种覆膜条件下土壤温度具有相同的日变化规律,且深层较表层土壤具有明显的滞后效应;玉米生育前期宽膜具有更好的保温效果,且表层5,10cm处地温变化具有显著或极显著性差异;全生育期内110cm较70cm膜具有明显的保墒效果,5—25cm土壤平均含水率高5.06%,6.83%,3.89%,5.28%和3.44%;各时刻不同土层与温度可以拟合为对数函数,但早晚相关性较差,说明此时段地温变化的机制更为复杂;玉米生育后期5cm处土壤平均含水率与土壤温度呈现反比关系,20cm处呈现正比关系,且低水分条件下土壤温度变幅更大;生育期内玉米生长性状及产量指标也达到显著性水平,且110cm较70cm膜平均产量高14.86%;研究成果可为灌区玉米覆膜垄作沟灌模式下适宜地膜宽度的选择提供科学依据。  相似文献   

6.
《土壤通报》2019,(5):1145-1150
通过温室小区试验,探讨深埋秸秆条件下不同灌水下限对土壤热扩散率的影响。利用Matlab数学软件对地表及距垄台表面深度为15 cm处实测地温数据进行拟合,标定正弦函数温度曲线。同时,利用常规方法计算振幅并拟合相位,得到正弦函数温度曲线。计算两种方法得到的模拟地温与实测地温误差,并比较两种方法的拟合度,选择适宜的深埋秸秆条件下正弦函数温度曲线。根据正弦函数温度曲线得到的振幅和相位分别计算相应的土壤热扩散率。结果表明:深埋秸秆条件下,两种方法在深层土壤处的温度曲线拟合度皆较高,深层土壤温度波动规律更加稳定。用标定法得到的模拟地温与实测地温间误差皆小于常规法误差,基于标定法计算出的土壤热扩散率精度更高。振幅法和相位法计算的土壤热扩散率存在一定差异,由振幅法计算的土壤热扩散率小于由相位法计算的土壤热扩散率,但两种方法计算的土壤热扩散率与不同灌水下限的关系是一致的,即在深埋秸秆条件下土壤热扩散率随土壤含水量的增加而增加,但当土壤含水量达到一定水平后,土壤热扩散率不再随含水量增加,甚至会随含水量的增加而减小。这说明不同灌水下限对土壤热扩散率的影响是非线性的。  相似文献   

7.
利用塔克拉玛干沙漠大气环境观测站2008年7月30日至8月4日的土壤温度、湿度和土壤热通量观测资料,定量分析了沙漠土壤热扩散率、温度、热通量的变化规律。采用谐波法、振幅法、相位法和热传导对流法分别计算了5~20 cm沙漠土壤的热扩散率,在此基础上,以5 cm深度的土壤层为上边界条件,计算了10和20 cm深度的土壤温度和8 cm深度的土壤热通量。结果表明:谐波法计算沙漠土壤温度的精度最高,10和20 cm深度的土壤温度计算值与观测值的标准误差分别为0.167℃和0.127℃;热传导对流法对土壤温度的计算结果好于振幅法和相位法。同样,谐波法计算的沙漠土壤热通量值与观测值的误差最小,计算值与观测值的相关系数R2达到0.976,热传导对流法次之,振幅法和相位法的误差最大。  相似文献   

8.
降雨非饱和入渗对土壤热量运移变化的影响   总被引:2,自引:1,他引:1  
高温季节土壤表层温度非常高,土壤内部含水率较低,突发性降雨对于土壤温度动态变化和水热交换运移影响极大。为了揭示降雨非饱和入渗对土壤热量运移变化的影响,该研究建立了反映降雨入渗过程的土壤热量运移数学模型,编制了有限元数值计算程序,针对南京雨花台区典型土壤,开展了降雨非饱和入渗对土壤热量运移影响的数值计算与分析研究。结果表明:不考虑降雨入渗情况下,土壤温度变化与热量运移主要是表层土壤与环境之间的热交换作用引起,热量运移影响深度约0.2 m;降雨强度45 mm/h作用下,随降雨历时增加,雨水全部自由入渗到土壤内部,土壤内部基质吸力呈线性递减趋势,湿润锋面逐渐下移,土壤体积含水率快速增加;湿润锋过后的土壤体积含水率逐渐接近于饱和体积含水率,土壤入渗能力逐渐下降,直至趋于饱和入渗率;在降雨非饱和入渗影响下,入渗到土壤孔隙中的低温雨水与土壤颗粒发生热量交换,进而改变了原有土壤温度场分布,并随着降雨入渗深度的持续增加,降雨入渗过程对土壤热量运移的影响呈现逐渐减弱趋势。经过现场实测数据与模拟计算结果验证,随着降雨历时增加,土壤体积含水率实测值和数值计算值相对误差保持在±3.99%以内,均方根误差RMS...  相似文献   

9.
日光温室山墙对室内太阳直接辐射得热量的影响   总被引:5,自引:4,他引:5  
该文计算了日光温室室内各个面的太阳直接辐射,结果表明:山墙内侧的太阳直接辐射日变化规律不同于室内其它各个面。对于长度较短的温室,如果忽略山墙的作用,将会忽略山墙内外侧太阳辐射对室内得热的影响,同时忽略山墙在室内各个面产生的阴影,从而高估了室内其它面的太阳辐射得热,高估值随着温室长度的递减而递增,给日光温室热环境的分析带来误差。该文还测量了日光温室各个面的热流量,分析了山墙的蓄热放热过程及其随温室长度变化对室内得热的影响。因此,对长度较短的温室,必须考虑山墙对室内得热的影响。同时也为日光温室长度的确定和室内作物布局提供理论依据。  相似文献   

10.
青藏高原重要植被类型之一高寒灌丛的湍流热通量交换是局地微气候特征和植被物候事件的主要调控因素,但其时间格局与分配特征及环境影响机制尚不明确。以青藏高原东北隅的高寒金露梅(Potentilla fruticosa)灌丛为研究对象,基于涡度相关系统连续观测的湍流热通量,研究该生态系统显热通量和潜热通量交换与分配的特征及潜在环境调控过程。结果表明(1)全年逐时显热通量和逐时潜热通量的平均日变化均表现出单峰型特征,最大值出现在13:30左右。在非生长季(11月-翌年4月)、生长初期(5月)和生长季末期(10月),热量交换以显热通量为主,而在生长季中期(6-9月)则以潜热通量居多;(2)显热通量呈现出双峰型季节特征,最大峰和次高峰分别出现在4月中旬和10月上旬。潜热通量为单峰型季节变化,最大值在7月下旬;(3)湍流热通量的逐时、逐日变异均主要受控于太阳短波辐射;(4)波文比呈现出U型季节变化,而解耦系数、蒸散比例表现为钟型季节变化,热量分配指标在非生长季和生长季分别受控于土壤表层温度和增强植被指数。高寒金露梅灌丛的热量交换主要受控于太阳辐射,热量分配则受下垫面温度和植被覆盖影响。  相似文献   

11.
宽地膜覆盖条件下土壤温度场特征   总被引:5,自引:2,他引:5  
宽地膜覆盖对土壤温度有明显的正效应。通过对新疆奎屯地区某地宽地膜覆盖条件下地温场动态的分析,可知膜间、膜边、膜中和揭膜4种处理下的土壤表层5 cm处的温度(以下称表层土温)都可拟合为时间的正弦函数;温度的日变化特征可以用8:00,16:00,20:00 三个时刻来简要表征;种植季节内表层土壤最高温度、表层土温最大变幅及平均表层土温的最大值均发生在膜中,其后依次为膜边、膜间与揭膜;膜中、露地和膜间的不同深度地温在一日内和种植季节内均有一个变化过程;一日内地温变幅与深度关系可拟合成指数函数。  相似文献   

12.
宽地膜覆盖条件下土壤温度场特征   总被引:17,自引:2,他引:17       下载免费PDF全文
宽地膜覆盖对土壤温度有明显的正效应。通过对新疆奎屯地区某地宽地膜覆盖条件下地温场动态的分析,可知膜间、膜边、膜中和揭膜4种处理下的土壤表层5cm处的温度(以下称表层土温)都可以拟合为时间的正弦函数;温度的日变化特征可以用8:00,16:00,20:00三个时刻来简要表征;种植季节内表层土壤最高温度、表层土温最大变幅及平均表层土温的最大值均发生在膜中,其后依次为膜边,膜间与揭膜;膜中、露地和膜间的不同深度地温在一日内和种植季节内均有一个变化过程;一日内地温度变幅与深度关系可拟合成指数函数。  相似文献   

13.
为研究全膜覆土穴播栽培技术在环渤海低平原区对冬小麦田土壤水分、盐分、温度、热量状况和冬小麦产量的影响,采用田间试验法,于2014—2015年在中国科学院南皮生态农业试验站,设置全膜覆土穴播(PM)和常规旋耕播种(CK)冬小麦试验,定位监测了耕层土壤温度、水分、盐分和热通量数据动态,并分析了冬小麦产量。结果表明:PM在越冬期和返青期可以有效保持土壤水分,平均土壤含水量比CK高16.4%,达显著性差异(P0.05);但是,覆膜也阻隔了后期降水对土壤水分的补充,最大含水量差异可达10.0%。PM处理10 cm深土壤日均温度始终高于CK处理,平均增幅3.8%,差异不显著(P0.05);同时,PM减小了土壤温度日较差0.5℃。PM有利于土壤吸收和储存热量,白天具有较高的向下地面热通量,日均土壤热通量比CK显著增加数倍。温度和热通量变化均表明覆膜增强了土壤抵御外界温度变化的能力。PM的土壤电导率显著低于CK24.2%(P0.05),特别是在春季返盐期,PM的土壤电导率比CK降低39.7%。PM较CK增加了冬小麦穗粒数和千粒重,增产10.4%,但均未达显著水平。因此,全膜覆土穴播冬小麦栽培技术能改善土壤水热状况,降低土壤盐分对小麦的危害,这为全膜覆土穴播冬小麦栽培技术在环渤海低平原干旱区农业生产中的应用提供理论与技术支持。  相似文献   

14.
冬小麦田土壤热通量变化特征及计算方法   总被引:1,自引:0,他引:1  
<正> 地表土壤热通量是农田活动层热量平衡中的一个分量。早春或晚秋地表热流量的多寡直接影响土壤耕层的温度变化。以前,土壤热通量一般采用“规范法”~#用地温资料计算。近年来,许多人用热流板直接测量土壤热通量。我们于1981、1982和1984年在河北省栾城县和中国科学院北京大屯生态站的冬小麦田和裸露地,用热流板测量了土壤热通量,现将观测结果分析讨论如下。  相似文献   

15.
日光温室土质墙体内热流测试与分析   总被引:7,自引:0,他引:7  
对山东省寿光市下沉式日光温室的土质墙体内不同厚度处的温度、室内外气温及墙体表面太阳辐射进行连续观测,以分析土墙内温度和热流的变化,探明日光温室后墙热传导规律。结果表明:日光温室土质后墙内热量传递呈现一定的日变化规律,墙体热流传导主要沿厚度方向,表层蓄、放热过程明显。在试验条件下,晴天时,白天通过墙体累计吸热量为2657kJ·m-2,夜间向温室内累计放热量为1865kJ·m-2;雪天时,通过墙体累计吸热量为18kJ·m-2,累计放热量为859kJ·m-2。在下沉式日光温室土质墙体内存在有效蓄热层和保温层,墙体各层功能不同,因此建议在墙体建造时选用不同功能材料分层处理,以发挥日光温室墙体的最大蓄热保温能力。  相似文献   

16.
青藏高原寒冻雏形土地温状况的分布特征   总被引:5,自引:1,他引:5  
李英年  鲍新奎 《土壤》1999,31(4):169-174
以16年观察资料,分析了高原草甸地区寒冻锥形土土壤热量状况在时间进程及垂直方向的变化特征。同时,比较分析了裸露地表与自然植被覆盖条件下地温之间关系,地温不仅随着时间进程表现有一高-低的日年变化规律,而且在0-40cm土层地温变化强烈,随深度加深地温的振幅按指数规律减小,地温的日变化约在0.6m处消失,年变化约在10.5m消失,裸地0-20cm地温变化明显大于有植被下的地温变化。  相似文献   

17.
通过对林地土壤水势和土壤含水量变化规律得出在降雨人渗过程中,土壤水分变化过程是零通量面发散和收敛型的相互转换;土壤含水量和土壤水势变化规律基本相同,林地10-20cm剖面水分变化受环境影响最显著,属表层急变型;30cm剖面水分变化相对缓慢为过渡层;50-100cm剖面水分变化较为一致,含水率也较为接近为稳变层。  相似文献   

18.
冬季日光温室北墙内表面热流分析   总被引:6,自引:0,他引:6  
为了摸清日光温室墙体内表面上辐射、对流传热分量和向墙体内部的传导热分量的日变化情况,以及墙体内部传导传热热流状况,以指导温室生产有针对性的采取保温措施,采用墙体内及表面空气多点多日连续温度监测,用传热学中平板表面对流换热和物体内部热传导传热计算方法进行分析,研究日光温室北墙表面热量收支和墙体热量流动状况。结果表明,墙体内40-50cm深度存在日温不变层;40cm热流仅4W.m-2左右。传热学计算表明北墙内表面自然对流为湍流状态,对流传热系数在1.69~4.43W.m-2.K-1。墙体内表面晴天白天最大对流换热量为26.5W.m-2,而墙面接受最大辐射热交换69.8W.m-2;墙内表面向墙内传导传热量最高达83.6W.m-2;随深度增加,热流降低,位相滞后。阴天时热流量迅速减小。结论:在郑州冬季天气条件下,60cm厚墙体已接近合理水平,再增加厚度增强保温效果的潜力不大;北墙表面空气与墙体间传热为湍流状态,而非平流状态;白天北墙表面以辐射换热量为主,是对流换热量的2.6倍。  相似文献   

19.
日光温室南墙内置泡沫板的保温效果   总被引:1,自引:0,他引:1  
为提高日光温室越冬栽培时土壤耕层温度,在温室南墙内侧分段填埋20cm(T1)、30cm(T2)、40cm(T3)3种不同高度泡沫板,以不填埋泡沫板为对照(CK)。连续30d观测并记录温室内离南墙30cm处不同深度土壤的温度值,从而对不同高度泡沫板的保温效果进行分析。结果表明,在温室南墙内侧填埋泡沫板有利于增加室内土壤耕层温度,且土壤耕层温度与填埋泡沫板高度呈正相关。在试验范围内以填埋40cm深度泡沫板效果最佳,与CK相比,南侧边际耕层温度可增加1~2℃。填埋泡沫板在晴天不影响土壤蓄热,而雪天、阴天土壤温度也可保持在8℃以上,避免了冻害的发生,在不影响作物(番茄)正常生长的条件下还可有效提高根系活力。研究结果可为减少气象灾害对温室生产的影响以及指导日光温室越冬茬作物生产提供依据,在越冬茬作物栽培中具有推广意义。  相似文献   

20.
根据2015年西双版纳热带季节雨林群落冠层植物表面温度以及林冠上、林冠下的气温资料,对热带季节雨林林冠层CO_2浓度特征及其影响因素进行了分析。结果表明:(1)近地层地温呈现正弦变化趋势;深层地温相对稳定,随深度增加地温日变幅减小;地温峰值出现时刻随深度增加而呈现滞后现象;地温季节差异明显,平均地温在雨季较高,雾凉季较低,干热季居中。(2)西双版纳热带季节雨林CO_2浓度表现出明显的日变化、季节变化和林冠上下差异。在日尺度上,林冠上方的CO_2浓度时间变化曲线为"单峰型",林内近地层CO_2浓度时间变化曲线为"双峰型";在季节尺度上,林冠上方和林内近地层CO_2浓度均呈现雨季低、干季高的特点,并且林冠上方CO_2浓度低于林内近地层CO_2浓度。(3)热带季节雨林土壤呼吸存在明显的日变化规律,随时间变化表现为单峰型,且峰值出现的时间在14:00左右,对于季节变化规律,在7—8月份达到峰值,8月份以后,土壤呼吸急剧下降,在12月份最低。(4)不同季节热带季节雨林土壤呼吸、CO_2浓度均与林冠温度的指数关系达到了极显著水平(p0.01),且指数模型的决定系数最大,故指数模型的拟合效果最好。(5)林冠上方CO_2浓度与光合有效辐射之间皆表现出正相关,随着光合有效辐射的增强,CO_2浓度相应地升高;林内近地层CO_2浓度与光合有效辐射之间的正相关关系较林冠上方强,地温与林冠上方CO_2浓度和林内近地层CO_2浓度均没有显著的相关性(p0.05)。林内近地层CO_2浓度与土壤温度以及土壤呼吸的相关系数为正,土壤呼吸可以认为是影响和控制近地层CO_2浓度的主要因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号