首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytonemes are types of filopodia in the Drosophila wing imaginal disc that are proposed to serve as conduits in which morphogen signaling proteins move between producing and target cells. We investigated the specificity of cytonemes that are made by target cells. Cells in wing discs made cytonemes that responded specifically to Decapentaplegic (Dpp) and cells in eye discs made cytonemes that responded specifically to Spitz (the Drosophila epidermal growth factor protein). Tracheal cells had at least two types: one made in response to Branchless (a Drosophila fibroblast growth factor protein, Bnl), to which they segregate the Bnl receptor, and another to which they segregate the Dpp receptor. We conclude that cells can make several types of cytonemes, each of which responds specifically to a signaling pathway by means of the selective presence of a particular signaling protein receptor that has been localized to that cytoneme.  相似文献   

2.
3.
In the developing fly wing, secreted morphogens such as Decapentaplegic (Dpp) and Wingless (Wg) form gradients of concentration providing positional information. Dpp forms a longer-range gradient than Wg. To understand how the range is controlled, we measured the four key kinetic parameters governing morphogen spreading: the production rate, the effective diffusion coefficient, the degradation rate, and the immobile fraction. The four parameters had different values for Dpp versus Wg. In addition, Dynamin-dependent endocytosis was required for spreading of Dpp, but not Wg. Thus, the cellular mechanisms of Dpp and Wingless spreading are different: Dpp spreading requires endocytic, intracellular trafficking.  相似文献   

4.
5.
In starved larvae of the tobacco hornworm moth Manduca sexta, larval and imaginal tissues stop growing, the former because they lack nutrient-dependent signals but the latter because of suppression by juvenile hormone. Without juvenile hormone, imaginal discs form and grow despite severe starvation. This hormone inhibits the intrinsic signaling needed for disc morphogenesis and does so independently of ecdysteroid action. Starvation and juvenile hormone treatments allowed the separation of intrinsic and nutrient-dependent aspects of disc growth and showed that both aspects must occur during the early phases of disc morphogenesis to ensure normal growth leading to typical-sized adults.  相似文献   

6.
Schwank G  Yang SF  Restrepo S  Basler K 《Science (New York, N.Y.)》2012,335(6067):401; author reply 401
Wartlick et al. (Research Articles, 4 March 2011, p. 1154) reported that growth rates in the Drosophila wing disc correlate with increasing Dpp signaling levels, suggesting that the rate of Dpp increase determines the cell-cycle length. Contradicting their model, we found that cells in which the increase of Dpp signaling levels was genetically abrogated grew at rates comparable to those of wild-type cells.  相似文献   

7.
Developing animals frequently adjust their growth programs and/or their maturation or metamorphosis to compensate for growth disturbances (such as injury or tumor) and ensure normal adult size. Such plasticity entails tissue and organ communication to preserve their proportions and symmetry. Here, we show that imaginal discs autonomously activate DILP8, a Drosophila insulin-like peptide, to communicate abnormal growth and postpone maturation. DILP8 delays metamorphosis by inhibiting ecdysone biosynthesis, slowing growth in the imaginal discs, and generating normal-sized animals. Loss of dilp8 yields asymmetric individuals with an unusually large variation in size and a more varied time of maturation. Thus, DILP8 is a fundamental element of the hitherto ill-defined machinery governing the plasticity that ensures developmental stability and robustness.  相似文献   

8.
Shen J  Dahmann C 《Science (New York, N.Y.)》2005,307(5716):1789-1790
Decapentaplegic (Dpp) is a signaling molecule that controls growth and patterning of the developing Drosophila wing. Mutant cells lacking Dpp signal transduction have been shown to activate c-Jun amino-terminal kinase (JNK)-dependent apoptosis and to be lost from the wing disc epithelium. These observations have led to the hypothesis that Dpp promotes cell survival by preventing apoptosis. Here, we show that in the absence of JNK-dependent apoptosis, mutant cells lacking Dpp signal transduction can survive; however, they are still lost from the wing disc epithelium. This loss correlates with extensive cytoskeletal changes followed by basal epithelial extrusion. We propose that Dpp promotes cell survival within disc epithelia by affecting cytoskeletal organization.  相似文献   

9.
Genetic regulation of mammalian heart size is poorly understood. Hippo signaling represents an organ-size control pathway in Drosophila, where it also inhibits cell proliferation and promotes apoptosis in imaginal discs. To determine whether Hippo signaling controls mammalian heart size, we inactivated Hippo pathway components in the developing mouse heart. Hippo-deficient embryos had overgrown hearts with elevated cardiomyocyte proliferation. Gene expression profiling and chromatin immunoprecipitation revealed that Hippo signaling negatively regulates a subset of Wnt target genes. Genetic interaction studies indicated that β-catenin heterozygosity suppressed the Hippo cardiomyocyte overgrowth phenotype. Furthermore, the Hippo effector Yap interacts with β-catenin on Sox2 and Snai2 genes. These data uncover a nuclear interaction between Hippo and Wnt signaling that restricts cardiomyocyte proliferation and controls heart size.  相似文献   

10.
Wnt proteins, regulators of development in many organisms, bind to seven transmembrane-spanning (7TMS) receptors called frizzleds, thereby recruiting the cytoplasmic molecule dishevelled (Dvl) to the plasma membrane.Frizzled-mediated endocytosis of Wg (a Drosophila Wnt protein) and lysosomal degradation may regulate the formation of morphogen gradients. Endocytosis of Frizzled 4 (Fz4) in human embryonic kidney 293 cells was dependent on added Wnt5A protein and was accomplished by the multifunctional adaptor protein beta-arrestin 2 (betaarr2), which was recruited to Fz4 by binding to phosphorylated Dvl2. These findings provide a previously unrecognized mechanism for receptor recruitment of beta-arrestin and demonstrate that Dvl plays an important role in the endocytosis of frizzled, as well as in promoting signaling.  相似文献   

11.
During Drosophila metamorphosis, most larval cells die. Pupal and adult tissues form from imaginal cells, tissue-specific progenitors allocated in embryogenesis that remain quiescent during embryonic and larval life. Clonal analysis and fate mapping of single, identified cells show that tracheal system remodeling at metamorphosis involves a classical imaginal cell population and a population of differentiated, functional larval tracheal cells that reenter the cell cycle and regain developmental potency. In late larvae, both populations are activated and proliferate, spread over and replace old branches, and diversify into various stalk and coiled tracheolar cells under control of fibroblast growth factor signaling. Thus, Drosophila pupal/adult tissue progenitors can arise both by early allocation of multipotent cells and late return of differentiated cells to a multipotent state, even within a single tissue.  相似文献   

12.
During animal development, epithelial cell fates are specified according to spatial position by extracellular signaling pathways. Among these, the transforming growth factor beta/bone morphogenetic protein (TGF-beta/BMP) pathways are evolutionarily conserved and play crucial roles in the development and homeostasis of a wide range of multicellular tissues. Here we show that in the developing Drosophila wing imaginal epithelium, cell clones deprived of the BMP-like ligand Decapentaplegic (DPP) do not die as previously thought but rather extrude from the cell layer as viable cysts exhibiting marked abnormalities in cell shape and cytoskeletal organization. We propose that in addition to assigning cell fates, a crucial developmental function of DPP/BMP signaling is the position-specific control of epithelial architecture.  相似文献   

13.
Elevations in cytosolic free calcium concentration ([Ca(2+)](cyt)) constitute a fundamental signal transduction mechanism in eukaryotic cells, but the molecular identity of Ca(2+) channels initiating this signal in plants is still under debate. Here, we show by pharmacology and loss-of-function mutants that in tobacco and Arabidopsis, glutamate receptor-like channels (GLRs) facilitate Ca(2+) influx across the plasma membrane, modulate apical [Ca(2+)](cyt) gradient, and consequently affect pollen tube growth and morphogenesis. Additionally, wild-type pollen tubes grown in pistils of knock-out mutants for serine-racemase (SR1) displayed growth defects consistent with a decrease in GLR activity. Our findings reveal a novel plant signaling mechanism between male gametophyte and pistil tissue similar to amino acid-mediated communication commonly observed in animal nervous systems.  相似文献   

14.
The ciliate Euplotes octocarinatus and some close relatives of it are triggered by predator-released substances to undergo morphogenetic changes that inhibit their engulfment. The changes occur within a few hours and do not require cell division. They are perpetuated during reproduction so long as the concentration of the morphogen is maintained. The ability of Euplotes to respond to predator-produced signals by a defensive change in cell architecture probably provides an effective mechanism for damping population oscillations ofboth prey and predators andfosters coexistence. The signal-induced cell transformation merits study for its own sake because of its developmental implications.  相似文献   

15.
原始云冷杉、红松林树木生长对氮沉降的响应   总被引:2,自引:0,他引:2  
本文通过野外控制试验,设置4个梯度的施氮处理,分别为对照(CK,不加氮)、低氮(TL,5 g/(m2·a))、中氮(TM,10 g/(m2·a))、高氮(TH,15 g/(m2·a)),研究云冷杉红松林主要树种的径生长对氮沉降增加的响应。结果表明,枫桦径生长随氮添加梯度的增加出现了先促进后抑制的趋势;臭冷杉和红松径生长随氮添加梯度的增加而受到抑制,其中臭冷杉表现出明显的衰退现象甚至死亡;花楷槭则表现出较为复杂的响应,可能与该树种对不同梯度氮添加的响应机制不同有关。同时还发现,各处理、各树种的胸径大小与径生长量存在相关性,可能与树种年龄及其所处的生态位相关。研究表明,氮沉降改变树木生长速率和死亡率,可能影响地上生态系统碳库和整个生态系统碳循环。   相似文献   

16.
Sonic hedgehog control of size and shape in midbrain pattern formation   总被引:1,自引:0,他引:1  
Little is known about how patterns of cell types are organized to form brain structures of appropriate size and shape. To study this process, we employed in vivo electroporation during midbrain development to create ectopic sources of Sonic Hedgehog, a signaling molecule previously shown to specify different neuronal cell types in a concentration-dependent manner in vitro. We provide direct evidence that a Sonic Hedgehog source can control pattern at a distance in brain development and demonstrate that the size, shape, and orientation of the cell populations produced depend on the geometry of the morphogen source. Thus, a single regulatory molecule can coordinate tissue size and shape with cell-type identity in brain development.  相似文献   

17.
Kalab P  Weis K  Heald R 《Science (New York, N.Y.)》2002,295(5564):2452-2456
The small guanosine triphosphatase Ran is loaded with guanosine triphosphate (GTP) by the chromatin-bound guanine nucleotide exchange factor RCC1 and releases import cargoes in the nucleus during interphase. In mitosis, Ran-GTP promotes spindle assembly around chromosomes by locally discharging cargoes that regulate microtubule dynamics and organization. We used fluorescence resonance energy transfer-based biosensors to visualize gradients of Ran-GTP and liberated cargoes around chromosomes in mitotic Xenopus egg extracts. Both gradients were required to assemble and maintain spindle structure. During interphase, Ran-GTP was highly enriched in the nucleoplasm, and a steep concentration difference between nuclear and cytoplasmic Ran-GTP was established, providing evidence for a Ran-GTP gradient surrounding chromosomes throughout the cell cycle.  相似文献   

18.
【目的】研究荒漠植物功能性状与生物量之间的关系随土壤水盐梯度的变化规律,为荒漠地区植物恢复和土壤盐渍化治理提供科学依据。【方法】测定植物的叶片形态、生理特征、植物生物量以及土壤的水分和盐分含量,并将水盐分为3个梯度,分析不同水盐梯度下植物生物量对功能性状的响应。【结果】(1) 植物冠幅面积 (S) 在3种土壤水盐梯度下均有显著性差异 (P < 0.05) ;植物叶片磷含量 (LPC) 在低水盐群落中适应性高于中高水盐梯度。(2) 植物地下生物量 (AGB) 低水盐梯度显著低于高水盐梯度 (P < 0.05) ;地上生物量在土壤水盐梯度上没有表现出显著性差异 (P > 0.05) 。 (3)对植物功能性状和生物量的冗余分析 (RDA) 在3种梯度下,植物冠幅面积 (S) 、株高 (H) 与生物量相关性均较高,植物在生长发育过程中表型性状S、H、SLA会对生物量增长有促进作用。 (4) 荒漠植物功能性状对生物量的指示能力是随着土壤水盐梯度的升高而逐渐减弱。【结论】艾比湖干旱荒漠地区植物的生物量随土壤水盐的增高而减少。在低水低盐土壤区域,植物的适应性较强;在高水盐土壤区域,植物叶片表型性状比生理性状更明显;在中水盐土壤区域,植物功能性状与生物量差异及联系不明显。干旱荒漠区土壤盐含量的增高已经对植物生长产生了迫害,造成了严重的生态环境问题,在干旱荒漠生态系统中,植物的功能性状及生物量减少会使荒漠土地退化,导致生态系统功能的变化。  相似文献   

19.
In animals, appendages develop in proportion to overall body size; when individual size varies, appendages covary proportionally. In insects with complete metamorphosis, adult appendages develop from precursor tissues called imaginal disks that grow after somatic growth has ceased. It is unclear, however, how the growth of these appendages is matched to the already established body size. We studied the pattern of cell division in the tobacco hornworm Manduca sexta and found that both the rate of cell division and the duration of growth of the wing imaginal disks depend on the size of the body in which they develop. Moreover, we found that both of these processes are controlled by the level and duration of secretion of the steroid hormone ecdysone. Thus, proportional growth is under hormonal control and indirectly regulated by the central nervous system.  相似文献   

20.
水杨酸对黄独试管苗生长发育的影响   总被引:1,自引:0,他引:1  
探讨了不同浓度的水杨酸对黄独试管苗生长发育的影响。黄独带芽茎段分别在含0、0.4、0.8、1.6、3.2、6.4、12.8和25.6mg/L等8个梯度浓度水杨酸的MS培养基中,在温度为25±1℃、光照时间12h/d、光强1000~1400lx的条件下进行培养,结果表明,低浓度水杨酸对黄独的生长有促进作用,但高浓度水杨酸对黄独试管苗的生长发育有抑制作用,而且随着浓度增加其抑制作用愈加明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号